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FOREWORD

The first edition of the of the French-German Congress of Optimization started back in 1980 in Ober-
wolfach (Germany) as a meeting of French and German mathematicians who shared a common interest
in different aspects of mathematical optimization. Since that edition, researchers of other countries
have participated in this congress and, starting in 1998 a third country is invited to participate in the
organization.

On this occasion, we have had the honour to be chosen to host it in Spain, so this is a French-
German-Spanish conference (FGS2024, https://www.unioviedo.es/fgs2024/). It took place in the Campus
of Gijón of the Universidad de Oviedo, in the Spanish region of Asturias.

In this proceedings book you can find the extended abstracts of some of the communications pre-
sented at the conference. They include a variety of topics related to optimization, ranging from classical
ones --such as optimal control, inverse problems or mathematical programming-- to the latest insights
into machine learning and artificial intelligence provided by the application to control theory to the
study of neural odes, as generalizations of neural networks.

We would like to thank all the people that have made this congress possible: all the authors and
coauthors of presentations, the scientific committee, the technical secretariat of the Foundation Uni-
versidad de Oviedo, the students that have volunteered, and our sponsors.

The local organizing committee from the Universidad de Oviedo
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Controllability of neural ODEs for data classification

Antonio Álvarez-López

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

Abstract

In this work, we explore the capacity of neural ordinary differential equations (ODEs) for supervised

learning from a control perspective. Specifically, we rely on the property of simultaneous controllability

and explicitly construct the controls that achieve this as piecewise constant functions in time.

First, we analyze the expressivity of themodel for cluster-based classification by estimating the number

of neurons required for the classification of a set constituted by𝑁points. We consider aworst-case scenario

where these points are independently sampled from 𝑈([0, 1]𝑑). Assuming only that the initial points are

in general position, we propose an algorithm that classifies clusters of 𝑑 points simultaneously, employing

𝑂(𝑁/𝑑) neurons.

Secondly, we examine the impact of the architecture, determined by the depth 𝑝 and width 𝐿, for inter-

polating a set of 𝑁 pairs of points. Our findings reveal a balance where 𝐿 scales as 𝑂(1 + 𝑁/𝑝). For the

autonomous model, with constant controls (𝐿 = 0), we relax the problem to approximate controllability of

𝑁 pairs of points, establishing an explicit error decay with respect to 𝑝. Finally, we extend the problem to

the approximate control of measures in the Wasserstein space, finding another balance between 𝑝 and 𝐿.

1. Introduction

Supervised learning is one of the main paradigms in machine learning. Given some spaces𝒳 ⊂ ℝ𝑑 and 𝒴 ⊂

ℝ𝑚 with 𝑑,𝑚 ≥ 1, the problem can be formulated as the approximation of an unknown function 𝑓 ∶ 𝒳 → 𝒴

using a parametric model built from the information contained in a training dataset {(x𝑛, y𝑛)}
𝑁
𝑛=1 ⊂ 𝒳 × 𝒴,

where y𝑛 = 𝑓(x𝑛) for all 𝑛.

Neural networks constitute a widely used class of models, and among them, residual networks have been

shown to be particularly effective. A residual neural network, defined for a fixed depth 𝐿 ∈ ℕ, operates as a

discrete system given by:

x𝑙+1 = x𝑙 +

𝑝

�

𝑖=1

w𝑙,𝑖𝜎(a𝑙,𝑖 ⋅ x𝑙 + 𝑏𝑙,𝑖), 𝑙 = 0,… , 𝐿, (1.1)

where x𝑙 ∈ ℝ𝑑 is the sequence of states, ⋅ denotes the scalar product, and:

• w𝑙,𝑖, a𝑙,𝑖 ∈ ℝ𝑑 and 𝑏𝑙,𝑖 ∈ ℝ are the parameters;

• 𝑝 is the width of the model;

• 𝜎 is a predefined nonlinearity, frequently the Rectified Linear Unit (ReLU) function, defined by:

𝜎(𝑧) = max{𝑧, 0}, for 𝑧 ∈ ℝ. (1.2)

Neural ODEs are essentially the continuous-time limit of residual networks [5]. They are obtained by multi-

plying the nonlinear term in (1.1) by a constant ℎ > 0 and taking the limit when ℎ → 0, resulting in:

̇x =

𝑝

�

𝑖=1

w𝑖(𝑡) 𝜎(a𝑖(𝑡) ⋅ x+ 𝑏𝑖(𝑡)), 𝑡 ∈ (0, 𝑇), (1.3)

where the parameters can now be seen as 𝑝 control functions (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ⊂ 𝐿∞ �(0, 𝑇), ℝ2𝑑+1�, for some

𝑇 > 0. Note that the time horizon 𝑇 does not play a major role, since equation (1.3) admits a time-rescaling

property: one can equivalently fix 𝑇 = 1 and absorb a factor 𝑇 intow𝑖.

One of the main advantages of neural ODEs is that they enable the reinterpretation and study of various

machine learning paradigms using the tools from differential equations and dynamical systems [10]. For

instance, data classification can be formulated as a problem of simultaneous control of the system (1.3). The
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objective is to design 𝑝 controls that drive every initial data point {x𝑛}
𝑁
𝑛=1 ⊂ ℝ𝑑 to its corresponding target

point via the flow map at time 𝑇 of the system (1.3).

To facilitate the geometric interpretation of the dynamics, achieve a layered structure similar to (1.1),

and reduce the problem to finite dimensions, it is often assumed that the controls are piecewise constant in

time [7,9]. The discrete network’s depth can then be interpreted as the number of distinct values that these

controls take, and each of the finite-jump discontinuities, whose total number we denote by 𝐿, corresponds

to a layer transition.

Within each layer 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘) ⊂ (0, 𝑇), the controls a𝑖(𝑡) ≡ a𝑖 ∈ ℝ𝑑 and 𝑏𝑖(𝑡) ≡ 𝑏𝑖 ∈ ℝ define

𝑝 hyperplanes 𝐻1, … , 𝐻𝑝. The ReLU function in (1.2) then activates or deactivates the corresponding half-

spaces:

𝐻+
𝑖 ≔ {x ∈ ℝ𝑑 ∶ a𝑖 ⋅ x+ 𝑏𝑖 > 0} and 𝐻−

𝑖 ≔ ℝ𝑑 ∖ 𝐻+
𝑖 , for all 𝑖 = 1,… , 𝑝, (1.4)

Meanwhile, each control w𝑖(𝑡) ≡ w𝑖 ∈ ℝ𝑑 determines a vector field acting solely on the points inside the

half-space 𝐻+
𝑖 . The total field in (1.3) acts on each point x ∈ ℝ𝑑 as a weighted superposition of the form

∑
𝑝
𝑖=1 dist(x, 𝐻

−
𝑖 )w𝑖, where the 𝑖-th term is null when x ∈ 𝐻−

𝑖 . By appropriately defining the controls, we can

thus fix any hyperplane 𝐻𝑖 inℝ
𝑑 and generate three basic dynamics, as represented in Figure 1.

Fig. 1 Basic movements that we can generate: Compression, laminar motion, expansion (from left to right).

2. Controlled cluster-based classification

First, we address binary classification, where𝒴 = {1, 0}. In this context, the values𝑦𝑛 are commonly referred

to as labels. We associate the two labels with a pair of target regions that are linearly separable and form a

partition of ℝ𝑑. For example, the two half-spaces defined by 𝑥(𝑘) ≠ 1. Our goal is to design controls for the

neural ODE that generate a flow mapping each initial point x𝑛 to the corresponding target region 𝑥(𝑘) > 1

or 𝑥(𝑘) < 1.

Furthermore, for optimal classification, the complexity of the model, represented by the number of neu-

rons defining the network, should not grow excessively large. By fixing 𝑝 = 1 in (1.3), the complexity is thus

determined solely by the number of discontinuities in the controls over time:

ẋ = w(𝑡) 𝜎(a(𝑡) ⋅ x+ 𝑏(𝑡)), 𝑡 ∈ (0, 𝑇). (2.1)

In [7], classification of any finite dataset was achieved through a constructive algorithm that leverages the

nonlinear dynamics of (2.1) to simultaneously control the𝑁 points inductively. The main result in this work

is the following:

Theorem 2.1 Let 𝑁 ≥ 1, 𝑑 ≥ 2, and 𝑇 > 0. Consider any dataset {(x𝑛, 𝑦𝑛)}
𝑁
𝑛=1 ⊂ ℝ𝑑 × {1, 0} with x𝑛 ≠ x𝑚

if 𝑛 ≠ 𝑚. Then, there exists a piecewise constant control (w, a, 𝑏) ∈ 𝐿∞ �(0, 𝑇), ℝ2𝑑+1� such that the flow map

Φ𝑇 generated by (2.1) satisfies, for all 𝑛 = 1,… ,𝑁:

Φ𝑇(x𝑛)
(1) > 1 if 𝑦𝑛 = 1, and Φ𝑇(x𝑛)

(1) < 1 if 𝑦𝑛 = 0,

Furthermore, the number of discontinuities in the controls is 𝐿 = 3𝑁.

Theorem 2.1 opens new pathways for methodologies in data classification. However, it requires high

complexity since the number of neurons scales with 𝑁 due to the inductive nature of the algorithm. In [1],

we propose new algorithms that consider the spatial structure of the data distribution to reduce the number

of parameters needed. Specifically, by assuming that the points are randomly sampled from 𝑈([0, 1]𝑑)—a

worst-case scenario of pure noise—we construct controls that provide the following probabilistic bound on

the model’s depth:

Theorem 2.2 Let 𝑁 ≥ 1, 𝑑 ≥ 2, and 𝑇 > 0. Consider any dataset {(x𝑛, 𝑦𝑛)}
2𝑁
𝑛=1 with x𝑛 ∼ 𝑈([0, 1]𝑑) and

𝑦𝑛 ∈ {1, 0} for all 𝑛, satisfying #{𝑛 ∶ 𝑦𝑛 = 1} = #{𝑛 ∶ 𝑦𝑛 = 0} = 𝑁. Then, there exist a direction 𝑗 ∈ {1, … , 𝑑}, a

Controllability of neural ODEs for data classification
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piecewise constant control (w, 𝑏) ∈ 𝐿∞ �(0, 𝑇), ℝ𝑑+1� and a ∈ {e1, … , e𝑑}, such that the flowmapΦ𝑇 generated

by (2.1) satisfies, for all 𝑛 = 1,… , 2𝑁:

Φ𝑇(x𝑛)
(𝑗) < 1 if 𝑦𝑛 = 1, and Φ𝑇(x𝑛)

(𝑗) > 1 if 𝑦𝑛 = 0.

Furthermore, the number of discontinuities 𝐿 follows the probability distribution, for 0 ≤ 𝑘 ≤ 2𝑁 − 2,

ℙ(𝐿 ≥ 𝑘) = �

𝑁

�

𝑝=⌈
𝑘+1

2
⌉

�
𝑁 − 1

𝑝 − 1
�

2

+

𝑁−1

�

𝑝=⌈
𝑘

2
⌉

�
𝑁 − 1

𝑝
��

𝑁 − 1

𝑝 − 1
��

𝑑

2𝑑�
2𝑁

𝑁
�

−𝑑

. (2.2)
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(a) Visualization of (2.2) for

𝑁 = 10 and different values of

𝑑.

(b) Repre-

sentation of

the algorithm

for classifi-

cation from

Theorem 2.2.

Fig. 2

Themaximum number of 𝐿 = 2𝑁−2 discontinuities corresponds to the configuration where the 2𝑁−1

points lie ona single line andare interspersedaccording to their labels. Although these scenarios are typically

unrealistic, they hold a positive probability in Theorem 2.2 due to the strong constraint on a. However, if we

assume that the points are in general position, meaning no 𝑑 + 1 points lie on the same hyperplane (see

figure 3a), we can build new controls that refine the maximum value of 𝐿:

Theorem 2.3 Let 𝑑 ≥ 2,𝑁 ≥ 1, and 𝑇 > 0. Consider any dataset {(x𝑛, y𝑛)}
𝑁
𝑛=1 ⊂ ℝ𝑑 × {1, 0} in general posi-

tionandanydirection 𝑗 ∈ {1, … , 𝑑}. Then, there exists a piecewise constant control (w, a, 𝑏) ∈ 𝐿∞ �(0, 𝑇), ℝ2𝑑+1�

with 𝐿 = 4⌈𝑚/𝑑⌉ − 1 discontinuities, where 𝑚 = min (#{𝑛 ∶ 𝑦𝑛 = 1}, #{𝑖 ∶ 𝑦𝑛 = 0}), such that the flow map

generated by (2.1) satisfies, for all 𝑛 = 1,… ,𝑁:

Φ𝑇(x𝑛)
(𝑗) < 1 if 𝑦𝑛 = 1 and Φ𝑇(x𝑛)

(𝑗) > 1 if 𝑦𝑛 = 0.

(a) General position setting. (b) Represen-

tation of the

algorithm for

classification

from Theo-

rem 2.3.

Fig. 3

Antonio Álvarez López
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3. Interplay between depth and width

3.1. In simultaneous control

As an extension of Theorem 2.1, the property of simultaneous control was also proven in [7] by constructing

the necessary controls in (2.1):

Theorem 3.1 Let 𝑁 ≥ 1, 𝑑 ≥ 2, and 𝑇 > 0. Consider any dataset {(x𝑛, y𝑛)}
𝑁
𝑛=1 ⊂ ℝ𝑑 with x𝑛 ≠ x𝑚 and

y𝑛 ≠ y𝑚 for 𝑛 ≠ 𝑚. Then, there exists a piecewise constant control (w, a, 𝑏) ∈ 𝐿∞ �(0, 𝑇), ℝ2𝑑−1� such that the

flow mapΦ𝑇 generated by (2.1) satisfies:

Φ𝑇(x𝑛) = y𝑛, for all 𝑛 = 1,… ,𝑁.

Furthermore, the number of discontinuities in the controls is 𝐿 = 4𝑁.

In our second work [2], we focus on the role that the architecture can play in this task by allowing the

width to be 𝑝 ≥ 1 and studying its interplay with the depth 𝐿. Our findings reveal a balancing trade-off

between these two parameters, as shown in the following result:

Proposition 3.2 Let 𝑁 ≥ 1, 𝑑 ≥ 2, and 𝑇 > 0. Consider any dataset {(x𝑛, y𝑛)}
𝑁
𝑛=1 ⊂ ℝ𝑑 with x𝑛 ≠ x𝑚

and y𝑛 ≠ y𝑚 for 𝑛 ≠ 𝑚. Then, for any 𝑝 ≥ 1, there exist piecewise constant controls (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ⊂

𝐿∞ �(0, 𝑇), ℝ2𝑑+1� such that the flow mapΦ𝑇 generated by (1.3) satisfies:

Φ𝑇(x𝑛) = y𝑛, for all 𝑛 = 1,… ,𝑁.

Furthermore, the number of discontinuities in the controls is 𝐿 = 2 �
𝑁

𝑝
� − 1.

We can see that as the width 𝑝 increases, the parameter 𝐿 decreases at the same rate, indicating that both

play a similar role in the steering process. However, whenever 𝑝 ≥ 𝑁, the constructed control will exhibit

only one switch (𝐿 = 1), which precludes a complete transition to the autonomous model

ẋ =

𝑝

�

𝑖=1

w𝑖𝜎(a𝑖 ⋅ x+ 𝑏𝑖) (3.1)

This is because the proof is algorithmically divided into twophases, represented in Figure 4. First, we control

𝑑−1 coordinates of each batch of 𝑝 points, and thenwe control the remaining coordinate. Therefore, at least

one discontinuity is inevitable to transition between these two phases.

Fig. 4 Left: Step 1. Control of 𝑑 − 1 coordinates. Right: Step 2. Control of the remaining coordinate.

Motivated by this observation, we now pose the following question:

Is it possible to achieve exact control using 𝐿 = 0 discontinuities?

There are some remarks that can be made as a first approach:

1. Semi-autonomous neural ODE: If we consider the semi-autonomous neural ODEwhere only the con-

trols 𝑏𝑖 depend on time,

ẋ =

𝑝

�

𝑖=1

w𝑖𝜎(a𝑖 ⋅ x+ 𝑏𝑖(𝑡)), (3.2)

we can adapt the proof of Theorem 3.2, obtaining the same result and the same number of discontinu-

ities for some controls (𝑏𝑖)
𝑝
𝑖=1 ⊂ 𝐿∞ ((0, 𝑇), ℝ), but with constant (w𝑖, a𝑖)

𝑝
𝑖=1 ⊂ ℝ2𝑑.

Controllability of neural ODEs for data classification

14



2. High dimensions: When 𝑑 > 𝑁, the second step in the proof of Theorem 3.2 can be omitted because

we can find a newbasis ofℝ𝑑 inwhich each point x𝑛 shares the first coordinatewith its target y𝑛. Thus,

we reduce 𝐿 to 2 �
𝑁

𝑝
� − 2.

3. Probabilistic: Additionally, we can estimate the probability that the points will appear in certain spa-

tial configurations that facilitate their autonomous control. For instance, if x𝑛 and y𝑛 are randomly

sampled from 𝑈([0, 1]𝑑) for all 𝑛 = 1,… ,𝑁, then with probability 𝑃 bounded as

1 ≥ 𝑃 ≥ 1 − �1 −
1

√2
�
𝑒

2𝑁
�
𝑁

�

𝑑

→ 1,

there exist 𝑝 controls (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ⊂ ℝ2𝑑+1 such thatΦ𝑇(x𝑛) = y𝑛.

In general, another option is to relax the problem statement to approximate controllability, which means

allowing a uniform error 𝜀 > 0 that can be made arbitrarily small. Thus, we can obtain the following result:

Theorem 3.3 Let 𝑁 ≥ 1, 𝑑 ≥ 2, and 𝑇 > 0. Consider any dataset {(x𝑛, y𝑛)}
𝑁
𝑛=1 ⊂ ℝ𝑑 with x𝑛 ≠ x𝑚 for

𝑛 ≠ 𝑚. For each 𝑝 ≥ 1, there exist controls (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ⊂ ℝ2𝑑+1 such that the flow map Φ𝑇 generated by

(1.3) satisfies

sup
𝑛=1,…,𝑁

�y𝑛 −Φ𝑇(x𝑛)� ≤ 𝐶
log

2
(𝜅)

𝜅1/𝑑
,

where 𝜅 = (𝑑 + 2)𝑑𝑝 is the number of parameters in the model, and 𝐶 > 0 is a constant independent of 𝑝.

The strategy consists of applying an approximation theorem for shallow neural networks in the space

of Lipschitz functions with respect to the uniform norm, providing explicit convergence rates, as derived

from[3]. Thevector field tobe approximatedwill be a time-independent Lipschitz fieldwhose integral curves

guide each input point x𝑛 in 𝒟 to its corresponding target y𝑛 within a fixed time 𝑇. The construction of this

field is described in Figure 5.

Fig. 5 Construction of a Lipschitz field which interpolates 𝒟 in a compact domain Ω that contains all the points and

curves.

3.2. In neural transport

As an extension of the results we present in this section, we also consider the reformulation of the model

(1.3) as a semilinear hyperbolic equation, known as the neural transport equation:

𝜕𝑡𝜇 + div𝑥(V(x)𝜇) = 0, with V(x) =

𝑝

�

𝑖=1

w𝑖𝜎(a𝑖 ⋅ x+ 𝑏𝑖). (3.3)

This equation defines the evolution of a measure 𝜇 in ℝ𝑑 following an advection vector field V given by the

neural ODE. The case of𝑁 initial data points is recovered by taking𝑁Dirac deltas as the basemeasure, which

evolve according to the characteristic equation given by (1.3).

We will work in the space 𝒫𝑐
𝑎𝑐(ℝ

𝑑) of compactly supported, absolutely continuous probability measures

inℝ𝑑, with the metric given by the Wasserstein distance, which is rooted in the theory of optimal transport.

For any pair of measures 𝜇, 𝜈 ∈ 𝒫𝑐
𝑎𝑐(ℝ

𝑑) and 𝑞 ≥ 1, the Wasserstein-𝑞 distance between 𝜇 and 𝜈 is defined

by

𝒲𝑞(𝜇, 𝜈) ≔ � min
𝛾∈Π(𝜇,𝜈)

�
ℝ𝑑×ℝ𝑑

|x− y|𝑞 𝑑𝛾(x, y)�

1/𝑞

, (3.4)

where Π(𝜇, 𝜈) is the space of all couplings of 𝜇 and 𝜈:

Π(𝜇, 𝜈) ≔ �𝛾 ∈ 𝒫𝑐
𝑎𝑐(ℝ

𝑑 × ℝ𝑑) | 𝛾(⋅ × ℝ𝑑) = 𝜇(⋅) and 𝛾(ℝ𝑑 × ⋅) = 𝜈(⋅)� .
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Since the vector field V(x) in (3.3) is Lipschitz in x, the classic Cauchy-Lipschitz theorem guarantees that the

curve 𝜇(𝑡)(⋅) ≔ Φ𝑡(⋅; 𝜃)#𝜇0 in 𝒫𝑐
𝑎𝑐(ℝ

𝑑) is well-defined, where Φ𝑇#𝜇0 denotes the pushforward measure

underΦ𝑇.

The objective now is to study the controllability problem of the equation (3.3), aimed at transforming

one given probability measure into another, up to an arbitrarily small error 𝜀. As in simultaneous control,

the case with 𝑝 = 1was resolved for both the total variationmetric in [8] and theWasserstein-1 space in [7].

In the latter work, the following result was obtained:

Theorem 3.4 Let 𝑑 ≥ 2 and 𝑇 > 0. For any 𝜇0, 𝜇∗ ∈ 𝒫𝑐
𝑎𝑐(ℝ

𝑑) and 𝜀 > 0, there exists a piecewise constant

control (w, a, 𝑏) ∈ 𝐿∞ �(0, 𝑇), ℝ2𝑑+1� such that the solution 𝜇(𝑡) of (3.3), taking 𝜇0 as initial condition, satisfies

𝒲1(𝜇(𝑇), 𝜇∗) < 𝜀.

In our work [2], we study the case with 𝑝 ≥ 1 for the uniform measure in the hypercube [0, 1]𝑑 as the

target. The control algorithm we develop is explicit and allows us to obtain an explicit expression for the

number of discontinuities 𝐿 in terms of 𝑝, 𝑑, and the order of Wasserstein 𝑞:

Theorem 3.5 Let 𝑑 ≥ 2 and 𝑇 > 0. For any 𝜇0 ∈ 𝒫𝑐
𝑎𝑐(ℝ

𝑑), 𝜀 > 0, 𝑞 ∈ �1,
𝑑

𝑑−1
�, and 𝑝 ≥ 1, there exist

piecewise constant controls (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ⊂ 𝐿∞ �(0, 𝑇), ℝ2𝑑+1� such that the solution 𝜇(𝑡) of (3.3), taking 𝜇0

as the initial condition, satisfies

𝒲𝑞(𝜇(𝑇), 𝜇∗) < 𝜀,

and the number of discontinuities in the controls is

𝐿 = �
2𝑑

𝑝
� + �

1

𝑝 − 𝑑 + 1
�
31+𝑑/𝑞√𝑑

𝜀
�

𝑑

1+𝑑/𝑞−𝑑

� − 1.

As a final remark, when 𝑞 = 1 then the number of discontinuities simplifies to:

𝐿 = �
2𝑑

𝑝
� + �

1

𝑝 − 𝑑 + 1
�
31+𝑑√𝑑

𝜀
�

𝑑

� − 1.
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Abstract

This article is a sample of what has been done in the research work [1] and has been presented in the

French-German-SpanishConferenceonOptimizaion2024, that hasbeenheld inGijón, Spain. In thework [1]

we considered a one-dimensional fluid-solid interaction model governed by the Burgers equation with a

time varying interface. There, we studied the inverse problem of determining the shape of the interface

from Dirichlet and Neumann data at one end point of the spatial interval.

In this article we display themain results we have obtained in [1] in order to establish uniqueness prop-

erty and some conditional stability estimates. We also show a brief outline of the proofs, where we have

used and adapted some lateral estimates that rely on appropriate Carleman and interpolation inequalities.

1. Introduction

Wewill consider anonlinear system thatmodels the interactionof a one-dimensional fluid evolving in (−1, 1)

and a solid particle. It will be assumed that the velocity of the fluid is governed by the viscous Burgers

equation at both sides of the point mass location 𝑦 = 𝑝(𝑡). For simplicity, it will be accepted that the fluid

density is constant and equal to 1 and the solid particle has unit mass.

For any 𝑝 at least in 𝐶0([0, 𝑇]) satisfying |𝑝(𝑡)| ≤ 1 for all 𝑡 ∈ [0, 𝑇], let us introduce the open sets

𝑄(𝑝) = {(𝑥, 𝑡) ∈ ℝ2 ∶ −1 < 𝑥 < 1, 𝑥 ≠ 𝑝(𝑡), 0 < 𝑡 < 𝑇},

𝑄ℓ(𝑝) = {(𝑥, 𝑡) ∈ 𝑄(𝑝) ∶ 𝑥 < 𝑝(𝑡)} and 𝑄𝑟(𝑝) = {(𝑥, 𝑡) ∈ 𝑄(𝑝) ∶ 𝑥 > 𝑝(𝑡)}.

On the other hand, the jump of the function 𝑓 at the point 𝑥 will be denoted in the sequel by [𝑓](𝑥), that

is,

[𝑓](𝑥) ∶= lim
𝑠→0+

𝑓(𝑥 + 𝑠) − lim
𝑠→0−

𝑓(𝑥 + 𝑠).

Wewill consider fluid-particle systems of the form

⎧
⎪

⎨
⎪
⎩

𝑤𝑡 −𝑤𝑥𝑥 +𝑤𝑤𝑥 = 0, (𝑥, 𝑡) ∈ 𝑄(𝑝),

𝑤(𝑝(𝑡), 𝑡) = 𝑝′(𝑡), [𝑤𝑥](𝑝(𝑡), 𝑡) = 𝑝″(𝑡), 𝑡 ∈ (0, 𝑇),

𝑤(−1, 𝑡) = 𝛼(𝑡), 𝑤(1, 𝑡) = 𝜂(𝑡), 𝑡 ∈ (0, 𝑇),

𝑤(𝑥, 0) = 𝑤0(𝑥), 𝑥 ∈ (−1, 1),

𝑝(0) = 𝑞0, 𝑝′(0) = 𝑞1,

(1.1)

where (at least)𝑤0 ∈ 𝐿2(−1, 1), 𝛼, 𝜂 ∈ 𝐶0([0, 𝑇]), |𝑞0| < 1 and 𝑞1 ∈ ℝ.

Here,𝑤(𝑥, 𝑡) is the velocity of the fluid particle located at 𝑥 at time 𝑡, 𝑝(𝑡) is the position occupied by the

particle at time 𝑡 and 𝛼 and 𝜂 are Dirichlet data. It is assumed that 𝑤0, 𝑞0 and 𝑞1 are initial data respectively

for the fluid velocity, the particle position and the particle velocity.

The first condition at 𝑥 = 𝑝(𝑡) in (1.1) means that the velocity of the fluid and the solid mass coincide

at this point. In the second condition, we state Newton’s law: the force exerted by the fluid on the particle

equals the product of the particle mass and its acceleration. Thus, if we introduce the notation 𝑢 ∶= 𝑤|𝑄ℓ(𝑝)
and 𝑣 ∶= 𝑤|𝑄𝑟(𝑝), the jump condition at the points (𝑝(𝑡), 𝑡) can be written in the form

(𝑣𝑥 − 𝑢𝑥)(𝑝(𝑡), 𝑡) = 𝑝″(𝑡), 𝑡 ∈ (0, 𝑇). (1.2)

The previous system can be viewed as a preliminary simplified version of other more complicate and

more realisticmodels in higherdimensions thatweplan to analyze in the future. For example, it ismeaningful
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to consider a system governed by the Navier-Stokes equations around a moving sphere that interacts with

the fluid.

As far as we know, the first works where the simplified model (1.1) has been considered are [7] and [6].

There, the authors allowed the spatial variable to take any value inℝ instead of (−1, 1). In particular, in [7],

the authors proved the existence and uniqueness of a solution and described its large-time behavior for just

one solid mass submerged in the fluid. In [6], similar result were established in the case of various rigid

bodies immersed in the fluid. These results were later extended to a multi-dimensional framework in [5].

Let us also mention that the controllability properties of a system similar to (1.1) have been analyzed in [3]

and [4].

First, we will identify the so called direct problem for (1.1):

Direct problem - Given the data 𝑇 > 0, 𝑤0 ∈ 𝐻1(−1, 1), 𝑞0 ∈ (−1, 1), 𝑞1 ∈ ℝ, 𝛼 ∈ 𝐶0([0, 𝑇]) and 𝜂 ∈

𝐶0([0, 𝑇]), find the solution (𝑤, 𝑝) to (1.1).

It can be shown that, if 𝛼(0) = 𝑤0(−1), 𝜂(0) = 𝑤0(1) and |𝑞0| + |𝑞1| + ‖𝑤0‖𝐻1(−1,1) is sufficiently

small, there exists a solution (𝑤, 𝑝) to (1.1) with 𝑤 ∈ 𝐶0([0, 𝑇]; 𝐻1(−1, 1)) and 𝑝 ∈ 𝐻2(0, 𝑇); see for exam-

ple [4, Theorem 1.1]. In fact, the result in [4] only states that 𝑝 ∈ 𝐶1([0, 𝑇]). However, the regularity of the

restrictions of𝑤 to𝑄ℓ(𝑝) and𝑄𝑟(𝑝) shows that the a.e. defined function 𝑡 ↦ [𝑤𝑥](𝑝(𝑡), 𝑡) is square-integrable

and, consequently, 𝑝″ ∈ 𝐿2(0, 𝑇).

The inverse problem related to system (1.1) we are interested in is the following:

Inverse problem - Given the data 𝑇 > 0, 𝑞0 ∈ (−1, 1), 𝑞1 ∈ ℝ and 𝛼 ∈ 𝐶0([0, 𝑇]) and the observation 𝛽with

𝛽(𝑡) = 𝑤𝑥(−1, 𝑡) for 𝑡 ∈ (0, 𝑇), find 𝜂 ∶= 𝑤(1, ⋅).

In what follows, we will frequently use solutions (𝑤, 𝑝)with

𝑝 ∈ 𝐻2(0, 𝑇), 𝑢 ∶= 𝑤|𝑄ℓ(𝑝) ∈ 𝐻2(𝑄ℓ(𝑝)) and 𝑣 ∶= 𝑤|𝑄𝑟(𝑝) ∈ 𝐻2(𝑄𝑟(𝑝)).

In the work [1] we have studied related uniqueness and stability properties. In particular, we will show

the answers we have obtained to questions like the following:

Global uniqueness - Let (𝑤𝑖, 𝑝𝑖) be a solution to (1.1) associated to some 𝑇, 𝑞0, 𝑞1 and 𝛼 for 𝑖 = 1, 2. Assume

that the corresponding observations coincide at 𝑥 = −1, that is, 𝑤1,𝑥(−1, 𝑡) = 𝑤2,𝑥(−1, 𝑡) for 0 < 𝑇1 < 𝑡 <

𝑇2 < 𝑇. Then, do we have 𝑝1 = 𝑝2 and𝑤1 = 𝑤2?

Global stability - Let (𝑤𝑖, 𝑝𝑖) be as before and set 𝛽𝑖 ∶= 𝑤𝑖,𝑥(−1, ⋅) and 𝜂𝑖 = 𝑤𝑖(1, ⋅) for 𝑖 = 1, 2. Is there any

estimate of the kind

‖𝜂1 − 𝜂2‖𝐿∞(𝑇1,𝑇2)
+ ‖𝑝1 − 𝑝2‖𝐿∞(𝑇1,𝑇2)

≤ 𝜙(‖𝛽1 − 𝛽2‖𝐿∞(0,𝑇))

for some continuous function 𝜙 ∶ ℝ+ ↦ ℝ+ satisfying lim𝑠→0+ 𝜙(𝑠) = 0?

In order to show the main results we have obtained, in Section 2 we will see a preliminary fundamental

lemma that plays a key role in the proof of conditional stability. It provides estimates of the traces on the

interface 𝑥 = 𝑝(𝑡) of the difference of two solutions to (1.1) in terms of the boundary data and observations.

Then, in Section 3, wewill show the stability estimate and then the uniqueness of the lateral inverse problem

corresponding to the system satisfied in the left part𝑄ℓ(𝑝) of thewhole domain. By reflection, similar results

have been fulfilled by the solution to the system satisfied in 𝑄𝑟(𝑝). On the other hand, section 4 contains a

global stability and uniqueness result for the inverse problem in the whole domain 𝑄(𝑝). Lastly, in section 5

we will see some possible open problems we could study in a future work.

2. Preliminaries

In this section we see a preliminar lemma that is crucial for the proof of a local stability property that will be

established in Section 3 (see Proposition 3.1).

The study of an inverse problem for a fluid-solid interaction model …
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Lemma 2.1 Let us assume that

�
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑎𝑢𝑥 + 𝑏𝑢 = 0, (𝑥, 𝑡) ∈ 𝑄ℓ(𝑝),

𝑢(−1, 𝑡) = 𝛼(𝑡), 𝑢𝑥(−1, 𝑡) = 𝛽(𝑡), 𝑡 ∈ (0, 𝑇),
(2.1)

with 𝑎, 𝑏 ∈ 𝐿∞(𝑄ℓ(𝑝)), 𝛼 ∈ 𝐻3/2(0, 𝑇), 𝛽 ∈ 𝐻1/2(0, 𝑇), 𝑢 ∈ 𝐻2(𝑄ℓ(𝑝)) and there exist constants 𝑀 > 0

and 𝛿 ∈ (0, 1) such that

‖𝑢‖𝐻2(𝑄ℓ(𝑝))
≤ 𝑀, ‖𝑝‖𝐻2(0,𝑇) ≤ 𝑀 and |𝑝(𝑡)| ≤ 1 − 𝛿 ∀ 𝑡 ∈ [0, 𝑇]. (2.2)

Then:

a) For any 𝜖 > 0, there exist constants 𝐾𝜖 > 0 and 𝜃𝜖 ∈ (0, 1) such that

|𝑢(𝑝(𝑡), 𝑡)| ≤
𝐾𝜖

�log
1

𝑘
�
𝜃𝜖

∀ 𝑡 ∈ [𝜖, 𝑇], (2.3)

provided 𝛼, 𝛽 and 𝑘 satisfy

0 ≤ ‖𝛼‖𝐿2(0,𝑇) + ‖𝛽‖𝐿2(0,𝑇) < 𝑘 < 1. (2.4)

b) In particular, if 𝛼 ≡ 0 and 𝛽 ≡ 0 in (0, 𝑇), then 𝑢 ≡ 0 in 𝑄ℓ(𝑝).

Outline of the proof:

a) The main idea in the proof of this result is the adaptation of some arguments from [8] that rely on

Carleman estimates.

– Step 1: after two changes of variables, 𝑄ℓ(𝑝) is transformed to (0, 2) × (0, 𝑇) and

(2.3) ⟺ |𝑢(0, 𝑡)|≤
𝐾𝜖

�log
1

𝑘
�
𝜃𝜖

∀ 𝑡 ∈ [𝜖, 𝑇].

– Step 2: prove an intermediate estimate:

|𝑢(0, 𝑡)| ≤
𝐾0,𝜖

�log
1

𝐹𝜖
�
𝜃0

∀ 𝑡 ∈ [𝜖, 𝑇], (2.5)

where 𝜃0 ∈ (0, 1) is independent of 𝜖 and

𝐹𝜖 ∶= sup
𝑥∈[1,2]

�‖𝑢(𝑥, ⋅)‖𝐿2(𝜖,𝑇) + ‖𝑢𝑥(𝑥, ⋅)‖𝐿2(𝜖,𝑇)� .

The toolswe have used here are: changes of variables, a cut-off function, global Carleman inequal-

ity, optimization and Sobolev interpolation.

– Step 3: we find a lateral estimate of 𝐹𝜖, that is, for every 𝜖 > 0, there exist constants 𝐶𝜖 > 0

and 𝜃𝜖 ∈ (0, 1) such that

𝐺𝜎 ≤ 𝐹𝜖 ≤ 𝐶𝜖𝑀
1−𝜃𝜖 �‖𝛼‖𝐿2(0,𝑇) + ‖𝛽‖𝐿2(0,𝑇)�

𝜃𝜖
+ 𝐶𝜖 �‖𝛼‖𝐿2(0,𝑇) + ‖𝛽‖𝐿2(0,𝑇)� ,

where 𝐺2
𝜎 ∶= sup

𝑥∈[1,2]
�‖𝑢̂(𝑥, ⋅)‖2

𝐿2(𝜎,𝑇2/(2𝑡̄))
+ ‖𝑢̂𝑥(𝑥, ⋅)‖

2
𝐿2(𝜎,𝑇2/(2𝑡̄))

� after doing the change of vari-

ables 𝑡̂ =
𝑇

2𝑡̄
𝑡 for 𝑡̄ ∈ [𝜖, 𝑇] and 𝑢̂(𝑥, 𝑡̂) = 𝑢(𝑥, 𝑡) for (𝑥, 𝑡) ∈ (0, 2) × (0, 𝑇). Then, we use an

interpolation inequality when 0 ≤ ‖𝛼‖𝐿2(0,𝑇) + ‖𝛽‖𝐿2(0,𝑇) < 𝑘 < 1.

b) We have used (2.3) with 𝛼 = 0, 𝛽 = 0 and 𝑘 arbitrarily small.

�
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3. Lateral estimates and uniqueness

This section is devoted to show the stability and uniqueness results of (1.1)we obtained on the left part of the

domain, 𝑄ℓ(𝑝). Later, we extend these results to 𝑄𝑟(𝑝) and obtain similar results in the whole domain 𝑄(𝑝).

Assume that

�

𝑢𝑖𝑡 − 𝑢𝑖𝑥𝑥 + 𝑢𝑖𝑢𝑖𝑥 = 0, (𝑥, 𝑡) ∈ 𝑄ℓ(𝑝𝑖),

𝑢𝑖(−1, 𝑡) = 𝛼𝑖(𝑡), 𝑢𝑖𝑥(−1, 𝑡) = 𝛽𝑖(𝑡), 𝑡 ∈ (0, 𝑇),

𝑢𝑖(𝑝𝑖(𝑡), 𝑡) = 𝑝′𝑖(𝑡), 𝑡 ∈ (0, 𝑇),

(3.1)

for 𝑖 = 1, 2. Let us formulate an inverse problem concerning the left part of the domain:

Lateral uniqueness in 𝑄ℓ(𝑝): Let (𝑢
𝑖, 𝑝𝑖), 𝑖 = 1, 2 be two solutions to (3.1) in 𝑄ℓ(𝑝𝑖). Assume that the

corresponding observations coincide at the boundary 𝑥 = −1, that is,

𝑢1𝑥(−1, 𝑡) = 𝑢2𝑥(−1, 𝑡) in some time interval (𝑇1, 𝑇2).

Then, do we have 𝑝1 = 𝑝2 in (0, 𝑇) and 𝑢
1 = 𝑢2 in 𝑄ℓ(𝑝)with 𝑝 = 𝑝1 = 𝑝2?

The following proposition may be viewed as a first conditional stability result:

Proposition 3.1 (Local stability for the lateral inverse problem) Let us assume that

‖𝑢𝑖‖𝐻2(𝑄ℓ(𝑝𝑖))
≤ 𝑀, ‖𝑝𝑖‖𝐻2(0,𝑇) ≤ 𝑀 and |𝑝𝑖(𝑡)| ≤ 1 − 𝛿 ∀𝑡 ∈ [0, 𝑇]

for some 𝛿 ∈ (0, 1). Also, let us assume that 0 < 𝜖 < 𝑡̄ < 𝑇 and

0 ≤ 𝐷 ∶= ‖𝛼1 − 𝛼2‖𝐿2(0,𝑇) + ‖𝛽1 − 𝛽2‖𝐿2(0,𝑇) < 𝑘 < 1.

Then there exist 𝑅𝜖, 𝑅0 > 0 and 𝜇𝜖 ∈ (0, 1) such that

‖𝑝1 − 𝑝2‖𝐿∞(𝜖,𝑇) ≤
𝑅𝜖

�log
1

𝑘
�
𝜇𝜖

+ 𝑅0|𝑝1(𝑡̄) − 𝑝2(𝑡̄)|. (3.2)

Outline of the proof:

• First, we assume 𝑝1(𝑡) ≤ 𝑝2(𝑡) for 𝑡 ∈ (𝑡0, 𝑡1) ⊂ [𝜖, 𝑇] and set ℎ ∶= 𝑝1 − 𝑝2.

• For all 𝑡 ∈ (𝑡0, 𝑡1) one has

ℎ′(𝑡) ≤
𝐾𝜖

�log
1

𝐷
�
𝜃𝜖

+ 2𝑀ℎ(𝑡).

• We apply the previous Lemma 2.1 to 𝑢1−𝑢2 in combination with the Mean Value Theorem for 𝑢2(⋅, 𝑡):

1

2

𝑑

𝑑𝑡
|ℎ(𝑡)|2 ≤ 𝐶 |ℎ(𝑡)|2 +

𝐾𝜖

�log
1

𝐷
�
2𝜃𝜖

.

• Using Gronwall’s Lemma:

|ℎ(𝑡)|2 ≤
𝐾𝜖

�log
1

𝐷
�
2𝜃𝜖

+ 𝐶 |ℎ(𝑡̄)|2 ∀ 𝑡 ∈ [𝜖, 𝑇],

and this implies (3.2).

�

Remark 3.2 Let the assumptions in Proposition 3.1 be satisfied. Also, suppose that

‖𝑢𝑖‖𝑊2,∞(𝑄ℓ(𝑝𝑖))
≤ 𝑀.

Then, it can be ensured that for every 𝜖 > 0 there exist 𝐾𝜖, 𝐾0 and 𝜃𝜖 ∈ (0, 1) such that

‖𝑝′1 − 𝑝′2‖𝐿∞(𝜖,𝑇) + ‖𝑝″1 − 𝑝″2‖𝐿∞(𝜖,𝑇) ≤
𝐾𝜖

�log
1

𝐷
�
𝜃𝜖

+ 𝐾0 |𝑝1(𝑡̄) − 𝑝2(𝑡̄)|. (3.3)

�
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Corollary 3.3 Under the assumptions in Proposition 3.1, if 0 < 𝑡 < 𝑇 and 𝛼1 ≡ 𝛼2 and 𝛽1 ≡ 𝛽2 in (0, 𝑇),

there exists a constant 𝑅0 > 0 such that

‖𝑝1 − 𝑝2‖𝐿∞(0,𝑇) ≤ 𝑅0 |𝑝1(𝑡) − 𝑝2(𝑡)|, (3.4)

where 𝑅0 is independent of 𝑡.

Proof:

We can argue as in the proof of Proposition 3.1. Thus, for every 𝜖 > 0 and every small 𝑘 > 0, we obtain

‖𝑝1 − 𝑝2‖𝐿∞(𝜖,𝑇) ≤
𝑅𝜖

�log
1

𝑘
�
𝜇𝜖

+ 𝑅0|𝑝1(𝑡) − 𝑝2(𝑡)|.

Then, taking 𝑘 → 0, we see that

‖𝑝1 − 𝑝2‖𝐿∞(𝜖,𝑇) ≤ 𝑅0|𝑝1(𝑡) − 𝑝2(𝑡)|.

Finally, taking 𝜖 → 0, we arrive at (3.4). �

Corollary 3.4 (Lateral uniqueness) In addition to theassumptions inCorollary 3.3, let us assume that𝑝1(𝑡) =

𝑝2(𝑡) for some 𝑡 ∈ (0, 𝑇). Then,

𝑝1 ≡ 𝑝2 in (0, 𝑇) and 𝑢1 ≡ 𝑢2 in 𝑄ℓ(𝑝).

4. Global estimates and uniqueness

In this section we present global stability and uniqueness results for the inverse problem formulated in Sec-

tion 1 in the whole domain 𝑄(𝑝).

Theorem 4.1 (Conditional stability) Let (𝑤1, 𝑝
1) and (𝑤2, 𝑝

2) be the solutions to (1.1) respectively corre-

sponding to the data 𝑢0, 𝛼, 𝑚, 𝑞0, 𝑞1, 𝛽
𝑖 and 𝜂𝑖 and set 𝛽𝑖(𝑡) = 𝑤𝑖

𝑥(−1, 𝑡) and 𝜂
𝑖(𝑡) = 𝑤𝑖(1, 𝑡) for 𝑖 = 1, 2

and all 𝑡 ∈ (0, 𝑇). Assume that there exist constants 𝛿, 𝜅 ∈ (0, 1) and 𝑀 > 0 such that |𝑝𝑖(𝑡)| ≤ 1 − 𝛿 for

all 𝑡 ∈ (0, 𝑇),

‖𝑢𝑖‖𝑊2,∞(𝑄ℓ(𝑝𝑖))
≤ 𝑀, ‖𝑣𝑖‖𝑊2,∞(𝑄𝑟(𝑝𝑖))

≤ 𝑀 (𝑖 = 1, 2) and 0 ≤ ‖𝛽1 − 𝛽2‖𝐿2(0,𝑇) < 𝜅 < 1.

Then, for every 𝜖 > 0, there exist constants 𝐶0, 𝐶𝜖 > 0 and 𝜃𝜖 ∈ (0, 1) such that

‖𝜂1 − 𝜂2‖𝐿∞(𝜖,𝑇) ≤
𝐶𝜖

|1 + log |log 𝜅||
𝜃𝜖

+ 𝐶0|𝜂
1(𝑡) − 𝜂2(𝑡)|, (4.1)

for all 𝑡 ∈ [𝜖, 𝑇).

Main idea of the proof:

• We find estimates of ‖𝜂1−𝜂2‖𝐿∞(𝜖,𝑇) in terms of 𝑝1−𝑝2, 𝑝
′
1−𝑝′2 and 𝑝

″
1 −𝑝″2 and use previous results,

mainly:

– Two changes of variables.

– Proposition 3.1 of the local stability for the lateral inverse problem.

– The inequality of Remark 3.2, (3.3).

�
From this result we deduce that, as ‖𝛽1−𝛽2‖𝐿2(0,𝑇) → 0, the corresponding ‖𝜂1−𝜂2‖𝐿∞(𝜖,𝑇) goes to zero

at a logarithmic rate. In particular, we have:

Corollary 4.2 (Global uniqueness) Let theassumptions inTheorem4.1 be satisfied and let us assume that𝛽1 =

𝛽2 in (0, 𝑇). Then

𝜂1 = 𝜂2 in (0, 𝑇). (4.2)
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Outline of the proof:

• Given an arbitrary 𝜖 > 0, take 𝑡̄𝜖 = 2𝜖, and for every 𝜅 > 0, we use previous Theorem 4.1 to obtain:

‖𝜂1 − 𝜂2‖𝐿∞(𝜖,𝑇) ≤
𝐶𝜖

|1 + log |log 𝜅||
𝜃𝜖

+ 𝐶0|𝜂
1(𝑡𝜖) − 𝜂2(𝑡𝜖)|.

• Take 𝜅 → 0 and 𝜖 → 0 in order to get ‖𝜂1 − 𝜂2‖𝐿∞(0,𝑇) ≤ 𝐶0|𝜂
1(0) − 𝜂2(0)|.

• Since 𝜂1(0) = 𝜂2(0) = 𝑤0(1), we have 𝜂1 = 𝜂2 in (0, 𝑇).

�

5. Open Problems

Among many problems that can be studied related to different aspects of this work, here we highlight some

of them:

1. Reconstruction of the unknown data: knowing the observation 𝛽(𝑡) = 𝑤𝑥(−1, 𝑡) for 𝑡 ∈ (0, 𝑇), we

could try to reconstruct the unknowndata 𝜂 ∶= 𝑤(1, ⋅). Here, we can analyze and compare otherworks

done in reconstruction and see if we can apply similar techniques for the system (1.1).

2. Take 𝜖 = 0: we can try to find a more involved argument in order to take 𝜖 = 0 in inequality (2.3) of

the preliminar Lemma 2.1, and therefore in Proposition 3.1 and Theorem 4.1. We forsee that in this

case the stability rate is expected to be weaker than single logarithmic.

3. Similarmodel in higher dimensions: we can try to extend these kind of results to higher dimensions.

We canmodel the problemwith theNavier-Stokes equations and set up the corresponding IP, and then,

try to obtain some stability and uniqueness results. See for example the model presented in [2] and

the inverse problem studied there.
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Abstract

Based on the A. V Hill’s muscle model (Medicine Nobel prize 1922), mathematical models validated by

experiments due toDing et al. in the 2000’s allow todescribe themuscular force isometrical contractiondue

to electrostimulation, taking into account the fatigue. They serve as amodel to control and to predict the ef-

fect of trains of electrical stimulations, with rest periods aiming to force rehabilitation or reinforcement. In

this article we briefly present the main issues of the problem. Two typical training sessions are described

related to increase the force or the endurance. Each program is translated into an optimization problem

which is analyzed in the sample-data control frame. The parameters of the models split into parameters

independent of each individual vs. parameters related mainly to the fatigue, which have to be online es-

timated. Geometric estimation theory leads to describe a software sensor to make explicit computations.

NMPC algorithm vs MPC algorithm can be used to regulate the force.

1. Introduction

Recent mathematical models validate by experiments due mainly to Ding et al. [4–6] and based on the

earliest work by A.G. Hill [9] allow to predict the isometric force response to external electrical stimulation,

taking into account the fatigue phenomenon due to a long stimulation period. Such models contain two

basic nonlinearities which constitute the intricate part of the dynamics. First of all, the ionic conduction

and the nonlinear effect of successive pulses on the Ca++concentration. Second, the nonlinearity relating

the muscular force response to such concentration, modeled by the Michaelis-Menten-Hill functions, which

cause the force saturation called tetany. The control is formed by a sequence of trains of pulses which fit

in the frame of sample-data control (digital controls) due to limitation on the interpulse. Our objective is

to use the model to construct a smart electrostimulator for force rehabilitation or reinforcement based on

two objectives : maximize the force response 𝐹𝑚𝑎𝑥 to a single train corresponding exactly to the tetany or

an endurance session regulating the force to a reference force e.g.
𝐹𝑚𝑎𝑥

2
while minimizing the fatigue. Each

training session is limited to 30 minutes since external stimulation causes severe fatigue and even during

an endurance session rest periods have to imposed. Besides those objectives they are computational limits

related to on-board electronics and cost reduction. In particular integrating the nonlinear dynamics is time

consuming and is bypassed by an approximation of the force response.

Hence the first part of this article is to briefly recall an off line formal approximation of the force dynamics

to compute𝐹𝑚𝑎𝑥. It is based on apiecewise linear approximations of theMichaelis-Menten-Hill functions and

is fully described in [3]. The second part of this article is to describe an internal input-output model which

is used to regulate the force-fatigue to a given level using Model Predictive Control [1, 13] and based on the

Ding et al. (nonlinear)model. The final important issue of the project is to estimate the parameters based

on preliminary experiments in the industrial realization of the electrostimulator. They are based mainly on

the piezoelectric force sensor and the measurements being realized either at the beginning of each training

session or during the ”rest periods” where the muscle can be in reality stimulated with small intensity and

frequency. Geometric control techniques developed in the 90s, see for instance [10], are used to study the

observability of the system and to identify the ”bad inputs” for which the systems is not observable. In the

experiments they correspond roughly to the zero input where no force is produced. Recent geometric esti-

mation techniques allow to identify the parameters of the model. The experiments they can be sorted into

two types in the Ding et al. model: four parameters which are not depending on the individuals and four ad-

ditional parameters related mainly to the fatigue phenomenon and which are depending of each individual

and can be time varying. Such parameters can be estimated in the frame of geometric estimation developed

in the 2000s and the general techniques presented in [7, 8, 11, 12] based on the construction of normal co-

ordinates and Luenberger-type observers, where the effect of the inputs formed by trains of impulses on the

French-German-Spanish Conference on Optimization
Gijón, June 18-21, 2024
(pp. 23-30)

FGS2024 23 ISBN 978-84-10135-30-7



Ca++ concentration is described and leads to explicit estimation of the so-called observation space related

to such inputs.

Numerical simulations are presented for the MPC algorithm based on the linear parametric model with on-

line computation of the parameters and the train of pulses, taking into account the problem of severe fatigue

caused by external stimulations.

2. Force-fatigue model

2.1. Ding et al. force-fatigue model

The FES input over a pulse train [0, 𝑇] is modelled as a sum of Dirac pulses by

𝑡 → �

𝑖=0,𝑛

𝜂𝑖𝛿(𝑡 − 𝑡𝑖), (2.1)

Fig. 1 stimulation period, stimulation and rest sub-periods

where 0 = 𝑡0 < 𝑡1... < 𝑡𝑛 < 𝑡𝑛+1 = 𝑇 are the impulses times with 𝑛 ∈ ℕ being fixed (see figure 1 for

constant interpulse and stimulation amplitude), 𝜂𝑖 being the amplitude of each pulse, which are convexified

by taking 𝜂𝑖 ∈ [0, 1] and 𝛿(. − 𝑡𝑖) denoting the Dirac at time 𝑡𝑖.We denote by 𝐼𝑖 = 𝑡𝑖 − 𝑡𝑖−1 the interpulse

and we have a digital constraint 𝐼𝑖 ≥ 𝐼𝑚 in the problem e.g. 𝐼𝑚 ≥ 30𝑚𝑠 for a train of 10 impulses of around

𝑇 = 500𝑚𝑠. Such a control provides the FES signal taken as the physical input, using a linear filter (first-

order linear dynamics).

𝑑𝐸

𝑑𝑡
(𝑡) +

1

𝜏𝑐
𝐸(𝑡) =�𝑅𝑖𝜂𝑖𝛿(𝑡 − 𝑡𝑖) (2.2)

so that it takes the form

𝐸(𝑡) =
1

𝜏𝑐
�

𝑖=0,𝑛

𝑅𝑖𝑒
−
𝑡−𝑡𝑖
𝜏𝑐 𝜂𝑖𝐻(𝑡 − 𝑡𝑖), (2.3)

where 𝐻 is the Heaviside function. 𝐸(𝑡) depends upon the time response parameter 𝜏𝑐 and the scaling

function 𝑅𝑖 depending on parameter 𝑅(0) as following:

𝑅0 = 1, 𝑅𝑖 = 1 + (𝑅(0) − 1)𝑒−(𝑡𝑖−𝑡𝑖−1)/𝜏𝑐 , 𝑖 = 1, ..., 𝑛, (2.4)

which codes the memory effect of successive muscle contractions.

TheFES signal drives the evolutionof the electrical conductiondescribing the evolutionof Ca++-concentration

𝑐𝑁which is related to the force response 𝐹. The dynamics being described by

𝑑𝑐𝑁

𝑑𝑡
(𝑡) = 𝐸(𝑡) −

𝑐𝑛(𝑡)

𝜏𝑐
, (2.5)

𝑑𝐹

𝑑𝑡
(𝑡) = −𝑚2(𝑡)𝐹(𝑡) + 𝑚1(𝑡)𝐴(𝑡) (2.6)

where
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𝑚1(𝑡) =
𝑐𝑁(𝑡)

𝐾𝑚 + 𝑐𝑁(𝑡)
,𝑚2(𝑡) =

1

𝜏1 + 𝜏2𝑚1(𝑡)
. (2.7)

Hence sixparameters are introduced in themodel (𝜏𝑐, 𝑅(0), 𝜏1, 𝜏2, 𝐾𝑚, 𝐴(𝑡)), where to simplify (𝜏𝑐, 𝑅(0), 𝜏1, 𝜏2, 𝐾𝑚)

are fixed parameters and the time variable parameter 𝐴(𝑡) is the scaling force parameter which is used to

model the fatigue dynamics according to

𝑑𝐴

𝑑𝑡
(𝑡) = −

𝐴(𝑡) − 𝐴0

𝜏𝑓𝑎𝑡
+ 𝛼𝐴𝐹(𝑡). (2.8)

Tab. 1 Ding et al. model parameters

Symbol Unit Value description

𝑐𝑁 — — Normalized amount of 𝐶𝑎2+-troponin complex

𝐹 𝑁 — Force generated by muscle

𝑡𝑖 𝑚𝑠 — Time of the 𝑖𝑡ℎ pulse

𝑛 — — Total number of the pulses before time 𝑡

𝑖 — — Stimulation pulse index

𝜏𝑐 𝑚𝑠 20 Time constant that commands the rise and the decay of 𝐶𝑁
𝑅(0) — 1.143 Term of the enhancement in 𝐶𝑁 from successive stimuli

𝐴
𝑁

𝑚𝑠
— Scaling factor for the force and the shortening velocity of muscle

𝜏1 𝑚𝑠 — Force decline time constant when strongly bound cross-bridges absent

𝜏2 𝑚𝑠 124.4 Force decline time constant due to friction between actin and myosin

𝐾𝑚 — — Sensitivity of strongly bound cross-bridges to 𝐶𝑁

𝐴𝑟𝑒𝑠𝑡
𝑁

𝑚𝑠
3.009 Value of the parameter 𝐴when muscle is not fatigued

𝐾𝑚,𝑟𝑒𝑠𝑡 — 0.103 Value of the parameter 𝐾𝑚 when muscle is not fatigued

𝜏1,𝑟𝑒𝑠𝑡 𝑚𝑠 50.95 The value of the parameter 𝜏1 when muscle is not fatigued

𝛼𝐴
1

𝑚𝑠2
−4.0 10−7 Coefficient for the force-model parameter 𝐴 in the fatigue model

𝛼𝐾𝑚
1

𝑚𝑠𝑁
1.9 10−8 Coefficient for the force-model parameter 𝐾𝑚 in the fatigue model

𝛼𝜏1
1

𝑁
2.1 10−5 Coefficient for force-model parameter 𝜏1 in the fatigue model

𝜏𝑓𝑎𝑡 𝑠 127 Time constant controlling the recovery of (𝐴, 𝐾𝑚, 𝜏1)

Values of the parameters are reported in the reference [4] (see table 1) in the frame fo Ding et al. experi-

ments, the system formed by (2.5) and (2.6) describing the non-fatiguemodel, while the additional equation

(2.8) is describing the fatigue and depends on two parameters 𝛼𝐴 which defines the ”slope” of the fatigue

evolution while 𝜏𝑓𝑎𝑡 is the time constant controlling the recovery to the rest point 𝐴𝑟𝑒𝑠𝑡 = 𝐴(0). The model

provides a closed curve 𝑡 → 𝐴(𝑡) obtained from the fatigue dynamics associated to concatenation of two

arcs: the first one associated to the application of the averaged force 𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 =
1

𝑇
∫
𝑇

0
𝐹(𝑡)𝑑𝑡 over a pulse

train on [0, 𝑇] and the recovery arc during the complete rest period where no force is applied.

The main properties of the dynamics of the non-fatigue model is resumed in two lemmas.

Lemma 2.1 For a pulse train defined by 𝜎 = (𝑡0 = 0, 𝑡1, ..., 𝑡𝑛, 𝑡𝑛+1 = 𝑇, 𝜂0, 𝜂1, ..., 𝜂𝑛) the concentration 𝑐𝑁 can

be written as the superposition of 𝑛 + 1 lobes

𝑐𝑁(𝑡) =
1

𝜏𝑐
�

𝑖=0,𝑛

𝑅𝑖𝜂𝑖(𝑡 − 𝑡𝑖)𝑒
−
𝑡−𝑡𝑖
𝜏𝑐 𝐻(𝑡 − 𝑡𝑖) (2.9)

which represents a piecewise polynomial-exponential mapping.

Lemma 2.2 The force dynamics in the non-fatigue case can be written as

𝑑𝐹

𝑑𝑠
(𝑠) = 𝑐(𝑠) − 𝐹(𝑠),

using the time reparameterization𝑑𝑠 = 𝑚2(𝑡)𝑑𝑡and canbe integrated by quadrature using Lagrange formula.

This gives an explicit force response 𝑠 → 𝐹(𝑠) which is smooth with respect to the control parameters and 𝑠 at

each time different of a pulse time 𝑡𝑖.
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From which we deduce the following , see [3] for the complete details and numerical simulations.

3. Construction of the approximation of the force response to a single train and the Punch Program

in non-fatigue case

3.1. Approximation

According to (2.9) each lobe 𝑙𝑘 is given by

𝑙𝑘 = 𝑅𝑘𝜂𝑘
𝑡 − 𝑡𝑘

𝜏𝑐
𝑒−(𝑡−𝑡𝑘)/𝜏𝑐𝐻(𝑡 − 𝑡𝑘),

the lobe reaches its maximum at 𝑡 = 𝑡𝑘 + 𝜏𝑐 which is equal to 𝑅𝑘𝜂𝑘/𝑒 and is concave on [𝑡𝑘, 𝑡𝑘 + 2𝜏𝑐] and

can be approximated by its restriction to [𝑡𝑘, 𝑡𝑘 + 5𝜏𝑐]. The restriction of 𝑚1 to one lobe is maximal when

the concentration 𝑐𝑁 is maximal and we denote 𝑡∗𝑘 the corresponding time. Let 𝜎 be the sequence defined in

(2.9) and assume that the minimal interpulse is such that 𝐼𝑚 ≥ 𝜏𝑐.

We divide the the subdivision 𝑡0 < 𝑡1 < ... < 𝑡𝑛 < 𝑇 introducing the intermediate times 𝑡∗𝑘 where𝑚1 and

𝑚2 are respectively approximated by a piecewise linear mapping and a piecewise constant mapping on each

subinterval.

This leads to an explicit formula for the force response 𝐹 on [0, 𝑇]. Note that this basic partition can be

refined to improve the approximation, see [3] for the complete description. The approximation contains the

parameters of Ding et al. model.

3.2. Punch program

Using the previous force approximation denoted 𝐹𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 one compute a local minimum 𝜎∗ over the

set of pulse trains 𝜎. The details of the optimization algorithm and the numerical simulations are presented

in [3].

4. Endurance session using the force-fatigue model and the MPC algorithm

4.1. Notation 1

The force fatigue model described by (2.5), (2.6), (2.8) is shortly written as

𝑑𝑥

𝑑𝑡
(𝑡) = 𝑋(𝑥(𝑡)) + 𝑢(𝑡)𝑌(𝑥(𝑡)), (4.1)

where 𝑥 = (𝑐𝑛, 𝐹, 𝐴)
𝑇 is the state variable and 𝑢(𝑡) denotes the general input corresponding to the FES

signal. Restriction on 𝑢 are imposed by the physical device: bounds implied by the constraints 𝜂𝑖 ∈ [0, 1],

sampling times and interpulse constraints. They will be considered as soft constraints in the MPC algorithm

and relaxed in the control computations using a quadratic optimization method.

We assume that in the dynamics two variables are observed 𝑦 = ℎ(𝑥) = (𝐹, 𝐴) which defines the con-

struction of the input-output dynamics.

In the MPC algorithm we consider the following discrete linear input-output system

�
𝑉𝑋(𝑘 + 1) = 𝑀𝐴𝑘𝑉𝑋(𝑘) + 𝑀𝐵𝑘𝑈(𝑘)

𝑦(𝑘) = 𝐶𝑋(𝑘)
(4.2)

where:

𝑀𝐴𝑘 = �
𝑎1 𝑎2
𝑎3 𝑎4

�

𝑘

, 𝑀𝐵𝑘 = �
𝑏1
𝑏2

�

𝑘

, 𝑉𝑋(𝑘) = �
𝐹𝑚𝑘

𝐴𝑚𝑘

� . (4.3)

The parametric model (4.2) results from the identification routine minimizing the criterion:

𝐽 = 𝑚𝑖𝑛
𝑁𝑖=𝑁𝑖1 ,...,𝑁𝑖𝑚𝑎𝑥

1

𝑁𝑖

𝑘

�

𝑗=𝑘−𝑁𝑖

��
𝐹𝑚𝑒𝑎𝑛𝑗

𝐴𝑚𝑒𝑎𝑛𝑗

� − �
𝐹𝑚𝑗

𝐴𝑚𝑗

��

2

. (4.4)

𝑁𝑖 being the backward identification horizon. Figure 2 represents the force, the mean force and the back-

ward identification horizon to be found in order to get the best parametric model. The same figure could be

constructed for 𝐴. 𝐹𝑚𝑒𝑎𝑛𝑘
and 𝐴𝑚𝑒𝑎𝑛𝑘

are calculated as following:

𝐹𝑚𝑒𝑎𝑛𝑘
=

1

𝑡𝑘+1−𝑡𝑘
∫
𝑡𝑘+1

𝑡𝑘
𝐹(𝜉)𝑑𝜉

𝐴𝑚𝑒𝑎𝑛𝑘
=

1

𝑡𝑘+1−𝑡𝑘
∫
𝑡𝑘+1

𝑡𝑘
𝐴(𝜉)𝑑𝜉

(4.5)

The criterion (4.4) traduces the fact that𝑀𝐴 and𝑀𝐵 are updated at each iteration (𝑀𝐴𝑘, 𝑀𝐵𝑘). The couple

is used in MPC strategy to calculate the control value 𝜂𝑘. The frequency of the stimulation being fixed.

Control and estimation for the design of a smart electrostimulator …

26



Fig. 2 Force, mean force and identification horizons to identify the parametric model

4.2. MPC Algorithm

We present a version of the algorithm to illustrate the procedure which is classical, and the quadratic cost

can be modified. The control constraints have been relaxed and they have to be introduced later to define

the true feedback control .

We fix a sequence 𝑘 = 1, ..., 𝐾where𝑁𝑝 is the prediction horizon and an output reference trajectory 𝑦𝑟𝑒𝑓
associated to regulation of the force response 𝐹 to a fixed level 𝐹𝑚𝑎𝑥/𝜌 with 𝜌 > 1 and a fatigue reference

𝐴𝑟𝑒𝑓(.). Denoting by 𝑒(𝑘) = (𝑦(𝑘) − 𝑦𝑟𝑒𝑓(𝑘)), we minimize a cost of the form

𝐽(𝑦, 𝑢) = �

𝑘=1,𝐾

𝜆1 ∥ 𝑒(𝑘) ∥
2
2 +𝜆2 ∥ Δ𝑢𝑘 ∥

2
2, (4.6)

where Δ𝑢(𝑘) is the control increment and 𝜆𝑖 are weighting parameters .

The feedback control 𝑢(𝑘) is computed on the horizon 𝐾 solving the LQ-problem defined by the linear

dynamics (4.2) with the quadratic cost (4.6). We implement 𝑢(1) and we restart the computations.

The nonlinear system (4.1) is used as a simulation of the data which will be replaced by the experimental

data during the endurance session.

5. Estimation of the parameters in the design of the electrostimulator

5.1. Notations and definitions

The force fatigue model is written shortly

𝑑𝑥

𝑑𝑡
(𝑡) = 𝑋(𝑥(𝑡)) + 𝑢(𝑡)𝑌(𝑥(𝑡)), (5.1)

where𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)
𝑇 = (𝑐𝑁, 𝐹, 𝐴, 𝛼𝐴, 𝜏𝑓𝑎𝑡)

𝑇 and𝑢 represents theFES inputwhich canbe smoothed

as 𝑢 =𝑢𝑠𝑚𝑜𝑜𝑡ℎ.

The full system is defined by extending the dynamics with
𝑑𝛼𝐴

𝑑𝑡
=

𝑑𝜏𝑓𝑎𝑡

𝑑𝑡
= 0. We denote by ℎ = (ℎ1, ℎ2) =

(𝐹, 𝐴) the observation mappping.

Fixing a smooth control 𝑢(𝑡), the system with 𝑥(0) = 0 defines a control trajectory pair (𝑥(.), 𝑢(.) and

we denote in short the Lie derivative 𝐿𝑋+𝑢𝑌ℎ(𝑥(𝑡)) =
𝑑

𝑑𝑡
ℎ(𝑥(𝑡)).We denote by O(x) the observation space

formed by the iterated functions {𝐿𝑘𝑋+𝑢𝑌ℎ𝑖; 𝑖 = 1, 2, 𝑘 = 0,+∞}}. The system is called 𝑢−(weakly) ob-

servable if 𝑥 → 𝑑O(x) is of full rank=dimension of the state space. Given a smooth input 𝑢 the system

is called locally observable if there exists a sequence 0, .., 𝑘1, 0, ...𝑘2 so that the mapping 𝑥 → Φ(𝑥, 𝑢) =

[ℎ1(𝑥), ..., 𝐿
𝑘1
𝑋+𝑢𝑌ℎ1(𝑥), ℎ2(𝑥), ..., 𝐿

𝑘2
𝑋+𝑢𝑌ℎ2(𝑥)] is a diffeomorphismwith respect to𝑥 for all (𝑥, 𝑢) in annonempty

set𝜒×UwhereU contains the 𝑘−1 derivatives of𝑢,with 𝑘 = 𝑚𝑎𝑥(𝑘1, 𝑘2). We say that𝜒×U is an observable

set. The construction of the observer is described in full details in [12] and is presented shortly in the next

section.

5.2. Construction of the observer

Assume that the control trajectory pair (𝑥, 𝑢) ∈ Ω𝑥×Ω𝑢 ⊂ 𝜒×U.Perform thenonlinear change of coordinates

𝑧 = Φ(𝑥, 𝑢) and construct the observer

𝑑𝑧

𝑑𝑡
(𝑡) = 𝑃𝑟𝑜(𝐴𝑧) + 𝜌(𝑧, 𝑢) + 𝑆−1𝐾0(𝑦 − 𝐶𝑧). (5.2)
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The triple (𝐴, 𝐶, 𝜚(𝑧, 𝑢) ) is obtained writing the system is the coordinates 𝑧. The matrix 𝐾0 is chosen so

that (𝐴 − 𝐾0𝐶) is Hurwitz and 𝑃𝑟𝑜𝑗(𝑦, 𝑧) is the projection operator associated to

𝑝(𝑧) =
∥ 𝑧 − 𝑧0 ∥

2 −𝑟2Ω

𝛼2 + 2𝛼𝑟Ω
.

The point 𝑧0 is the center of the domain Ω𝑧 =𝐵(𝑧0, 𝑟Ω) contained in Φ(𝜒 × U) and 𝛼 is a arbitrarily

small positive constant. The construction involves block diagonal matrices including 𝑆 described in [12].

Note that it is introduced in relation with uniform linearization which is related in our construction to the

uniform construction of the observable canonical form.

5.3. Geometric application

The experiments show that among the set of parameters the parameters (𝜏𝑐, 𝑅(0)) are fixed and not depend-

ing upon the individual. Hence in particular the 𝐶𝑎++ concentration 𝑐𝑁 can be taken as the control variable

and can be chosen smooth according to a smooth FES-signal or taking the averaged value 𝑐𝑁𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑(𝑡) =
1

𝑡
∫
𝑡

0
𝑐𝑁(𝑠)𝑑𝑠 over any subinterval of the training period. The bad input behavior is related to 𝑐𝑁 = 0, in

computing the inverse mapping of the map 𝑧 = Φ(𝑥, 𝑢). Hence note that the observer can be turned off im-

posing that: 𝛼 ≤ 𝑐𝑁 ≤ 𝛽. At low level of stimulations corresponding to rest period one can rescaled 𝛼 →∈ 𝛼

and expand the 𝐹−dynamics described by theMichaelis-Menten-Hill functions in Taylor Series at 𝑐𝑁 =0, at a

given order. Thiswill reduce the computational complexity of the Lie derivativeswhich involve the derivative

of the the Michaelis-Menten-Hill functions with respect to 𝑐𝑁 and the time derivative of the concentration. A

test input function of the form 𝑐𝑁(𝑡) = 𝑎 + 𝑏𝑠𝑖𝑛(𝜔𝑡) where 𝑎, 𝑏 chosen so that the concentration stays in a

arbitrarily band domain.

Additional parameters 𝐴𝑟𝑒𝑠𝑡, 𝐾𝑚 are depending upon the individuals and can be estimated using the ob-

server (5.2) during a single train [0, 𝑇] using the force sensor only.

6. Simulation results

6.1. System identification

To identify the parametric model which will be used to calculate the MPC based control strategy, we use

the Ding et al. model instead of real force and fatigue values (coming from experiments). The parametric

model (linear model) will traduce locally the behaviour of the muscle, and needs to be updated for each new

interpulse using, in our case, a variable identification moving horizon.

Fig. 3 Evolution of the force (Ding et al. model) over a 1 second stimulation period with a 50𝑚𝑠 interpulse interval,

mean force values (for each interpulse) and identified mean force values over time

Fig. 4 Evolution of the fatigue (Ding model), mean fatigue values and identified mean fatigue values over time

Figures 3 and 4 show the evolution of the force and the fatigue based on the Ding et al. model over a 1

second stimulation period, with a 50𝑚𝑠 interpulse interval, respectively. These figures clearly display the

lobes generated by this stimulation. The mean values of this force for each interpulse, as well as those ob-

tained by the least squares method, are also shown. The identified mean force value fits well the mean force

value over identification horizon.
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6.2. Model predictive control

Fig. 5 Evolution of the force and fatigue over pulses at a reference of F=350𝑁

Fig. 6 Evolution of the force and fatigue over pulses at a reference of F=230𝑁

Figures 5 and 6 illustrates the evolution of force and fatigue over pulses, computed from the Ding et al.

model, over a stimulation period of 5 seconds with an interpulse interval of 30𝑚𝑠. The reference values for

fatigue remain constant at 3.009𝑁/𝑚𝑠, while the reference values for force are respectively 350𝑁 (5) and

230𝑁 (6). As expected, the MPC strategy allows to fit the force references while minimizing the difference

between the fatigue and the fatigue rest value.

7. Conclusion

In this brief article we present the main steps in the design of a smart electrostimulator in relation with the

construction of an industrial prototype: model, training sessions and estimation of the parameters using the

physical sensors. Numerical simulations are presented for the MPC algorithm implemented to regulate the

force and fatigue using a parametric model. The parameters are identified using the data of the Ding et al.

model andwill be replaced in fine by the experimental data. TheDing et al. model can be used to implement a

NMPC algorithmwhere the parameters are estimated using an observer. But the method is computationally
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expensive andMPC algorithm based on linear parametric model can be chosen to tackle computational time

while giving good results in terms of force and fatigue control.

References
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Abstract

We study the optimal control, in a long time horizon, of neural ordinary differential equations which are

control-affine or whose activation function is homogeneous. When considering the classical regularized

empirical risk minimization problem we show that, in long time and under structural assumption on the

activation function, the final state of the optimal trajectories has zero training error if the data can be in-

terpolated and if the error can be taken to zero with a cost proportional to the error. These hypotheses are

fulfilled in the classification and ensemble controllability problems for some relevant activation and loss

functions.

1. Introduction

In this work we study the optimal control of neural ordinary differential equations for a long time horizon.

Neural ODEhave been used inMachine Learning in the last seven years, a trend startedwith [6,13]. However,

they date back to the 90s, when they were already used for the construction of controls (see the survey [12])

and when their controllability properties were first studied (see, for example, [14] and [11]). The control

systems governed by neural ODE have considerably better controllability properties than linear control sys-

tems. In fact, as pointed out in [10], for a fixed 𝑑 ∈ ℕ, if chosen the right neural ODE we can interpolate an

arbitrarily large amount of data in ℝ𝑑, whereas in linear systems we can at most interpolate an amount of

data equal to the dimension of the control. In this paper 𝑑 denotes the dimension of the space where each

element of the dataset is, and 𝑁 the size of the dataset.

Roughly, the problem under study is the following: given a set of initial values x = (𝑥1, … , 𝑥𝑁) ∈ (ℝ𝑑)𝑁∗ ,

for:

(ℝ𝑑)𝑁∗ ∶= {(𝑥1, … , 𝑥𝑁) ∈ (ℝ𝑑)𝑁 ∶ 𝑥𝑖 ≠ 𝑥𝑗 ∀𝑖, 𝑗 ∈ {1, … ,𝑁} ∶ 𝑖 ≠ 𝑗},

we seek to take simultaneously the data set to some target points or regions inℝ𝑑 in a given time 𝑇 > 0. This

is usually called dataset as it is a set of values. The control problem is important in the context of ensemble

controllability. The distance to those targets ismeasuredwith an error function (also knownas loss function).

The control is the minimizer of the risk minimization functional, which provides a balance between a small

cost for the control and a small value for the loss function at the final state of the optimal trajectory. For a

detailed introduction to the notation and its background, I recommend [3,10].

We study the controllability on control-affine neural networks, which are given by the following equa-

tions:

�
𝑦̇(𝑡) = 𝑤(𝑡)𝜎(𝑦(𝑡)) + 𝑏(𝑡),

𝑦(0) = 𝑥,
(1.1)

for 𝑥 ∈ ℝ𝑑 the initial value, and 𝜎 ∶ ℝ𝑑 ↦ ℝ𝑑 a Lipschitz function, which is called the activation function. The

functions (𝑤, 𝑏) are the controls and they belong to 𝐿2(0, 𝑇;𝒰), for𝒰 defined by:

𝒰 ∶= ℝ𝑑×𝑑 × ℝ𝑑×1.

If we want to emphasize the dependence of (1.1) to the initial value and the control, we write 𝑦(⋅; 𝑥, 𝑤, 𝑏).

Similarly, we denote the sequence of solutions of (1.1) for some fixed control (𝑤, 𝑏) applied simultaneously

to a data set x as:

𝑦(⋅; x, 𝑤, 𝑏) ∶= �𝑦(⋅; 𝑥1, 𝑤, 𝑏), … , 𝑦(⋅; 𝑥𝑁, 𝑤, 𝑏)� . (1.2)

Since 𝜎 is Lipschitz, (1.1) is well-posed by the Cauchy-Lipschitz Theorem.

In addition, we also study more compound neural networks, which are given by the equations:

�
𝑦̇(𝑡) = 𝑟(𝑡)𝜎 (𝑤(𝑡)𝑦(𝑡) + 𝑏(𝑡)) ,

𝑦(0) = 𝑥.
(1.3)
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Here 𝑥 is the initial value and (𝑟, 𝑤, 𝑏) is the control, which belongs to 𝐿2(0, 𝑇; 𝒰̃), for:

𝒰̃ ∶= 𝑋 × ℝ𝑑×𝑑 × ℝ𝑑×1,

for:

𝑋 ⊆ {𝑀 ∈ ℝ𝑑×𝑑 ∶ 𝑀𝑖,𝑖 ∈ {1,−1}, ∀𝑖 = 1,… , 𝑑, 𝑀𝑖,𝑗 = 0, ∀𝑖 ≠ 𝑗}. (1.4)

In fact, the intensity of the flow ismodelled by (𝑤, 𝑏), and the direction of the flow, by 𝑟. Wemay take𝑋 = {𝐼},

whichmakes sense when 𝜎 admits negative values. However, we have considered the general setting to have

relevant results also for the case in which 𝜎 is a positive function; that is, in which 𝜎 ≥ 0. We assume that

the activation function 𝜎 is Lipschitz and homogeneous in the sense that:

𝜎(𝜆𝑥) = 𝜆𝜎(𝑥), ∀𝜆 > 0, ∀𝑥 ∈ ℝ𝑑. (1.5)

This includes important activation functions such as rectified linear units, which are given by:

𝜎(𝑥) = (max{𝑥1, 0}, … ,max{𝑥𝑑, 0}),

see [9]; and parametric rectified units, given by:

𝜎(𝑥) = (𝛼𝑥11𝑥1<0 + 𝑥11𝑥1>0, … , 𝛼𝑥𝑑1𝑥𝑑<0 + 𝑥𝑑1𝑥𝑑>0),

see [7]. As in the previous system:

𝑦(⋅; x, 𝑟, 𝑤, 𝑏) = �𝑦(⋅; 𝑥1, 𝑟, 𝑤, 𝑏), … , 𝑦(⋅; 𝑥𝑁, 𝑟, 𝑤, 𝑏)� , (1.6)

where 𝑦(⋅; 𝑥, 𝑟, 𝑤, 𝑏) denotes the solutions of (1.3), which is a well-posed system by the Cauchy-Lipschitz

Theorem.

For a detailed exposition of the history of this research line, one main consult [1].

2. Main results

2.1. Optimal trajectories for control-affine neural ODE

As stated in the introduction, we study the optimal control of a data set ruled by a neural ODE. To measure

how far the data is from the objective we introduce the error function (also referred in the literature of Ma-

chine Learning as loss function) ℰ ∶ (ℝ𝑑)𝑁 ↦ ℝ+ ∶= [0,∞). We assume that ℰ is continuous and satisfies the

Hypothesis 1, which is later introduced in this section.

This allows to define the empirical risk minimization functional for a target time 𝑇:

𝐽𝑇(𝑤, 𝑏) ∶= ℰ(𝑦(𝑇; x, 𝑤, 𝑏)) + �
𝑇

0

|(𝑤(𝑡), 𝑏(𝑡))|2𝑑𝑡, (2.1)

where 𝑦 denotes a solution of (1.1) and | ⋅ | denotes the Frobenius norm. We denote any minimizer of 𝐽𝑇 by

(𝑤𝑇, 𝑏𝑇). Moreover, the trajectories induced by such minimizers, called optimal trajectories, are denoted by

𝑦𝑇(𝑡; x) ∶= 𝑦(𝑡; x, 𝑤𝑇, 𝑏𝑇).

Example 2.1 A usual definition for the error function is:

ℰ(x) ∶=
1

𝑁

𝑁

�

𝑖=1

𝐸𝑖(𝑥
𝑖), ∀x ∈ (ℝ𝑑)𝑁, (2.2)

for 𝐸𝑖(𝑥) = 𝑑(𝑥, 𝐴𝑖), for 𝑑 the euclidean distance and for given sets 𝐴𝑖 ⊂ ℝ𝑑 (that might consist of a single

element).

First of all, we recall that the functional 𝐽𝑇 has at least a minimizer:

Proposition 2.2 (Existence of minimizers) Let ℰ ∶ (ℝ𝑑)𝑁 ↦ ℝ+ ∶= [0,∞) a continuous function, 𝜎 a glob-

ally Lipschitz continuous function, 𝑇 > 0 and x ∈ (ℝ𝑑)𝑁. Then, the functional 𝐽𝑇 given in (2.1) for 𝑦 given by

(1.2), where we consider the solution of (1.1), has at least one minimizer in 𝐿2(0, 𝑇;𝒰).

The main idea of the proof is that 𝐽𝑇 is a sum of a positive weakly continuous functional and a positive con-

tinuous convex functional.

Let us now present the hypotheses that we consider throughout the paper:
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Hypothesis 1 Let x ∈ (ℝ𝑑)𝑁∗ , let ℰ ∶ (ℝ𝑑)𝑁 ↦ ℝ+ ∶= [0,∞) be a continuous function, and let 𝑦 denote (1.2),

where we consider the solutions of (1.1). Then,

1. For the data set x there are controls:

(𝑤∗, 𝑏∗) ∈ 𝐿2(0, 1;𝒰),

such that ℰ(𝑦(1; x, 𝑤∗, 𝑏∗)) = 0.

2. There are𝐶, ̃ε > 0 both just depending onℰ such that for all x = (𝑥
1
, … , 𝑥

𝑁
) ∈ (ℝ𝑑)𝑁∗ satisfyingℰ(x) < ̃ε,

there are some controls (𝑤, 𝑏) satisfying:

‖(𝑤, 𝑏)‖𝐿∞(0,1;𝒰) < 𝐶ℰ(x),

such that:

ℰ(𝑦(1; x, 𝑤, 𝑏)) = 0.

The first item of Hypothesis 1 is that the error can be taken to 0, a property known in Machine Learning

as interpolation (see [2]), and the second one is a local controllability of the system.

Remark 2.3 The choice of the target time in Hypothesis 1 is arbitrary. Because of the linearity, if the system

is controllable for some time, in this case 𝑇 = 1, it is controllable for any time.

Example 2.4 (Application of Theorem 2.5 to the classification problem) Let us fix𝑀 ∈ ℕ and consider:

x = �𝑥1, … , 𝑥𝑀, 𝑥𝑀+1, … , 𝑥𝑁� ∈ (ℝ𝑑)𝑁∗ ,

the error function given by (2.2), for:

𝐸𝑖(𝑥) = �
(𝑥1 + 1)1𝑥1>−1(𝑥1), 𝑖 = 1,… ,𝑀,

(𝑥1 − 1)1𝑥1>1(𝑥1), 𝑖 = 𝑀 + 1,… ,𝑁,

and any neural function 𝜎 of the type 𝜎(𝑥) = (𝜎̃(𝑥1), … , 𝜎̃(𝑥𝑑)) such that there is 𝑐 > 0 such that 𝑐𝑠 ≤ 𝜎̃(𝑠)

for all 𝑠 ≥ 0 and 𝜎̃(𝑠) ≤ 𝑐𝑠 for all 𝑠 ≤ 0. The second item of Hypothesis 1 is clearly satisfied, as it suffices to

consider ̃ε = 1/(2𝑁), 𝑏 = 0 and𝑤(𝑡)𝑥 = (2𝑁𝑐−1ℰ(x)𝑥1, 0, … , 0). Thus, Theorem 2.5 implies that if the data

can be classified (i.e. if the first item of Hypothesis 1 is satisfied), then by computing the optimal control for

a sufficiently large time, the data is sent to the sets {𝑥1 ≤ −1} and {𝑥1 ≥ 1}. More detailed examples can be

found in [2] and [10].

Now we have all the tools to state the first main result of this paper:

Theorem 2.5 (Annihilation of the error in a long time horizon) Let x ∈ (ℝ𝑑)𝑁∗ , 𝜎 be a Lipschitz activa-

tion function, ℰ be an error function such that Hypotheses 1 is satisfied and 𝐽𝑇 given in (2.1). Then, for 𝑇 > 0

large enough depending on 𝜎, x and ℰ, and for all ε > 0 there is 𝛿 > 0 such that 𝐽𝑇(𝑤, 𝑏) < inf 𝐽𝑇 + 𝛿 implies:

ℰ(𝑦(𝑇; x, 𝑤, 𝑏)) < ε. (2.3)

Moreover, for 𝑇 > 0 large enough the following equality holds for any optimal trajectory:

ℰ(𝑦𝑇(𝑇; x)) = 0. (2.4)

Here, 𝑦 is given by (1.2), where we consider the solution of (1.1).

Theorem 2.5 is proved by showing that if 𝑇 is sufficiently large and if ℰ(𝑦(𝑇; x, 𝑤, 𝑏)) is small and strictly

positive, we can construct with the second item of Hypothesis 1 a control (𝑤̃, 𝑏̃) such that:

𝐽𝑇(𝑤̃, 𝑏̃) ≤ 𝐽𝑇(𝑤, 𝑏) −
1

2
ℰ(𝑦(𝑇; x, 𝑤, 𝑏)).

Their proof can be found in [1]. There, we show that the trajectories may be preserved when we perform a

diffeomorphism in the time variable. Then, given a control with a non-constant norm we construct a more

efficient one and we use this to construct a control for which the value of the empirical risk minimization

functional is smaller for all controls with a non-constant norm.

The construction of such control is far from trivial and, as the counterexample 𝑑 = 𝑁 = 1, ℰ(𝑥) = 𝑥2 and

𝜎(𝑠) = 𝑠 shows, the hypotheses are rather sharp. As explained in the first part of the introduction, Theorem

2.5 improves the results presented in [2], where the authors prove that the error of the final state of the

optimal trajectory is of size 𝒪(1/𝑇).
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2.2. Optimal trajectories for neural ODE with a homogeneous activation function

In this sectionwepresent the analogous results to those in Section2.1 for theneuralODE (1.3)with activation

functions which satisfy (1.5). Let us reformulate Hypothesis 1 in the context of (1.3):

Hypothesis 2 Let x ∈ (ℝ𝑑)𝑁∗ , let ℰ ∶ (ℝ𝑑)𝑁 ↦ ℝ+ ∶= [0,∞) be a continuous function, and let 𝑦 denote (1.6),

where we consider the solutions of (1.3). Then:

1. For the data set x there are controls:

(𝑟∗, 𝑤∗, 𝑏∗) ∈ 𝐿2(0, 1;𝒰),

such that ℰ(𝑦(1; x, 𝑟∗, 𝑤∗, 𝑏∗)) = 0.

2. There are𝐶, ̃ε > 0 both just depending onℰ such that for all x = (𝑥
1
, … , 𝑥

𝑁
) ∈ (ℝ𝑑)𝑁∗ satisfyingℰ(x) < ̃ε,

there are some controls (𝑟, 𝑤, 𝑏) satisfying:

‖(𝑤, 𝑏)‖𝐿∞(0,1;𝒰) < 𝐶ℰ(x),

such that:

ℰ(𝑦(1; x, 𝑟, 𝑤, 𝑏)) = 0.

Example 2.6 (Hypothesis 2 in a context of ensemble controllability) Hypothesis 2 can be considered in

an ensemble controllability problem. Let x ∈ (ℝ𝑑)𝑁∗ for 𝑑 ≥ 2, 𝑋 given in (1.4):

𝜎(𝑥) = (max{𝑥1, 0}, … ,max{𝑥𝑑, 0}), (2.5)

the activation function, z = (𝑧1, … , 𝑧𝑁) ∈ (ℝ𝑑)𝑁∗ the targets, and ℰ given by (2.2) for 𝐸𝑖(𝑥) = |𝑥 − 𝑧𝑖| the

error function. Note that 𝜎 satisfies:

|𝜎(𝑢)| ≤ |𝑢| ∀𝑢 ∈ ℝ𝑑. (2.6)

It can be proved that Hypothesis 2 is satisfied, being the main ideas in [10], and the complete proof in [1].

Again, we seek to get sufficient conditions so that the optimal trajectories induced by:

̃𝐽𝑇(𝑟, 𝑤, 𝑏) ∶= ℰ(𝑦(𝑇; x, 𝑟, 𝑤, 𝑏)) + �
𝑇

0

|(𝑤(𝑡), 𝑏(𝑡))|2𝑑𝑡, (2.7)

satisfy ℰ(𝑦𝑇(𝑇; x)) = 0. Since |𝑟| is constant (see (1.4)), it makes no sense to include it in the definition of ̃𝐽𝑇.

For the functional ̃𝐽𝑇 the following result holds:

Theorem 2.7 (Annihilation of the error for a sufficiently large time) Let𝜎beaLipschitz activation func-

tion satisfying (1.5) and ℰ an error function satisfying Hypothesis 2. Then, for 𝑇 > 0 large enough depending

on 𝜎, x and ℰ, and all ε > 0 there is 𝛿 > 0 such that if 𝐽𝑇(𝑟, 𝑤, 𝑏) < inf 𝐽𝑇 + 𝛿:

ℰ(𝑦(𝑇; x, 𝑟, 𝑤, 𝑏)) < ε. (2.8)

Moreover, if 𝑇 is large enough and if ̃𝐽𝑇 has an optimal trajectory:

ℰ(𝑦𝑇(𝑇; x)) = 0. (2.9)

Here 𝑦 is given by (1.2), where we consider the solution of (1.1).

The proof of Theorem 2.7 is analogous to that of Theorem 2.5. As with Theorem 2.5, Theorem 2.7 improves

the results presented in [2], where the authors prove that the error of the optimal trajectory at a final time 𝑇

is of magnitude 𝒪(1/𝑇) also for the solutions of (1.3) with an activation functions satisfying (1.5).

Remark 2.8 (Existence of minimizers of ̃𝐽𝑇) We have stated “if ̃𝐽𝑇 has an optimal trajectory” in Theorem

2.7 because, as far as we know, it is an open question to see if ̃𝐽𝑇 admits a minimizer. The main obstacle to

adapt the proof of Proposition 2.2 is that nonlinear functions and weak limits may not commute. However,

we can improve Theorem 2.7 and obtain that for 𝑇 large enough and all ε > 0 there are controls (𝑟, 𝑤, 𝑏)

such that 𝐽𝑇(𝑟, 𝑤, 𝑏) < inf 𝐽𝑇 + ε and ℰ(𝑦(𝑇; x, 𝑟, 𝑤, 𝑏)) = 0.
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Remark 2.9 (Functionals allowing expensive controls) As in [2], we can consider the functional:

𝐽𝑇,𝛿(𝑤, 𝑏) ∶= ℰ(𝑦(𝑇; x, 𝑤, 𝑏)) + 𝛿 �
𝑇

0

|(𝑤(𝑡), 𝑏(𝑡))|2𝑑𝑡,

instead of 𝐽𝑇 for (1.1), and:

𝐽𝑇,𝛿(𝑟, 𝑤, 𝑏) ∶= ℰ(𝑦(𝑇; x, 𝑟, 𝑤, 𝑏)) + 𝛿 �
𝑇

0

|(𝑤(𝑡), 𝑏(𝑡))|2𝑑𝑡,

instead of 𝐽𝑇 for (1.3)-(1.5). By linearity, it holds that:

𝐽𝑇,𝛿(𝑤, 𝑏) = 𝐽𝑇𝛿−1,1(𝛿𝑤(𝑡𝛿), 𝛿𝑏(𝑡𝛿)),

and:
̃𝐽𝑇,𝛿(𝑟, 𝑤, 𝑏) = ̃𝐽𝑇𝛿−1,1(𝑟(𝑡𝛿), 𝛿𝑤(𝑡𝛿), 𝛿𝑏(𝑡𝛿)),

respectively. A straight consequence is that (𝑤, 𝑏) is a minimizer of 𝐽𝑇,𝛿 if and only if (𝛿𝑤(𝑡𝛿), 𝛿𝑏(𝑡𝛿)) is

a minimizer of 𝐽𝑇𝛿−1,1. Similarly, (𝑟, 𝑤, 𝑏) is a minimizer of ̃𝐽𝑇,𝛿 if and only if (𝑟(𝑡𝛿), 𝛿𝑤(𝑡𝛿), 𝛿𝑏(𝑡𝛿)) is a

minimizer of 𝐽𝑇𝛿−1,1. Thus, analogous results to Theorems 2.5 and 2.7 and all the auxiliary results hold true

for 𝐽𝑇,𝛿 and ̃𝐽𝑇,𝛿 when 𝑇 is fixed and 𝛿 > 0 is small enough depending on 𝜎, ℰ, x and 𝑇.

3. Open problems

• Optimal control for non-homogenous activation functions. It remains an open problem to de-

termine if similar results to Theorem 2.7 hold for non-homogeneous activation functions satisfying

𝜎(0) = 0 such as the hyperbolic tangent:

𝜎(𝑥) = (tanh(𝑥1), … , tanh(𝑥𝑑)),

see [4]. We may wonder whether similar results hold with more general activation functions if we

replace 𝑋 (see (1.4)) by the unitary matrices or byℝ𝑑×𝑑 (of course, the cost of 𝑟must also be included

in the risk minimization functional). This would include, for instance, sigmoid:

𝜎(𝑥) = ((1 + 𝑒−𝑥1)−1, … , (1 + 𝑒−𝑥𝑑)−1),

see [8]; softplus:

𝜎(𝑥) = (log(1 + 𝑒𝑥1), … , log(1 + 𝑒𝑥𝑑)),

see [5], and others like logistic and cross-entropy functions. The main difficulty is that changing the

speed of the control is not enough, so another tool is needed to prove the main result, probably a local

inverse theorem result.

• Optimal control with the 𝐻1 norm. It is a relevant problem to determine if similar results to Theo-

rems 2.5 and 2.7 hold for any other Lebesgue or Sobolev penalty. In particular, an interesting scenario

is to replace both in 𝐽𝑇 and ̃𝐽𝑇 the terms ‖(𝑤, 𝑏)‖2
𝐿2(0,𝑇;𝒰)

by ‖(𝑤, 𝑏)‖2
𝐻1(0,𝑇;𝒰)

and adding the restric-

tion that the component of 𝑟 can only change signs if (𝑤, 𝑏) = 0 or to measure the 𝐻1 norm of 𝑟 if the

space 𝑋 is connected. The interest of this is double: thinking in potential applications it makes sense

to also try to bound the variations in the time variable, which can be obtained by minimizing the time

derivative. Moreover, if we consider the 𝐻1-norm we can prove as in Proposition 2.2 that ̃𝐽𝑇 admits a

minimizer. The main difficulty is that we cannot define the control on [𝑇, 𝑇 + 𝜏] independently to the

controls on [0, 𝑇] due to the necessity of bounding the time derivative.

• Optimal control with the 𝐵𝑉 norm. It is also a relevant problem to determine if results similar to

Theorems 2.5 and 2.7 hold when we consider a 𝐵𝑉 penalty. The existence of minimizers, as shown

in [2, Section 4], follows from the fact that any minimizing sequence in BV converges strongly in 𝐿1.

However, the main difficulty when studying these penalties, as before, is to keep track of the jumps, as

we cannot define the control on [𝑇, 𝑇 + 𝜏] independently to the controls on [0, 𝑇].
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1. Introduction

Relaxation methods are a general concept for solving problems that lack convexity. There are several such

methods, and we consider three of them: Γ-regularization by [3], Youngmeasures by [4], and convex combi-

nations by [2]. For bounded time domains, the comparisons aremostly done byRoubíček in [8], considering

different generalizations of Young measures.

We consider the relaxations for unbounded time domains and/or unbounded control sets. We establish

sufficient conditions under which all these three types of relaxations are equivalent to each other. Further-

more, we give an example showing that in some cases the relaxations differ.

The equivalence to the relaxation of the problem via convex combinations is convenient for computa-

tions. This type of formulation does not introduce any new mathematical objects such as Radon measures

or bipolars, but rather involves no more that functions, derivatives, and so on.

In the scenario where two problems (PR1), (PR2) are equivalent, one can establish the existence of an

optimal solution for the first by proving the existence for the other, and vice versa. In the subject “Existence

Theorem for Relaxed Control Problems on Infinite Time Horizon Utilizing Weight Functions” on the confer-

ence (FGS2024, Gijón), we present existence results for relaxed optimal control problems utilizing Young

measures technique. In this manner, one can automatically derive existence results for other equivalent re-

laxations.

In the following, we present only the proofs that are not contained in the cited works, or that need modi-

fication.

Definition 1.1 Let (P1), (P2) be two abstract optimization problems with admissible sets 𝐴1, 𝐴2 and real

valued objectives 𝐽1, 𝐽2:

𝐽1(𝑥) ⟶ 𝑀𝑖𝑛

𝑠.𝑡. 𝑥 ∈ 𝐴1
(P1),

𝐽2(𝑦) ⟶ 𝑀𝑖𝑛

𝑠.𝑡. 𝑦 ∈ 𝐴2
(P2).

We call the problems (P1), (P2) equivalent if there are two mappings 𝚤1 ∶ 𝐴1 → 𝐴2, 𝚤2 ∶ 𝐴2 → 𝐴1 with the

property 𝐽2(𝚤1(𝑥)) ≤ 𝐽1(𝑥) (resp. 𝐽1(𝚤2(𝑦)) ≤ 𝐽2(𝑦) ) for all 𝑥 ∈ 𝐴1 (resp. 𝑦 ∈ 𝐴2).

It follows from this definition that the mappings 𝚤1,2 map minimizing sequences (optimal solution) of 𝐽1 to

minimizing sequences (optimal solution) of 𝐽2 and vice versa.

Lemma 1.2 Let the problems (P1), (P2) be equivalent with corresponding mappings 𝚤1, 𝚤2. Furthermore, let

{𝑥𝑖}𝑖∈ℕ be a minimizing sequence of 𝐽1(𝑥). Then 𝚤1(𝑥𝑖) represents a minimizing sequence of 𝐽2(𝑥). Moreover, if

𝑥∗ is an optimal solution of (P1), then 𝚤1(𝑥∗) forms an optimal solution of (P2).

Proof We denote as 𝑦𝑖 the images 𝚤1(𝑥𝑖) and assume that there exists 𝑦̄ ∈ 𝐴2 with 𝐽2(𝑦̄) < inf
𝑖∈ℕ

𝐽2(𝑦𝑖). We then

obtain a contradiction to {𝑥𝑖} being a minimizing sequence because the image 𝚤2(𝑦̄) is admissible for (P1), i.e.
lies in 𝐴1, and

∀𝑖 ∈ ℕ ∶ 𝐽1(𝚤2(𝑦̄)) ≤ 𝐽2(𝑦̄) < 𝐽2(𝑦𝑖) ≤ 𝐽1(𝑥𝑖).

The second statement is rather trivial. One consider the existence of an admissible solution 𝑦̄ ∈ 𝐴2 with

𝐽2(𝑦̄) < 𝐽2(𝚤1(𝑥
∗)), and we obtain a contradiction to 𝐽1(𝑥

∗) = inf
𝑥∈𝐴1

𝐽1(𝑥):

𝐽1(𝚤2(𝑦̄)) ≤ 𝐽2(𝑦̄) < 𝐽2(𝚤1(𝑥
∗)) ≤ 𝐽1(𝑥

∗).
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We relax an optimal control problem of following type:

𝐽(𝑥, 𝑢) = �
Ω

𝑟(𝑡, 𝑥(𝑡), 𝑢(𝑡))d𝑡 ⟶ 𝑀𝑖𝑛,

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) a.e. on Ω, 𝑥(𝑡0) = 𝑥0,

𝑥 ∈ 𝑊
1,𝑛
𝑝 (Ω, 𝜈),

𝑢(𝑡) ∈ 𝑈 ⊆ ℝ𝑚 a.e. on Ω,

(P)

where 𝑓(𝑡, 𝜉, v) is a Carathéodory function Ω × ℝ𝑛+𝑚 → ℝ𝑛, 𝑟(𝑡, 𝜉, v) is a real valued normal integrand

Ω × ℝ𝑛+𝑚 → ℝ, and 𝑈 is some closed set of ℝ𝑚. We call a variable v the control variable and 𝜉 the state

variable. Weuseweighted Sobolev spaces as a state space, and theweight 𝜈 and the exponent𝑝 are supposed

to be chosen in a way that𝑊
1,𝑛
𝑝 (Ω, 𝜈) forms a Banach space and such that for every element 𝑥 ∈ 𝑊

1,𝑛
𝑝 (Ω, 𝜈)

there exists an absolutely continuous representative1. In following, we do not distinguish between elements

from 𝑥 ∈ 𝑊
1,𝑛
𝑝 (Ω, 𝜈) and their absolute continuous representatives.

2. Preliminaries

Let us start with some definitions from [7] and [3]. Let 𝑋 be a set from a Euclidean space of finite dimension,

and let Ω ⊆ ℝ be an open set. Furthermore we utilize following conventions

sup∅ = −∞, inf∅ = +∞.

Moreover, we denote the convex hull and the closed convex hull of some set 𝐴 by co𝐴 and co𝐴 resp.

Definition 2.1 The function 𝑔 ∶ Ω × 𝑋 → ℝ is a normal integrand if

1. 𝑔(𝑡, ⋅) ∶ 𝑋 → ℝ is a l.s.c. function for a.a. 𝑡 ∈ Ω,

2. there exists a measurable function 𝑔̃ ∶ Ω × 𝑋 → ℝ such that 𝑔̃(𝑡, ⋅) = 𝑔(𝑡, ⋅) for a.a. 𝑡 ∈ Ω.

Definition 2.2 The function 𝑔 ∶ Ω × 𝑋 → ℝ is a Carathéodory function if

1. 𝑔(𝑡, ⋅) ∶ 𝑋 → ℝ is a continuous function for a.a. 𝑡 ∈ Ω,

2. there exists a measurable function 𝑔̃ ∶ Ω × 𝑋 → ℝ such that 𝑔̃(𝑡, ⋅) = 𝑔(𝑡, ⋅) for a.a. 𝑡 ∈ Ω.

Lemma 2.3 Let𝑔 ∶ Ω×(ℝ𝑛×ℝ𝑙) → ℝ, (𝑡, 𝜉, v) ↦ 𝑔(𝑡, 𝜉, v) be some normal integrand and 𝑥 somemeasurable

mapping Ω → ℝ𝑛. Then the function 𝑔 ∘ 𝑥 defined as 𝑔 ∘ 𝑥 ∶ (𝑡, v) ↦ 𝑔(𝑡, 𝑥(𝑡), v) is a normal integrand on

Ω × ℝ𝑙. In this sense we can identify

Proof Follows immediately from [7, Cor.2B]. �

Definition 2.4 Let Γ ∶ Ω → 𝒫(𝑋) be some set valued mapping. We call Γ measurable if for every closed

set 𝐴 ⊂ 𝑋 the set

Γ−1(𝐴) ∶= �𝑡 ∈ Ω � Γ (𝑡) ∩ 𝐴 ≠ ∅�

is measurable. We call Γ closed-valued if for every 𝑡 ∈ Ω the set Γ (𝑡) is closed. Further we define domΓ ∶=

�𝑡 ∈ Ω � Γ (𝑡) ≠ ∅�.

Lemma 2.5 For a measurable closed valued multifunction Γ ∶ Ω → 𝒫(ℝ𝑛) there exists at least onemeasur-

able selection, i.e. a function 𝑢 ∶ domΓ → ℝ𝑛 with 𝑢(𝑡) ∈ Γ (𝑡) for all 𝑡 ∈ domΓ .

Nowwe introduce the Γ-regularization (see [3, p.14]).

Definition 2.6 Let 𝑌 be a real convex space, and 𝑔 ∶ 𝑌 → ℝ. We call a pointwise supremum of continuous

affine functions 𝑌 → ℝ, that are everywhere less than 𝑔, a Γ-regularization 𝑔∗∗ of 𝑔2.

The Γ-regularization is always l.s.c. and convex, [3, Prop.3.1.].

Nowwecite a sufficient condition for the invarianceof anormal integrandpropertyunderΓ-regularization

( [3, p.246, Prop.2.1]).

1See [5,6].
2As 𝑔∗∗ we denote a bipolar of 𝑔, which for local convex spaces coincides with Γ-regularization, [3].
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Lemma 2.7 Let 𝑔(𝑡, 𝜉, v) be a normal integrand on Ω × ℝ𝑛+𝑙 and satisfies Φ(‖v‖) ≤ 𝑔(𝑡, 𝜉, v), where the

function Φ ∶ [0,∞) → ℝ is convex, increasing, l.s.c. and fulfills lim
𝑧→∞

Φ(𝑧)

𝑧
= +∞. Then the Γ-regularization

𝑔∗∗(𝑡, 𝜉, v) is a normal integrand on Ω × ℝ𝑛+𝑙 and satisfiesΦ(‖v‖) ≤ 𝑔∗∗(𝑡, 𝜉, v).

Lemma 2.8 The integrand 𝑔(𝑡, 𝜉, v) is normal iff 𝜒𝐾(𝑡)𝑔(𝑡, 𝜉, v) is normal for every 𝐾 ∈ comp(Ω).

Proof One direction of this statement is obvious. For the other one we remark that the supremum 𝑔(𝑡, 𝜉, v) =

sup
𝑖∈𝐽

𝑔𝑖(𝑡, 𝜉, v) over some countable family 𝐽 of normal integrands is normal, [7, Prop.2L]. Sinceℝ is the union

of countably many compact subsets the statement of the lemma follows immediately. �

3. Equivalence of Γ-regularization and Convex combinations

Let us define a relaxation of a problem (P) in the sense of Γ-regularization (PRG) and in the sense of convex

combinations (PRC).

𝐽(PRG)(𝑥) = �
Ω

𝑔∗∗(𝑡, 𝑥(𝑡), 𝑥̇(𝑡))d𝑡 → 𝑀𝑖𝑛,

𝑔(𝑡, 𝜉, 𝜂) = inf �𝑟(𝑡, 𝜉, v) � v ∈ 𝑈 ⊆ ℝ𝑚, 𝑓(𝑡, 𝜉, v) = 𝜂� ,

𝑥 ∈ 𝑊
1,𝑛
𝑝 (Ω, 𝜈), 𝑥(𝑡0) = 𝑥0.

(PRG)

The Γ-regularization 𝑔∗∗ is obtained from 𝑔 resp. to variable 𝜂. It follows from the definition of 𝑔 in (PRG)

that the function 𝑔(𝑡, 𝑥(𝑡), 𝑥̇(𝑡)) takes the value+∞ for every 𝑡with ∀v ∈ 𝑈 ∶ 𝑥̇(𝑡) ≠ 𝑓(𝑡, 𝑥(𝑡), v). Thus, we

know that for any admissible solution 𝑥, the set

�𝑡 ∈ Ω � ∀v ∈ 𝑈 ∶ 𝑥̇(𝑡) ≠ 𝑓(𝑡, 𝑥(𝑡), v)�

forms a negligible set (set of measure zero).

𝐽(PRC)(𝑥, 𝜆, 𝑢) = �
Ω

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑟(𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡))d𝑡 → 𝑀𝑖𝑛,

𝑥̇(𝑡) =

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑓(𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡)) a.e. on Ω, 𝑥(𝑡0) = 𝑥0,

𝑥 ∈ 𝑊
1,𝑛
𝑝 (Ω, 𝜈),

𝜆(𝑡) ∈ 𝐸𝑛 ∶= co{𝑒1, … , 𝑒𝑛+1} a.e. on Ω,

𝑢𝑖(𝑡) ∈ 𝑈 ⊆ ℝ𝑚 a.e. on Ω,

𝑢𝑖, 𝜆𝑖 – measurable for 𝑖 = 1…𝑛 + 1.

(PRC)

Notice that the set 𝐸𝑛 is 𝑛-dimensional, being the convex hull of 𝑛 + 1 points of dimension 𝑛.

From now on we define the function Ψ(𝑡, 𝑧) ∶ Ω × [0, +∞) → ℝ as a non-decreasing, convex l.s.c. in 𝑧

function with the property

lim
𝑧→∞

Ψ(𝑡, 𝑧)

𝑧
= +∞ uniformly on every 𝐾 ∈ comp(Ω). (C)

The integrand 𝑟 satisfies a growth condition (G) if holds

Ψ(𝑡, ‖v‖) ≤ 𝑟(𝑡, 𝜉, v) (G)

withΨ satisfying (C).

Lemma 3.1 We consider the problem (PRG). Let the integrand 𝑟(𝑡, 𝜉, v) satisfy growth condition (G). Let

the function 𝑓 be a Carathéodory-function, and 𝑈 be a closed set. Then the functions 𝑔(𝑡, 𝜉, 𝜂) and its Γ-

regularization 𝑔∗∗(𝑡, 𝜉, 𝜂) are normal integrands on Ω × ℝ2𝑛.

Proof Let𝐾 be some compact subset ofΩ. We use a variant of Scorzà-Dragoni theorem for normal integrands,

[3, Thm.1.1]. We show that

∀𝜀 > 0∃𝐾𝜀 ⊂ 𝐾 ∶ |𝐾 ∖ 𝐾𝜀| ≤ 𝜀 and 𝑔�
𝐾𝜀×ℝ

2𝑛 l.s.c. (3.3)
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Since 𝑟 is a normal integrand we can establish condition (3.3) for 𝑟(𝑡, 𝜉, v) restricted to 𝐾𝜀 × ℝ𝑛+𝑚, instead of

𝑔.

We consider some sequence {(𝑡𝑖, 𝜉𝑖, 𝜂𝑖)} ⊂ 𝐾𝜀×ℝ
2𝑛 converging to (𝑡̄, ̄𝜉, 𝜂̄)and show𝑔(𝑡̄, ̄𝜉, 𝜂̄) ≤ lim

𝑖→∞

𝑔(𝑡𝑖, 𝜉𝑖, 𝜂𝑖).

We only need to show the inequality for the case that the limes inferior is a real number from [0,∞). We take

a subsequence, that represents the limes inferior. For simplicity let the sequence be again {(𝑡𝑖, 𝜉𝑖, 𝜂𝑖)} and we

have

lim
𝑖→∞

𝑔(𝑡𝑖, 𝜉𝑖, 𝜂𝑖) = 𝛼 < +∞. (3.4)

For sufficiently large indexes 𝑖 we have 𝑔(𝑡𝑖, 𝜉𝑖, 𝜂𝑖) < +∞, which means

�𝑟(𝑡𝑖, 𝜉𝑖, v) � v ∈ 𝑈, 𝑓(𝑡𝑖, 𝜉𝑖, v) = 𝜂𝑖� ≠ ∅.

For every (𝑡𝑖, 𝜉𝑖) the level sets of 𝑟(𝑡𝑖, 𝜉𝑖, ⋅) ∶ 𝑈 → ℝ are compact since we haveΨ(𝑡𝑖, ‖v‖) ≤ 𝑟(𝑡𝑖, 𝜉𝑖, v) and

the functionΨ(𝑡, ‖v‖) fulfills (C). Since the function 𝑟 is l.s.c. in v and the preimage 𝑓−1(𝑡, 𝜉, ⋅)(𝜂𝑖) is closed we

obtain for every (𝑡𝑖, 𝜉𝑖, 𝜂𝑖) a v𝑖 ∈ 𝑈 with

𝑔(𝑡𝑖, 𝜉𝑖, 𝜂𝑖) = 𝑟(𝑡𝑖, 𝜉𝑖, v𝑖) and 𝑓(𝑡𝑖, 𝜉𝑖, v𝑖) = 𝜂𝑖.

Again in view of (C) we obtain that all of v𝑖 lie in some compact subset of 𝑈, and finally we obtain a subse-

quence (𝑡𝑖𝑗 , 𝜉𝑖𝑗 , v𝑖𝑗) converging to (𝑡̄, ̄𝜉, v̄) and in view of continuity of 𝑓 and l.s.c. of 𝑟 on 𝐾𝜀 × ℝ𝑛+𝑚 we have

𝑓(𝑡̄, ̄𝜉, v̄) = 𝜂̄,

𝑟(𝑡̄, ̄𝜉, v̄) ≤ lim
𝑗→∞

𝑟(𝑡𝑖𝑗 , 𝜉𝑖𝑗 , v𝑖𝑗).

From latter inequality and definition of 𝑔 we obtain

𝑔(𝑡̄, ̄𝜉, 𝜂̄) ≤ 𝑟(𝑡̄, ̄𝜉, v̄) ≤ lim
𝑗→∞

𝑟(𝑡𝑖𝑗 , 𝜉𝑖𝑗 , v𝑖𝑗) = lim
𝑗→∞

𝑔(𝑡𝑖𝑗 , 𝜉𝑖𝑗 , 𝜂𝑖𝑗) = 𝛼.

The last limes inferior is equal to 𝛼 because of (3.4). Thus, we obtain that 𝑔(𝑡, 𝜉, v) is a normal integrand on

Ω×ℝ𝑛+𝑚. Finally, lemma2.8 togetherwith lemma2.7 deliver that𝑔∗∗(𝑡, 𝜉, v) is a normal integrandonΩ×ℝ𝑛+𝑚

as well. �

Lemma 3.2 Let the integrand 𝑟 satisfy growth condition (G). Moreover, let 𝑥 ∶ Ω → ℝ𝑛, 𝑦 ∶ Ω → ℝ𝑛 be

measurable. Then there exist 𝑛 + 1measurable functions 𝑦𝑖 ∶ Ω → ℝ𝑛, 𝑖 = 1…𝑛+ 1 and 𝜆 ∶ Ω → 𝐸𝑛, such that

we have for almost every 𝑡 ∈ Ω:

𝑔∗∗(𝑡, 𝑥(𝑡), 𝑦(𝑡)) =

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑔(𝑡, 𝑥(𝑡), 𝑦𝑖(𝑡)), (3.5)

𝑦(𝑡) =

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑦𝑖(𝑡).

Proof From lemma 3.1 follows that 𝑔∗∗(𝑡, 𝜉, 𝜂) is a normal integrand on Ω × ℝ2𝑛 and corollary [7, Cor.2B]

delivers that 𝑔∗∗(𝑡, 𝑥(𝑡), 𝜂) and 𝑔(𝑡, 𝑥(𝑡), 𝜂) are both normal integrands onΩ×ℝ𝑛, and due to [3, Prop.3.1.] we

obtain representation (3.5). �

Lemma 3.3 Let 𝑥 be an admissible solution of (PRG), and the integrand 𝑟 satisfy growth condition (G). Then

there exist functions 𝑢 ∶ Ω → 𝑈𝑛+1 and 𝜆 ∶ Ω → 𝐸𝑛 such that the triple (𝑥, 𝜆, 𝑢) is admissible for (PRC) and

𝐽(PRG)(𝑥) = 𝐽(PRC)(𝑥, 𝜆, 𝑢).

Proof From lemma 3.2 we obtain measurable functions 𝜆𝑖(𝑡), 𝑦𝑖(𝑡), 𝑖 = 1…𝑛 + 1, which fulfill

𝑔∗∗(𝑡, 𝑥(𝑡), 𝑥̇(𝑡)) =

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑔(𝑡, 𝑥(𝑡), 𝑦𝑖(𝑡)),

𝑥̇(𝑡) =

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑦𝑖(𝑡).
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Now we need to define a proper selection 𝑢𝑖, for every function 𝑦𝑖, to fulfill the state equation

𝑥̇(𝑡) =

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑓(𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡)).

For every 𝑦𝑖(𝑡) we define a set valued mapping

Γ𝑖(𝑡) ∶= �v ∈ 𝑈 � 𝑟(𝑡, 𝑥(𝑡), v) = 𝑔(𝑡, 𝑥(𝑡), 𝑦𝑖(𝑡))� . (3.6)

The function 𝑔(𝑡, 𝑥(𝑡), 𝑦𝑖(𝑡)) ∶ Ω → ℝ is measurable (lemma 2.3) and by [7, Thm.2J] we obtain that Γ𝑖(𝑡)
are measurable set valued mappings with closed values, and for every 𝑡 with Γ𝑖(𝑡) ≠ ∅ (follows from growth

condition (G) as in proof of lemma 3.1). That is the case for every 𝑡 ∈ domΓ𝑖 because of coercivity of Ψ in

𝑧 (see the proof of lemma 3.1). The set Ω ∖
𝑛+1

⋂
𝑖=1

domΓ𝑖 is negligible, because 𝑥̄ is an admissible solution with

𝐽(𝑥̄) < +∞. The same theorem [7, Thm.2J] delivers that there exists a measurable selection 𝑢𝑖(𝑡) for every 𝑖

such that 𝑢𝑖(𝑡) ∈ Γ𝑖(𝑡) and 𝑦𝑖(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡)) for all 𝑡 ∈ domΓ𝑖(𝑡). And finally using (3.6) we get:

𝑔∗∗(𝑡, 𝑥(𝑡), 𝑥̇(𝑡)) =

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑟(𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡)), (3.7)

𝑥̇(𝑡) =

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑓(𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡))

for almost all 𝑡 ∈ Ω. The solution (𝑥, 𝜆, 𝑢) with 𝜆 = (𝜆1, … , 𝜆𝑛+1), 𝑢 = (𝑢1, … , 𝑢𝑛+1) is then an admissible

solution of (PRC) and, because of (3.7), we have 𝐽(PRC)(𝑥, 𝜆, 𝑢) = 𝐽(PRG). �

Lemma 3.4 Let (𝑥, 𝜆, 𝑢) be an admissible solution of (PRC) and the integrand 𝑟 satisfy the growth condition

(G). Then 𝑥 is an admissible solution of (PRG) and 𝐽(PRG)(𝑥) ≤ 𝐽(PRC)(𝑥, 𝜆, 𝑢).

Proof From the definition of function 𝑔 in (PRG) we obtain

𝑔(𝑡, 𝑥(𝑡), 𝑓(𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡))) ≤ 𝑟(𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡)) a.e.

We make use of [3, Lemma 3.3.] and get

𝑔∗∗(𝑡, 𝑥(𝑡), 𝑥̇(𝑡)) ≤

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑔�𝑡, 𝑥(𝑡), 𝑓(𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡))� ≤

𝑛+1

�

𝑖=1

𝜆𝑖(𝑡)𝑟(𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡))

with 𝜆(𝑡) ∈ 𝐸𝑛 a.e. on Ω. �

Lemmas 3.4 and 3.3 imply immediately the equivalence of problems (PRC) and (PRG) in the sense of defini-

tion 1.1.

4. Equivalence of Young measures and Convex combinations

We first extend the notion of Youngmeasure, as stated in [4], to unbounded domainsΩ and sets𝑈, which are

closed, but not necessarily bounded.

Definition 4.1 We call a family of Radon measures3 𝜇 = {𝜇𝑡}𝑡∈Ω on 𝑈 a generalized control and write

𝜇 ∈ ℳ𝑈 if it fulfills:

i) supp 𝜇𝑡 ⊆ 𝑈 for almost all 𝑡 ∈ Ω,

ii) 𝜇𝑡 is a probability measure for almost all 𝑡 ∈ Ω,

iii) for every 𝑔 ∈ 𝐶𝑐(Ω × 𝑈) the function

ℎ(𝑡) = ⟨𝜇𝑡, 𝑔(𝑡, v)⟩ ∶= �
𝑈

𝑔(𝑡, v)d𝜇𝑡(v)

is measurable.

3For the theory of Radon measures we refer to [1].
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Now we are ready to define a relaxation in the sense of Young measures (also known as Gamkrelidze con-

trols):

𝐽(PRY)(𝑥, 𝜇) = �
Ω

⟨𝜇𝑡, 𝑟(𝑡, 𝑥(𝑡), v)⟩ d𝑡 ⟶ 𝑀𝑖𝑛,

𝑥̇(𝑡) = ⟨𝜇𝑡, 𝑓(𝑡, 𝑥(𝑡), v)⟩ a.e. on Ω, 𝑥(𝑡0) = 𝑥0,

𝑥 ∈ 𝑊
1,𝑛
𝑝 (Ω, 𝜈),

𝜇 ∈ ℳ𝑈.

(PRY)

For further explanations we need following two definitions of orientor fields

𝑃(𝑡, 𝜉) = ��
𝑟(𝑡, 𝜉, v)

𝑓(𝑡, 𝜉, v)
� � v ∈ 𝑈� ,

𝑃ℳ(𝑡, 𝜉) = ��𝜇̂, �
𝑟(𝑡, 𝜉, v)

𝑓(𝑡, 𝜉, v)
�� � supp 𝜇̂ ⊆ 𝑈, 𝜇̂ – probability measure� .

The following lemma is a modification of [4, Assertion 2.1.].

Lemma 4.2 Let 𝑈 be some closed subset of ℝ𝑚, the function 𝑔 ∶ 𝑈 → ℝ𝑛 be continuous, and let 𝐻𝑘 ⊂ ℝ𝑛 be

some hyperplane of dimension 𝑘, where 1 ≤ 𝑘 ≤ 𝑛. Let the probability measure 𝜇̂ on 𝑈 be such that supp 𝜇̂ ⊆

𝑔−1(𝐻𝑘). Further, let the point 𝑝 ∶= ⟨𝜇̂, 𝑔⟩ lie in 𝐻𝑘 and not in co𝑃, where 𝑃 represents the orientor field

𝑃 ∶= �𝑔(v) � v ∈ 𝑈� .

Then there exists a hyperplane 𝐻𝑘−1 of dimension 𝑘 − 1, such that 𝑝 ∈ 𝐻𝑘−1 and supp 𝜇̂ ⊆ 𝑔−1(𝐻𝑘−1).

Proof Since𝑔−1(𝐻𝑘) contains a support of the probability measure it is not empty. We conclude that co𝑃∩𝐻𝑘

is convex and not empty as well. We define a 𝑘 − 1-dimensional hyperplane, denoted by 𝐻𝑘−1 ⊂ 𝐻𝑘, that

separates the point 𝑝 and the set co𝑃 ∩ 𝐻𝑘. Furthermore, 𝑝 lies in 𝐻𝑘−1.

Let 𝜒(v) be the characteristic function of the preimage 𝑔−1(𝐻𝑘):

𝜒(v) ∶= �
1, 𝑔(v) ∈ 𝐻𝑘−1

0, 𝑔(v) ∉ 𝐻𝑘−1
.

The preimage 𝑔−1(𝐻𝑘) is closed, as it is the preimage of a closed set under continuous mapping. Consequently,

the function 𝜒 ∶ 𝑈 → ℝ is u.s.c.

We consider the equation

⟨𝜇̂, 𝑔(v) − 𝑝⟩ = 0

from which we deduce

⟨𝜇̂, 𝑔(v) − 𝑝⟩ = ⟨𝜇̂, 𝜒(v)(𝑔(v) − 𝑝)⟩ + ⟨𝜇̂, (1 − 𝜒(v))(𝑔(v) − 𝑝)⟩ = 0.

Let 𝑤 ∈ 𝐻𝑘 be a vector orthogonal to 𝐻𝑘−1, and directed towards co𝑃(𝑡, 𝑥) ∩ 𝐻𝑘. By taking a scalar product

with the above equation we obtain

�𝜇̂, 𝜒(v)𝑤𝑇(𝑔(v) − 𝑝)� + �𝜇̂, (1 − 𝜒(v))𝑤𝑇(𝑔(v) − 𝑝)� = 0. (4.2)

For all v with 𝜒(v) = 1, the scalar product 𝑤𝑇(𝑔(v) − 𝑝) vanishes because the points 𝑔(v) and 𝑝 lie in the

hyperplane 𝐻𝑘−1, and the vector𝑤 is then orthogonal to 𝑔(v) − 𝑝. It follows

∀v ∈ 𝑈 𝜒(v)𝑤𝑇(𝑔(v) − 𝑝) = 0,

and together with (4.2) we conclude

�𝜇̂, (1 − 𝜒(v))𝑤𝑇(𝑔(v) − 𝑝)� = 0. (4.3)

Since 𝑔(v) ∈ co𝑃, and𝑤 is directed toward co𝑃 ∩ 𝐻𝑘, for any v ∈ 𝑔−1(𝐻𝑘 ∖ 𝐻𝑘−1) we obtain

𝑤𝑇(𝑔(v) − 𝑝) > 0.
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As for v from 𝑔−1(𝐻𝑘 ∖ 𝐻𝑘−1) the indicator function 𝜒 is equal zero we conclude

∀v ∈ 𝑈 ∶ 𝑔(v) ∈ 𝐻𝑘 ∖ 𝐻𝑘−1 ⇒ (1 − 𝜒(v))𝑤𝑇(𝑔(v) − 𝑝) > 0. (4.4)

Now from equation (4.3) we become

�
𝑈

(1 − 𝜒(v))𝑤𝑇(𝑔(v) − 𝑝)d𝜇̂ = �
𝑔−1(𝐻𝑘)

(1 − 𝜒(v))𝑤𝑇(𝑔(v) − 𝑝)d𝜇̂.

Since 1 − 𝜒(v) is l.s.c., and 𝑤𝑇(𝑔(v) − 𝑝) is non-negative and continuous on 𝑔−1(𝐻𝑘), we deduce that the

function v ↦ (1 − 𝜒(v))𝑤𝑇(𝑔(v) − 𝑝) is l.s.c. on 𝑔−1(𝐻𝑘). Now we use a proposition [1, Ch.IV, §2(1), Prop.3]

and conclude that the integrand (1 − 𝜒(v))𝑤𝑇(𝑔(v) − 𝑝) vanishes on supp 𝜇̂. Now, from inequality (4.4) it

follows that supp 𝜇̂ ∩ 𝑔−1(𝐻𝑘 ∖ 𝐻𝑘−1) = ∅. As we assumed that supp 𝜇̂ lies in 𝑔−1(𝐻𝑘), we get

supp 𝜇̂ ⊆ 𝑔−1(𝐻𝑘−1).

�

Lemma 4.3 Let 𝑟, 𝑓 be Carathéodory functions on Ω × ℝ𝑛+𝑚, then co𝑃(𝑡, 𝜉) = 𝑃ℳ(𝑡, 𝜉) for almost all 𝑡 ∈ Ω.

Proof Let (𝑡, 𝜉) be arbitrary pair from Ω × ℝ𝑛 such that �𝑟(𝑡, 𝜉, ⋅), 𝑓(𝑡, 𝜉, ⋅)�
𝑇
∶ 𝑈 → ℝ𝑛+1 is continuous. The

inclusion 𝑃(𝑡, 𝜉) ⊆ 𝑃ℳ(𝑡, 𝜉) is obvious. Let’s show 𝑃ℳ(𝑡, 𝜉) ⊆ 𝑃(𝑡, 𝜉).

Let 𝑔 be a continuous function 𝑔 ∶ v ↦ �𝑟(𝑡, 𝜉, v), 𝑓(𝑡, 𝜉, v)�
𝑇
. We assume that there exists some probability

measure 𝜇̂ with ⟨𝜇̂, 𝑔⟩ = 𝑝 ∉ co𝑃(𝑡, 𝜉). Using lemma 4.2 with the settings 𝑘 ∶= 𝑛 + 1,𝐻𝑘 ∶= ℝ𝑛+1 we obtain

supp 𝜇̂ ⊆ 𝑔−1(𝐻𝑛), where 𝐻𝑛 is a hyperplane of dimension 𝑛, contains the point 𝑝, and lies in 𝐻𝑛+1.

We now set 𝑘 ∶= 𝑛 and utilize the lemma 4.2 once again. After altogether 𝑛 + 1 repetitions we obtain that

𝑝 lies in the hyperplane𝐻0 of dimension zero, and supp 𝜇̂ ⊆ 𝑔−1(𝐻0). Since 𝑝 ∈ 𝐻0 and dim𝐻0 = 0we obtain

𝐻0 = {𝑝} and 𝑔−1(𝐻0) = 𝑔−1(𝑝).

The measure 𝜇̂ is a probability measure which implies supp 𝜇̂ ≠ ∅. Together with supp 𝜇̂ ⊆ 𝑔−1(𝑝) we

obtain 𝑔−1(𝑝) ≠ ∅, that means that there exists v ∈ 𝑈 with 𝑃(𝑡, 𝜉) ⊇ 𝑔(v) = 𝑝, and we get a contradiction.

�

Lemma 4.4 Let 𝑟, 𝑓 be Carathéodory functions on Ω × ℝ𝑛+𝑚 and (𝑥, 𝜇) be an admissible solution of (PRY).

Then there exists an admissible solution (𝑥, 𝜆, 𝑢) of (PRC) with 𝐽(PRC)(𝑥, 𝜆, 𝑢) ≤ 𝐽(PRY)(𝑥, 𝜇).

Proof Let us define a vector-valued function 𝑔 ∶ Ω×ℝ𝑚 → ℝ1+𝑛, 𝑔 ∶ (𝑡, v) ↦ (𝑟(𝑡, 𝑥(𝑡), v), 𝑓(𝑡, 𝑥(𝑡), v))𝑇. We

now use lemma 4.3, and for almost all 𝑡 ∈ Ω we obtain

⟨𝜇, 𝑔(𝑡, v)⟩ =

𝑛+2

�

𝑖=1

𝜆̂𝑖𝑔(𝑡, 𝑢𝑖), 𝜆̂ ∈ 𝐸𝑛+1, 𝑢1,…,𝑛+2 ∈ 𝑈. (4.5)

Now we prove that we can diminish the dimension of 𝐸𝑛+1. We formulate following optimization problem:

𝑐𝑇𝜆̃ → 𝑀𝑖𝑛,

𝑠.𝑡. 𝐴𝜆̃ = 𝑑,

𝜆̃ ∈ 𝐸𝑛+1,

where

𝑐 ∶= �

𝑟(𝑡, 𝑥(𝑡), 𝑢1)

…

𝑟(𝑡, 𝑥(𝑡), 𝑢𝑛+2)

� , 𝐴 ∶= �𝑓(𝑡, 𝑥(𝑡), 𝑢1), … , 𝑓(𝑡, 𝑥(𝑡), 𝑢𝑛+2)�, 𝑑 ∶= 𝐴𝜆̂, (4.6)

with v𝑖 and 𝜆̂ from (4.5). Since 𝑐 and 𝜆̃ are non-negative, there exists an optimal solution 𝜆̃∗ of (4.6). The

constraints of (4.6) define a convex polyhedron, therefore 𝜆̃∗ lies on its boundary. It means, that there exists at

least one index 1 ≤ 𝑘 ≤ 𝑛 + 2 with 𝜆̃∗𝑘 = 0, and it follows (𝜆̃∗𝑖=1…,𝑛+2,𝑖≠𝑘) ∈ 𝐸𝑛. We then obtain

for a.a. 𝑡 ∈ Ω∃𝜆 ∈ 𝐸𝑛
𝑛+1

�

𝑖=1

𝜆𝑖𝑔(𝑡, 𝑢𝑖) ≤

𝑛+2

�

𝑖=1

𝜆̂𝑖𝑔(𝑡, 𝑢𝑖) = ⟨𝜇, 𝑔(𝑡, v)⟩ . (4.7)
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Now we define the set-valued mapping

Γ (𝑡) = �(𝜆, 𝑢) ∈ 𝐸𝑛 × 𝑈𝑛+1 � 𝐹(𝑡, 𝜆, 𝑢) = ⟨𝜇, 𝑓(𝑡, 𝑥(𝑡), v)⟩ ,

𝐹1(𝑡, 𝜆, 𝑢) ≤ ⟨𝜇, 𝑟(𝑡, 𝑥(𝑡), v)⟩ �

with 𝐹(𝑡, 𝜆, 𝑢) =
𝑛+1

∑
𝑖=1

𝜆𝑖𝑓(𝑡, 𝑥(𝑡), 𝑢𝑖) and 𝐹1(𝑡, 𝜆, 𝑢) =
𝑛+1

∑
𝑖=1

𝜆𝑖𝑟(𝑡, 𝑥(𝑡), 𝑢𝑖). 𝐹 and 𝐹1 are Carathéodory functions.

The sets Γ (𝑡) are not empty for a.a. 𝑡 ∈ Ω because of (4.7). Theorem [7, Thm.2J] delivers that Γ is measurable,

and by lemma 2.5 we get functions

𝜆 ∶ Ω → 𝐸𝑛,

𝑢𝑖 ∶ Ω → 𝑈, 𝑖 = 1,… , 𝑛 + 1

that are measurable and (𝜆(𝑡), 𝑢(𝑡)) ∈ Γ (𝑡) for a.a. 𝑡 ∈ Ω. Finally, we obtain 𝐽(PRC)(𝑥, 𝜆, 𝑢) ≤ 𝐽(PRY)(𝑥, 𝜇). �

Lemma 4.5 Let 𝑟 be a normal integrand and 𝑓 be a Carathéodory function onΩ×ℝ𝑛+𝑚, and let (𝑥, 𝜆, 𝑢) be an

admissible solution of (PRC). Then, there exists an admissible solution (𝑥, 𝜇) of (PRY) such that 𝐽(PRY)(𝑥, 𝜇) =

𝐽(PRC)(𝑥, 𝜆, 𝑢).

Proof The proof is straightforward: define 𝜇𝑡 ∶= ∑
𝑛+1
𝑖=1 𝜆𝑖(𝑡)𝛿𝑢𝑖(𝑡), and it can be readily shown that 𝜇 ∶=

{𝜇𝑡}𝑡∈Ω constitutes a generalized control according to definition 4.1. �

Now, under the more restrictive conditions of lemma 4.4 we obtain the equivalence of problems (PRY) and

(PRC).

5. Example

Wewill now provide an example to illustrate how the relaxations differ.

𝐽(𝑥, 𝑢) = �
∞

0

[𝑒−𝑢
2(𝑡) + 𝑥2(𝑡)]𝑒−𝑡d𝑡 ⟶ 𝑀𝑖𝑛,

𝑥̇(𝑡) =
1

1 + 𝑢2(𝑡)
, a.e. on (0,∞), 𝑥(0) = 0,

𝑥 ∈ 𝑊1
2 ((0,∞), 𝑒

−𝑡),

𝑢(𝑡) ∈ ℝ a.e. on (0,∞),

𝑢 – measurable.

(PEX)

To get the Γ-regularization we first calculate the function 𝑔 according to (PRG).

𝑔(𝑡, 𝜉, 𝜂) = inf �(𝑒−v
2
+ 𝜉2)𝑒−𝑡 � v ∈ ℝ,

1

1 + v2
= 𝜂� = �

+∞, 𝜂 ≤ 0,

(𝑒
1−

1

𝜂 + 𝜉2)𝑒−𝑡, 𝜂 > 0.

Nowwe can easily calculate the Γ-regularized function according to the definition 2.6:

𝑔∗∗(𝑡, 𝜉, 𝜂) = �
+∞, 𝜂 < 0,

𝜉2𝑒−𝑡, 𝜂 ≥ 0.
(5.1)

We insert this function, 𝑔∗∗, into the formulation (PRG) and conclude that the problem

𝐽(PRG)(𝑥) = �
∞

0

𝑔∗∗(𝑡, 𝑥(𝑡), 𝑥̇(𝑡))d𝑡 → 𝑀𝑖𝑛,

𝑥 ∈ 𝑊1
2 ((0,∞), 𝑒

−𝑡), 𝑥(0) = 0,

where the function 𝑔∗∗ is taken from (5.1), possesses an optimal solution 𝑥∗ ≡ 0with 𝐽(PRG)(𝑥
∗) = 0.

On the other hand, since the integrand 𝑟(𝑡, 𝜉, v) = (𝑒−v
2
+ 𝜉2)𝑒−𝑡 is always greater than zero, for any

probability measure 𝜇̂, we obtain ⟨𝜇̂, (𝑒−v
2
+𝜉2)𝑒−𝑡⟩ > 0. This implies that for any generalized control 𝜇, we

have

𝐽(PRY)(𝑥, 𝜇) = �
∞

0

⟨𝜇𝑡, 𝑒
−v2 + 𝑥2(𝑡)⟩𝑒−𝑡d𝑡 > 0.
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At the same time, the sequence of generalized controls4 𝜇𝑘 ∶= {𝛿𝑘𝑡}𝑡∈Ω and corresponding solutions

𝑥𝑘(𝑡) ∶=
1

𝑘
arctan(𝑘𝑡) of the initial value problem of (PEX) form a null sequence 𝐽(PRY)(𝑥𝑘, 𝜇𝑘)

𝐽(PRY)(𝑥𝑘, 𝜇𝑘) = �
∞

0

⟨𝛿𝑘𝑡, 𝑒
−v2 + 𝑥2𝑘(𝑡)⟩𝑒

−𝑡d𝑡 = �
∞

0

�𝑒−𝑘
2𝑡2 +

1

𝑘2
arctan2(𝑘𝑡)� 𝑒−𝑡d𝑡 <

√𝜋

2𝑘
+

𝜋2

4𝑘2
𝑘→∞
⟶ 0.

We conclude that there is no optimal solution for either the relaxations of the type of Young measures

or the convex combinations, according to lemma 4.4. Furthermore, because the condition (G) cannot be

satisfied, we are unable to extract any admissible solutions for other types of relaxations discussed here

from Γ-regularization.
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Abstract

Wewill consider geometric inverse problems of determining by externalmeasurements a portion of the

domain inwhich certainpartial differential equations are satisfied. Wewill consider real-world applications

problems and will explore two crucial aspects: uniqueness and numerical reconstruction based on certain

optimization problems. We will present results that have been obtained in collaboration with different

authors.

This paper will consist of two parts. First, we will present some numerical domain reconstruction tech-

niques related to optimization problems. We will focus on meshless technique based on the Method of

Fundamental Solutions which will be introduced in the context of an elliptic equation.

The second part of the paper will be devoted to analyzing the sensitivity of the inverse problems to the

boundary and initial data which we will present in the context of the variable density Burguers equation.

1. Introduction

This paper deals with geometric inverse problems for certain partial differential equations (PDEs). We aim

to determine a portion of the domain where these equations hold true, based on external measurements

taken on a part of the boundary. Our focus is on developing novel numerical methods of reconstruction

of unknown domain and the crucial question of uniqueness. We present several results obtained through

ongoing collaborations, which significantly advance our understanding of this problem.

The analysis and solution of inverse problems of many kinds has recently increased a lot because of their

relevance in many applications: elastography and medical imaging, seismology, potential theory, ion trans-

port problems or chromatography, finances, etc.; see for instance [9]. The variety of inverse problems is

huge in comparisonwith their direct analogs andmany inverse problems coming from very classical and ba-

sic direct problems wait for theoretical and numerical research. Let us mention the monographs [4, 17, 18]

and [10], where many theoretical and numerical aspects of inverse problems for partial differential equa-

tions are depicted.

Thepaperwill be structured in twoparts. First, Section 2,will dealwith reconstruction algorithms involv-

ing some optimization problems conceived to compute the unknown domain fromboundarymeasurements.

A meshless technique based on the method of fundamental solutions (MFS) will be used in the context of an

elliptic equation.

The second part, in Section 3, will be devoted to analyze the sensitivity of inverse problems to the bound-

ary and initial data which will be presented in the context of the variable density Burguers one dimensional

equation.

The author would like to express a sincere gratitude to the collaborators of this research, particularly

Jone Apraiz, Jin Cheng, Enrique Fernández-Cara, Pitágoras de Carvalho, Jairo Rocha de Faria and Masahiro

Yamamoto.

2. Method of Fundamental Solutions

This section focuses on developing reconstruction algorithms for the unknowndomain. Wewill explore opti-

mization problems designed to compute a unknownportion of the domain fromboundarymeasurements. In

particular, we will employ a meshless technique based on the MFS within the context of an elliptic equation.

Let Ω ⊂ R𝑁 be a simply connected bounded open set (𝑁 ≥ 1) whose boundary 𝜕Ω is of class 𝐶2 and let

𝛾 be a nonempty open subset of 𝜕Ω. We consider the following inverse problem:

IP-1: Given functions 𝛼̃ = 𝛼̃(𝑥), 𝑎 = 𝑎(𝑥), ℎ = ℎ(𝑥) and 𝜑 = 𝜑(𝑥) in appropriate spaces, find a set 𝐷 such

that the solution 𝑢 to the Dirichlet problem

�

−Δ𝑢 + 𝑎𝑢 = ℎ, 𝑥 ∈ Ω ∖ 𝐷,

𝑢 = 𝜑, 𝑥 ∈ 𝜕Ω,

𝑢 = 0, 𝑥 ∈ 𝜕𝐷

(2.1)
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satisfies the additional condition
𝜕𝑢

𝜕𝑛
= 𝛼̃ on 𝛾. (2.2)

In this context, it is usual to consider three main questions: uniqueness, stability and reconstruction.

They can be described as follows.

• Uniqueness: Let 𝑢1 and 𝑢2 be solutions to (2.1) corresponding to the sets 𝐷1 and 𝐷2. Let us assume

that the associated observations on 𝛾 coincide, that is, 𝛼̃1 = 𝛼̃2. Then, do we have 𝐷1 = 𝐷2?

• Stability: Find an estimate of the “size” of (𝐷1 ∖ 𝐷2) ∪ (𝐷2 ∖ 𝐷1) in terms of the “size” of 𝛼̃1 − 𝛼̃2.

• Reconstruction: Find an iterative algorithm to compute 𝐷 from 𝛼̃.

The uniqueness for this problem is based on the unique continuation property for the Poisson equation

and can be achieved using arguments from [15]. Concerning stability, see [5].

In [7] and [8],wehave considered inverseproblems similar to (2.1)–(2.2) respectively for the𝑁-dimensional

wave equation and the Lamé system. We introduced some reconstruction methods based on reformulation

as optimization problems and finite element techniques that require a newmesh at each iteration of the algo-

rithm. This was implemented with the help of FreeFem++, see [11], used in combination with the ff-NLopt
package.

Motivated by the fact that the identification of small obstacles is difficult and expensive with domain

discretization methods and, on the other hand, trying to investigate how meshless methods work in the

context of geometric inverse problems, we have used MFS.

The MFS was introduced by Kupradze and Alexidze in the 1960’s (see [16]). It is an efficient meshless

numerical method for the computation of solutions of linear PDEs. The key idea is to use a basis formed by

fundamental solutions. Some advantages of this meshless method over classical domain discretization ap-

proach are the simplicity of implementation, the high computational speed and the exponential convergence

properties, see [14]. It will be used below in combination with the method of particular solutions (MPS),

see [13].

2.1. The two-dimensional case

Let us explain howMFS-MPSworks for the numerical solution of (2.1)–(2.2). In order to presentmore clearly

its application, wewill consider a (geometrically simple) situation inwhich the unknowndomain is a 2D ball.

Thus, let us assume that 𝑁 = 2, Ω = 𝐵(0; 𝑅) (the ball centered at the origin with radius 𝑅) and 𝐷 =

𝐵(𝑥0; 𝑟) for some (unknown) 𝑥0 and 𝑟. Let us introduce the family of admissible subdomains

𝑋𝑏 = {(𝑥0; 𝑟) ∈ R
3 ∶ 𝑟 > 0, 𝐵(𝑥0; 𝑟) ⊂ Ω}.

Let us fix a non-empty open subset 𝛾 ⊂ 𝜕Ω. Then, the inverse problem is as follows: find (𝑥0, 𝑟) ∈ 𝑋𝑏
such that the associated solution 𝑢 to (2.1) satisfies (2.2). Note that, independently of the choice of (𝑥0, 𝑟)

in 𝑋𝑏, for any ℎ ∈ 𝐿2(Ω) and any 𝛼̃ ∈ 𝐻1/2(𝛾), the solution to (2.1) belongs to 𝐻2(Ω ∖ 𝐵(𝑥0; 𝑟)) and (2.2)

makes sense.

The main steps of the MFS-MPS are the following:

Step 1 (MFS-MPS). Let us write the first equation from (2.1) in the form −Δ𝑢 = −𝑎𝑢 + ℎ. We look for

an approximation (also denoted 𝑢) of the form 𝑢 = 𝑢𝑃 + 𝑢𝐻, where 𝑢𝑃 is a particular solution to the non-

homogeneous (complete) PDE and 𝑢𝐻 is a solution to the Laplace equation. Specifically, we look for linear

combinations of radial basis functions in the case of 𝑢𝑃 and fundamental solutions in the case of 𝑢𝐻:

𝑢(𝑥) = 𝑢𝑃(𝑥) + 𝑢𝐻(𝑥) ∶=

𝑁𝑓

�

𝑗=1

𝛽𝑗𝐹(‖𝑥 − 𝜂𝑗‖) +

𝑁𝑏

�

𝑘=1

𝛼𝑘𝐺(‖𝑥 − 𝜉𝑘‖). (2.3)

Here, we have used the following notation: 𝑁𝑓 is the number of the field points 𝜂𝑗 (associated to the radial

functions) and𝑁𝑏 is number of the source points 𝜉𝑘 (associated to the fundamental solutions; see Figure 1).

It will, be assumed that 𝐹 is the integrated radial basis function, obtained by analytical integration from

the equation Δ𝐹 = 𝑓, where 𝑓 = 𝑓(𝑟) is the so called compactly supported radial basis function (CSRBF;

see [14]):

𝑓(𝑟) = �
�1 −

𝑟

𝜆
�
2

if 𝑟 ≤ 𝜆,

0 if 𝑟 > 𝜆

and 𝐹(𝑟) =

⎧
⎪

⎨
⎪
⎩

𝑟4

16𝜆2
−
2𝑟3

9𝜆
+
𝑟2

4
if 𝑟 ≤ 𝜆,

13𝜆2

144
+

𝜆2

12
log �

𝑟

𝜆
� if 𝑟 > 𝜆,
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 Boundary of D

 Boundary 
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Source points (Nb)

Fig. 1 Representation of a 2D domain displaying the field, source and boundary points used by the MPS-MFS.

where 𝜆 is a scaling factor. On the other hand, 𝐺 is the fundamental solution of the Laplace equation. Thus,

𝐺(‖𝑥 − 𝜉𝑘‖) = −
1

2𝜋
log �‖𝑥 − 𝜉𝑘‖�,

where the 𝜉𝑘 are the source points and ‖ ⋅ ‖ denotes the Euclidean norm.

Step2 (Reduction to anonlinear algebraic system). Considering an approximation of the solution to (2.1)

of the form (2.3) and imposing (2.2), we obtain the following equations:

• The PDE at the field points 𝜂𝑖: for 𝑖 = 1,… ,𝑁𝑓,

𝑁𝑓

�

𝑗=1

𝛽𝑗 � − 𝑓(‖𝜂𝑖 − 𝜂𝑗‖) + 𝑎𝐹(‖𝜂𝑖 − 𝜂𝑗‖)� +

𝑁𝑏

�

𝑘=1

𝛼𝑘 𝑎𝐺(‖𝜂𝑖 − 𝜉𝑘‖) = ℎ(𝜂𝑖). (2.4)

• The Dirichlet boundary condition at the boundary points 𝜁𝑘 ∈ 𝜕Ω: for𝑚 = 1,… ,𝑁𝑏,0 ,

𝑁𝑓

�

𝑗=1

𝛽𝑗 𝐹(‖𝜁𝑚 − 𝜂𝑗‖) +

𝑁𝑏

�

𝑘=1

𝛼𝑘 𝐺(‖𝜁𝑚 − 𝜉𝑘‖) = 𝜑(𝜁𝑚). (2.5)

(here,𝑁𝑏,0 is the number of boundary points on 𝜕Ω; see Figure 1).

• The Neumann boundary condition at the boundary points 𝜁𝑚 ∈ 𝛾: for𝑚 = 1,… ,𝑁𝑏,1,

𝑁𝑓

�

𝑗=1

𝛽𝑗
𝜕

𝜕𝑛
𝐹(‖𝜁𝑚 − 𝜂𝑗‖) +

𝑁𝑏

�

𝑘=1

𝛼𝑘
𝜕

𝜕𝑛
𝐺(‖𝜁𝑚 − 𝜉𝑘‖) = 𝛼̃(𝜁𝑚), (2.6)

where𝑁𝑏,1 ≤ 𝑁𝑏,0 is the number of boundary points on 𝛾.

• The Dirichlet boundary condition at the boundary points 𝑑𝑚 ∈ 𝜕𝐷, which are in principle unknown: for

𝑚 = 𝑁𝑏,0 + 1,… ,𝑁𝑏 ,
𝑁𝑓

�

𝑗=1

𝛽𝑗 𝐹(‖𝑑𝑚 − 𝜂𝑗‖) +

𝑁𝑏

�

𝑘=1

𝛼𝑘 𝐺(‖𝑑𝑚 − 𝜉𝑘‖) = 0. (2.7)

Recall that the points𝑑𝑚 are assumed to be located on the boundary of𝐷 = 𝐵(𝑥0, 𝑟) for someunknown

𝑥0 and 𝑟.
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Therefore, (2.1)–(2.2) can be rewritten as the following problem for a nonlinear system of equations:

�

Find (𝛽, 𝛼) ∈ R𝑁𝑓 ×R𝑁𝑏 and (𝑥0, 𝑟) ∈ 𝑋𝑏 such that

𝑀(𝑥0, 𝑟) �
𝛽

𝛼
� = 𝑍,

(2.8)

where𝑀(𝑥0, 𝑟) and 𝑍 are found from the left and the right hand sides in (2.4)–(2.7).

Step 3 (Least squares). Let us notice that (2.8) is a nonlinear system of 𝑁𝑓 + 𝑁𝑏 + 𝑁𝑏,1 equations with

𝑁𝑓 + 𝑁𝑏 + 3 unknowns. It possesses the following least squares formulation:

�
Find (𝛽, 𝛼, 𝑥0, 𝑟) ∈ 𝑋𝑑 such that

𝐽(𝛽, 𝛼, 𝑥0, 𝑟) ≤ 𝐽(𝛽′, 𝛼′, 𝑥′0, 𝑟
′) ∀ (𝛽′, 𝛼′, 𝑥′0, 𝑟

′) ∈ 𝑋𝑑 ,
(2.9)

where

𝑋𝑑 ∶= R
𝑁𝑓 ×R𝑁𝑏 × 𝑋𝑏

and the function 𝐽 ∶ 𝑋𝑑 ↦ R is defined by

𝐽(𝛽, 𝛼, 𝑥0, 𝑟) ∶=
1

2
�𝑀(𝑥0, 𝑟) �

𝛽

𝛼
� − 𝑍�

2

. (2.10)

2.2. The three-dimensional case

We assume that 𝑁 = 3, Ω = 𝐵(0; 𝑅) is the ball centered at (0, 0, 0) of radius 𝑅 and 𝐷 = 𝐵(𝑥0; 𝑟) is an inner

ball, centered at 𝑥0 with radius 𝑟 for some (unknown) 𝑥0 and 𝑟.

Our aim is, again, to find a numerical approximation of the solution of the form (2.3), built with the help

of integrated radial basis functions and fundamental solutions to the Laplace equation. Notice that since the

spatial dimension is 3, the functions 𝐹 and 𝐺 are different.

If we do as before, we will have to work with too many unknowns at each iteration of the optimization

algorithm. In order to avoid this difficulty, we will proceed as follows:

• We introduce a new cost functional 𝐼, only depending on 𝑥0 and 𝑟. More precisely, given 𝑥0, we first

compute the coefficients 𝛽𝑗 and 𝛼𝑘 that appear in (2.3) using (2.4), (2.5) and (2.7). Then, we compute

the normal derivative of the corresponding 𝑢 at the points 𝜁𝑚 and set

𝐼(𝑥0, 𝑟) ∶=
1

2

𝑁𝑏,1

�

𝑚=1

�
𝜕𝑢

𝜕𝑛
(𝜁𝑚) − 𝛼̃(𝜁𝑚)�

2

.

The field points 𝜂𝑖, source points 𝜉𝑘 and boundary points 𝜁𝑘 ∈ 𝜕Ω and 𝜁𝑚 ∈ 𝛾 are depicted in Figure 2.

Again, as in the 2D case, in order to get good convergence properties, the source points must be very

close to the boundary points.

Fig. 2 Representation of a 3D domain, displaying the field points, the source points and the boundary points, as well a

possible distribution of these points for MPS-MFS.

Anna Doubova

49



• We consider the following extremal problem:

�
Find (𝑥0, 𝑟) ∈ 𝑋𝑠 such that

𝐼(𝑥0, 𝑟) ≤ 𝐼(𝑥′0, 𝑟
′) ∀ (𝑥′0, 𝑟

′) ∈ 𝑋𝑠,
(2.11)

where 𝑋𝑠 ∶= { (𝑥0, 𝑟) ∈ R
4 ∶ 𝑟 > 0, 𝐵(𝑥0; 𝑟) ⊂ Ω }.

Note that the computation of 𝐼(𝑥0, 𝑟) is more involved, since it needs the “intermediate” resolution of a

systemof𝑁𝑓+𝑁𝑏 equationswith the samenumberof unknowns. However, in (2.11) thenumberof unknowns

is just 4.

Remark 2.1 (Some open questions) There are several open questions that arise in connection with this

method. It is worth highlighting the following.

1. How to explore these techniques in the case of othermore complex geometries, for example polyhedral

unknown𝐷 in 3D, the case of three ormore balls, …Notice that in [6] we have performed computations

in the case of polygon domain and two unknown balls and 3D

2. It would be very interesting to investigate the application of MFS-MPS to the case of the evolution

problems (wave equation, Lamé system, Slokes, Navier-Stokes, Boussinesq, …).

2.3. Numerical results

For simplicity, we will present simulations only for 2D case. Let us fix 𝑎 ≡ 0.2�𝑥2 + 𝑦2, ℎ(𝑥, 𝑦) ≡ 0.3𝑥 and

𝜑(𝑥, 𝑦) ≡ 10𝑥. The boundary observation 𝛼̃ has been computed from desired values of 𝑥0 and 𝑟. Accordingly,

our goal has been to recover these values using suitable optimization algorithms for (2.9)–(2.10).

In order to solve (2.9)–(2.10),wehaveperformedcomputationsusing thefmincon functionof theMATLAB©

Optimization Toolbox. Let us also recall that, in order to get convergence, we must take the source points 𝜉𝑘
very close to the boundary points 𝜁𝑘.

Test 1: We take 𝑅 = 10, x0 = (2, 4), rd = 1 (the desired center and radius), x0i =(0, 0), rini =
1.5 (the center and radius of the starting ball 𝐵 in the minimization algorithm). Using the MATLAB func-

tion fmincon with active-set as an optimization strategy, we find the following values (see Figure 3):

x0c = 2.000274, y0c = 4.000057, rc = 0.999658.

-10 -5 0 5 10
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  Inner (computed) boundaries

-10 -5 0 5 10

-10
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Initail configuration Computed boundary Desired boundary

Fig. 3 Test 1 – Iterates of the optimization algorithm (left). The initial, desired and computed configurations (right).

The number of iterates is 146 and the final value of the cost functional is< 10−9. The subset 𝛾 is the part of the outer

boundary marked in flashing red in dashed thick line.

Comparing with mesh depending method based on FEM, we need around 1000 iterates to get a cost <

10−7.
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3. Burgers equation and some related systems

This second part of this paper deals with a geometric inverse problem related to the identification of the size

of the spatial interval where a time-dependent governing nonlinear equationmust be satisfied. Wewill focus

on the viscous non-homogeneous Burgers equation satisfied for (𝑥, 𝑡) ∈ (0, ℓ) × (0, 𝑇). We will assume that

the equation is complemented with boundary and initial conditions corresponding to known data, respec-

tively for 𝑥 ∈ {0, ℓ} and 𝑡 = 0. Then, we will try to determine the width ℓ of the spatial interval from some

extra information, for instance given at 𝑥 = 0.

Themain goalswill be to analyze the uniqueness (establish or discard) and to compute approximations of

the solutions to the inverse problems. The details can be found in [2]. Related questions have been analyzed

recently for the linear heat and wave equations in [1].

We consider a non-homogeneous (or variable density) one-dimensional fluid, modeled as follows:

⎧
⎪

⎨
⎪
⎩

𝜌(𝑢𝑡 + 𝑢𝑢𝑥) − 𝑢𝑥𝑥 = 0, 0 < 𝑥 < ℓ, 𝑡 > 0,

𝜌𝑡 + 𝑢𝜌𝑥 = 0, 0 < 𝑥 < ℓ, 𝑡 > 0,

𝑢(0, 𝑡) = 𝑢(𝑡), 𝑢(ℓ, 𝑡) = 0, 𝑡 > 0,

𝜌(0, 𝑡) = 𝜌(𝑡), 𝑡 ∈ R+ ∩ {𝑡 ∶ 𝑢(𝑡) > 0},

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝜌(𝑥, 0) = 𝜌0(𝑥), 0 < 𝑥 < ℓ.

(3.1)

The unknown 𝑢 = 𝑢(𝑥, 𝑡) can be interpreted (for example) as the velocity of the particles of a homo-

geneous viscous fluid in a tube where the flow is allowed only lengthwise and 𝜌 = 𝜌(𝑥, 𝑡) is the density

transported with the fluid.

Of course, this can be viewed as a toy model for the variable density Navier-Stokes system. The corre-

sponding inverse problem is the following:

IP-2: Fix (𝑢0, 𝜌0)and (𝑢, 𝜌) in (3.1) in appropriate spaces andassume that𝛽 ∶= 𝑢𝑥|𝑥=0 and𝜂 ∶= 𝜌|𝑥=01{𝑡∶𝑢(𝑡)≤0}
are known. Then, find ℓ.

3.1. Uniqueness

Theorem 3.1 Assume that 0 < ℓ ≤ 𝐿, 𝑇 > 0 and (𝑢0, 𝜌0) and (𝑢, 𝜌) satisfy

�
𝑢, 𝜌 ∈ 𝐿∞(0, 𝑇), 𝑢 ≢ 0, 𝜌 ≥ 0,

𝑢0 ≡ 0, 𝜌0 ∈ 𝐿∞(0, 𝐿), 𝜌0 ≥ 𝑎0 > 0.

Let (𝑢ℓ, 𝜌ℓ) and (𝑢𝐿, 𝜌𝐿) be the solutions to (3.1) for 0 < 𝑡 < 𝑇 respectively corresponding to ℓ and 𝐿. Let us

assume that |𝑢ℓ𝑡 | + |𝑢ℓ𝑥| + |𝜌ℓ𝑥| ≤ 𝑀 and |𝑢𝐿𝑡 | + |𝑢𝐿𝑥| + |𝜌𝐿𝑥| ≤ 𝑀 respectively in (0, ℓ)× (0, 𝑇) and (0, 𝐿)× (0, 𝑇)

and 𝑢ℓ𝑥(0, ⋅) = 𝑢𝐿𝑥(0, ⋅) and 𝜌
ℓ(0, ⋅) = 𝜌𝐿(0, ⋅). Then, ℓ = 𝐿.

For the proof, wewill use a unique continuation property satisfied by the solutions to systems of the form

�
𝑎(𝑥, 𝑡)𝑣𝑡 − 𝑣𝑥𝑥 + 𝑏(𝑥, 𝑡)𝑣𝑥 + 𝑐(𝑥, 𝑡)𝑣 + 𝑑(𝑥, 𝑡)𝑝 = 0, (𝑥, 𝑡) ∈ 𝑄,

𝑝𝑡 +𝑚(𝑥, 𝑡)𝑝𝑥 + 𝑟(𝑥, 𝑡)𝑣 = 0, (𝑥, 𝑡) ∈ 𝑄,
(3.2)

where we assume that 𝑄 ∶= (0, ℓ) × (0, 𝑇),

𝑏, 𝑐, 𝑑,𝑚, 𝑟 ∈ 𝐶0(𝑄), 𝑎 ∈ 𝐶1(𝑄) and 𝑎 ≥ 𝑎0 > 0 in 𝑄. (3.3)

More precisely, we have the following:

Proposition 3.2 Assume that (3.3) is satisfied and (𝑣, 𝑝) solves (3.2), with 𝑣, 𝑣𝑥, 𝑣𝑥𝑥, 𝑝, 𝑝𝑥 ∈ 𝐶0(𝑄). Also,

assume that

�
𝑣(0, 𝑡) = 0, 𝑣𝑥(0, 𝑡) = 0, 𝑝(0, 𝑡) = 0, 0 < 𝑡 < 𝑇,

𝑣(𝑥, 0) = 0, 𝑝(𝑥, 0) = 0, 0 < 𝑥 < ℓ.
(3.4)

Then, one has 𝑣 ≡ 0 and 𝑝 ≡ 0.

The proof of Proposition 3.2 can be obtained by combining two Carleman inequalities (see [2]) that can

be deduced for the solutions to the first and the second equation in (3.2). The main steps are the following:

• To choose a suitable weight function (the same in both inequalities).
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• To argue as in [19] and [12] and deduce appropriate estimates for 𝑣 and 𝑝.

• Finally, to add and eliminate all undesirable terms on the right hand sides.

Proof of Theorem3.1: Note that 𝑢ℓ ∈ 𝐿∞((0, ℓ)×(0, 𝑇)) and 𝑢𝐿 ∈ 𝐿∞((0, 𝐿)×(0, 𝑇)). If we set 𝑣 ∶= 𝑢ℓ−𝑢𝐿

and 𝑝 ∶= 𝜌ℓ − 𝜌𝐿, one has

⎧
⎪

⎨
⎪
⎩

𝜌ℓ𝑣𝑡 − 𝑣𝑥𝑥 + 𝜌ℓ𝑣𝑢ℓ𝑥 + 𝜌ℓ𝑢𝐿𝑣𝑥 + (𝑢𝐿𝑡 + 𝑢𝐿𝑢𝐿𝑥)𝑝 = 0, 0 < 𝑥 < ℓ, 𝑡 > 0,

𝑝𝑡 + 𝑢𝐿𝑝𝑥 + 𝑣𝜌ℓ𝑥 = 0, 0 < 𝑥 < ℓ, 𝑡 > 0,

𝑣(0, 𝑡) = 0, 𝑣𝑥(0, 𝑡) = 0, 𝑝(0, 𝑡) = 0, 𝑡 > 0,

𝑣(𝑥, 0) = 0, 𝑝(𝑥, 0) = 0, 0 < 𝑥 < ℓ.

Consequently, 𝑣 and 𝑝 satisfies (3.2) with 𝑎 = 𝜌ℓ, 𝑏 = 𝜌ℓ𝑢𝐿, 𝑐 = 𝜌ℓ𝑢ℓ𝑥, 𝑑 = 𝑢𝐿𝑡 +𝑢𝐿𝑢𝐿𝑥,𝑚 = 𝑢𝐿 and 𝑟 = 𝜌ℓ𝑥
and (3.4).

In view of Proposition 3.2, one has 𝑣 = 0 and 𝑝 = 0 in (0, ℓ) × (0, 𝑇). This yields 𝑢𝐿(𝑥, 𝑡) = 0 in (ℓ, 𝐿) ×

(0, 𝑇). Since the equations satisfied by 𝑢𝐿 and 𝜌𝐿 also possess the unique continuation property, we find that

𝑢𝐿 ≡ 0, which is impossible, since 𝑢 ≢ 0. �

Remark 3.3 (Some open questions) It is worth mentioning the following open questions related to the

subject:

1. It would be interesting to find nonzero initial data (𝑢0, 𝜌0) such that uniqueness fails, in a similar way

as in the case of the following viscous Burgers equation a contra-example with 𝑢0 ≠ 0 confirming the

non-uniqueness can be found (see [2]):

�

𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0, 0 < 𝑥 < ℓ, 0 < 𝑡 < 𝑇,

𝑢(0, 𝑡) = 𝜂(𝑡), 𝑢(ℓ, 𝑡) = 0, 0 < 𝑡 < 𝑇,

𝑢(𝑥, 0) = 𝑢0(𝑥), 0 < 𝑥 < ℓ.

(3.5)

2. On the other hand, it would also be interesting to prove a result similar to one we have for (3.5) as-

serting that, if the boundary data 𝜂 are large enough (with respect to the other data in the system),

uniqueness is satisfied. However, to our knowledge these questions for (3.1) are open.

3. In [3] we have considered similar problem for a fluids-solid interaction system. However, for other

related systems, as for example viscoelastic fluids, free-boundary obstacle problem, …these questions

remain open.

3.2. Numerical results for Burgers equation

In this section, we will present a numerical experiments for the previous inverse problem. We will carry out

the reconstruction of the unknown length through the resolution of some appropriate extremal problems.

The results of the numerical tests that follow will serve to illustrate the non-uniqueness result for the

Burgers equation (3.5) that we have commented in the previous section.

We deal with the following

Reformulation of IP-2: Given 𝑇 > 0, 𝜂 = 𝜂(𝑡), 𝑢0 = 𝑢0(𝑥) and 𝛽 = 𝛽(𝑡), find ℓ ∈ (ℓ0, ℓ1) such that

𝐽1(ℓ) ≤ 𝐽1(ℓ
′) ∀ ℓ′ ∈ (ℓ0, ℓ1), (3.6)

where 𝐽 is given by

𝐽1(ℓ) ∶=
1

2
�
𝑇

0

|𝛽(𝑡) − 𝑢ℓ𝑥(0, 𝑡)|
2 𝑑𝑡. (3.7)

Here, 𝑢ℓ is the state, i.e. the solution to (3.5) corresponding to the length ℓ.

Test 2: Burgers equation with 𝑢0 ≠ 0 and “small” 𝜂.

Here, we deal with a non-uniqueness situation. Our aim is to investigate the behavior of the algorithm in

a situation of this kind.

We take 𝑇 = 6, 𝜂 = 0 in (0, 𝑇) and 𝑢0(𝑥) ≡ 𝜋 sin(𝜋𝑥/2)/(2 + cos(𝜋𝑥/2)). Note that we have 𝑢0(𝑥) ≡

sin(3𝜋𝑥/𝐿1𝑑)/(2+ cos(3𝜋𝑥/𝐿1𝑑)) ≡ sin(2𝜋𝑥/𝐿2𝑑)/(2+ cos(2𝜋𝑥/𝐿2𝑑)), with 𝐿1𝑑 = 6 and 𝐿2𝑑 = 4; consequently,

this initial data can be used as in [2] to prove non-uniqueness.

We will consider the following experiments:
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• First, we start from 𝐿𝑖 = 5.6, andwe obtain the computed value 𝐿1𝑐 = 5.998083259with the associated

cost is 𝐽(𝐿1𝑐) < 10−8.

• Then, we start from 𝐿𝑖 = 4.6, andwe obtain the computed value 𝐿2𝑐 = 4.000601673with the associated

cost 𝐽(𝐿2𝑐) < 10−9.

The corresponding computed boundary observations are displayed in Figures 4 and 5, respectively. Thus,

we confirm that these identical observations correspond twodifferent solutions displayed in Figures 6 and 7.
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Computed solution: boundary observation for L = 5.998083259

Fig. 4 Burgers equation, 𝜂 = 0, fixed 𝑢0(𝑥). The

computed boundary observation 𝑢𝑥(0, ⋅) for 𝐿
1
𝑐 =

5.996562049.

0 1 2 3 4 5 6

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

O
b
s
e
rv

e
d
 

Computed solution: boundary observation for L = 4.000601673

Fig. 5 Burgers equation, 𝜂 = 0, fixed 𝑢0(𝑥). The

computed boundary observation 𝑢𝑥(0, ⋅) for 𝐿
2
𝑐 =

4.007345905

Fig. 6 Burgers equation, 𝜂 = 0, fixed 𝑢0(𝑥).

The computed solution corresponding to 𝐿1𝑐 =

5.998083259.

Fig. 7 Burgers equation, 𝜂 = 0, fixed 𝑢0(𝑥).

The computed solution corresponding to 𝐿2𝑐 =

4.000601673.
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Two results on the control of fluids
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Abstract

This talk is devoted to recall and comment two results recently obtained concerning the control of vis-

cous fluids. In general terms, we fix an initial state and we try to find internal or boundary data such that

an associated solution vanishes at a prescribed time. Among others, we will consider fluids modeled by

coupled systems of the Boussinesq kind. It will be seen that, under some circumstances, the systems are

controllable or “quasi-controllable” in an appropriate sense. We will also take a look at some minimal time

control problems and will present several theoeretical and numerical results. Also, several open problems

will be mentioned.

1. Introduction

Control theory is a scientific discipline that, roughly speaking, try to find out “how can we act on systems”. It

is multidisciplinary and strongly motivated by real-world applications and, of course, involves mathematics,

physics, engineering and other disciplines.

In fact, control problems and their analysis have been considered since ancient times. Among other ex-

amples, we can mention

• The irrigation systems (Mesopotamia, since 6,000 B.C.), where the aim was to make reach and stay

water regularly in the region.

• The Roman aqueducts (from II Century B.C. to IV Century A.C.), with a similar goal.

• The steam engine (about 1700), an invention that changed the world: the first device able to convert

heat into motion in a controlled way.

At present, control theory is applied to problems coming frommany different fields:

• From structural mechanics, where control techniques serve to stabilize dangerous and/or undesirable

vibrations.

• From the autonomous car driving sector, where very interesting multi-objective problems appear nat-

urally.

• From epidemics and pandemics studies, concerning (for instance) the optimization of vaccination and

quarantine strategies.

• From population dynamics, where the objective is to design optimal feeding, tranporting or spreading

processes.

• Frombiomedical sciences, where control is usually oriented to therapy. This applies to cancer, diabetes,

alzheimer, etc.

In fluid mechanics, control problems are also very relevant. They are found when one tries to reduce

as much as possible turbulence effects, to ensure fluid transportation or design optimal parachutes, wind

tunnels and airfcrafts.

In this work, wewill bemotivated by the control of the Navier-Stokes and the Boussinesq systems. Recall

that these PDEs model the behavior of incompressible homogeneous Newtonian fluid respectively insensi-

tive and subject to heat effects.

In the boundary controlled case, they read as follows:

�

u𝑡 + (u ⋅ ∇)u− 𝜈Δu+ ∇𝑝 = 0, ∇ ⋅ u = 0, (x, 𝑡) ∈ Ω × (0, 𝑇),

u = f1𝛾, (x, 𝑡) ∈ 𝜕Ω × (0, 𝑇),

+ …
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and

⎧

⎨
⎩

u𝑡 + (u ⋅ ∇)u− 𝜈Δu+ ∇𝑝 = 𝜃k, ∇ ⋅ u = 0, (x, 𝑡) ∈ Ω × (0, 𝑇),

𝜃𝑡 + u ⋅ ∇𝜃 − 𝜅Δ𝜃 = 0, (x, 𝑡) ∈ Ω × (0, 𝑇),

u = f1𝛾, 𝜃 = 𝛽1𝛾, (x, 𝑡) ∈ 𝜕Ω × (0, 𝑇),

+ …

whereΩ ⊂ R𝑁 is a bounded open connected domain with Lipschitz-continuous bounndary, 𝑇 > 0, u, 𝑝 and 𝜃

respectively denote the velocity field, pressure and temperature of the fluid, f and 𝛽 are the controls, 𝛾 is

a (small) part of 𝜕Ω, 𝜈 and 𝜅 are positive constants, k is a constant vector and the dots contain conditions

at 𝑡 = 0.

As shown below, the choice of f and 𝛽 can be motivated by many different reasons.

2. The null controllability problem for the Boussinesq PDEs

Wewill first deal with the nonlinear system

�

Boussinesq for (u, 𝑝, 𝜃), (x, 𝑡) ∈ Ω × (0, 𝑇),

u = f1𝛾, 𝜃 = 𝛽1𝛾, (x, 𝑡) ∈ 𝜕Ω × (0, 𝑇),

u(⋅ , 0) = u0, 𝜃(⋅ , 0) = 𝜃0.

Let n stand for the unit outwards normal vector on 𝜕Ω and let us intoduce the Hilbert spaces

𝐻 ∶= {v ∈ 𝐿2(Ω)𝑁 ∶ ∇ ⋅ v = 0, v ⋅ n|𝜕Ω = 0}

and

𝑉 ∶= {v ∈ 𝐻1
0 (Ω)

𝑁 ∶ ∇ ⋅ v = 0, v|𝜕Ω = 0},

respectively endowed with the norms of 𝐿2(Ω)𝑁 and 𝐻1
0 (Ω)

𝑁.

The problem considered in this section is the following:

For any given u0 ∈ 𝐻 and 𝜃0 ∈ 𝐿2(Ω), find f and ℎ in appropriate spaces and an associated solution

such that

u(⋅ , 𝑇) = 0 and 𝜃(⋅ , 𝑇) = 0. (2.1)

That this problemcanbe solvedwas conjecturedby J.-L. Lions for theNavier-StokesPDEs in1990, see [15].

Since then, many partial (positive) results have been obtained, see among others [1–4,6,7,9,11–14].

However, the conjecture is open. Even more, whether or not the following approximative version is solv-

able is also unknown:

For any given u0 ∈ 𝐻 and 𝜃0 ∈ 𝐿2(Ω) and any 𝜀 > 0, find f𝜀 and ℎ𝜀 in appropriate spaces and an

associated solution such that

‖(u, 𝜃)(⋅ , 𝑇)‖ ≤ 𝜀

(here and henceforth, ‖ ⋅ ‖ stands for the usual 𝐿2 norm in Ω).

We will assume that 𝑁 = 3, Ω is a cube and 𝛾 is the complement of a face and we will recall a result that

proves the conjecture in a different “approximate” sense. More precisely, the following result holds:

Theorem 2.1 Let (u0, 𝜃0) ∈ 𝐻 × 𝐿2(Ω) be given. There exist a family of “ghost” right hand sides {(F𝜖, 𝐺𝜖)}

with (F𝜀, 𝐺𝜀) → (0, 0) in an appropriate (large) space as 𝜀 → 0 such that, for any 𝜀 there exist controls (f𝜀, ℎ𝜀)

and associated solutions to the nonhomogeneous systems

⎧

⎨
⎩

u𝑡 − 𝜈Δu+ (u ⋅ ∇)u+ ∇𝑝 = 𝜃k+ F𝜖, ∇ ⋅ u = 0, (x, 𝑡) ∈ Ω × (0, 𝑇),

𝜃𝑡 − 𝜅Δ𝜃 + u ⋅ ∇𝜃 = 𝐺𝜖, (x, 𝑡) ∈ Ω × (0, 𝑇),

u = f𝜀1𝛾, 𝜃 = 𝛽𝜀1𝛾, (x, 𝑡) ∈ 𝜕Ω × (0, 𝑇),

+ …

such that (2.1) holds.

Sketch of the proof:
The complete proof is given in [13] (resp. [7]) in the case of the Navier-Stokes (resp. Boussinesq) system.

For example, let us assume that Ω = (−2, 2)3 and 𝛾 is the complement to the face {𝑥1 = −2} (see Fig. 1)

and let 𝜀 > 0 be given.

The proof consists of four steps:
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Fig. 1 The control acts on 𝛾, the complement of the left vertical face.

Step 1: Take 𝑇1 close to 𝑇 and zero controls in [0, 𝑇1] and let the system evolve from 𝑡 = 0 to 𝑡 = 𝑇1.

We can assume that (u1, 𝜃1) ∶= (u, 𝜃)(⋅ , 𝑇1) ∈ (𝑉 ∩𝐻2(Ω)3) ×𝐻2(Ω). Thus, in this step, the controls and

the ghost vanish.

Step 2: Take𝑇2 in (𝑇1, 𝑇) and a ghost (F𝜖, 𝐺𝜖) in [𝑇1, 𝑇2] such that (u2, 𝜃2) ∶= (u, 𝜃)(⋅ , 𝑇2) is regular enough

and compactly supported in Ω.

In this step, the control is zero and it can be assumed that, for some norm ‖(F𝜖, 𝐺𝜖)‖∗ is 𝑂(𝜀) for some

appropriate norm ‖ ⋅ ‖∗.

Step 3: Now, we introduce 𝑇3 in (𝑇2, 𝑇) and a new ghost (F𝜖, 𝐺𝜖) in [𝑇2, 𝑇3] such that, at time 𝑇3, the

state (U, Θ) ∶= (u, 𝜃)(⋅ , 𝑇3) is of the form ((𝜙, 0, 𝜓), 𝜁)(⋅ , 𝑇3) for functions 𝜙, 𝜓 and 𝜁 that only depend on 𝑥2
and 𝑡.

This is obviously themain step and, again, we can assume that leads to a small ghost, that is, ‖(F𝜖, 𝐺𝜖)‖∗ =

𝑂(𝜀).

Step 4: Finally, in [𝑇3, 𝑇]we control a 1D heat PDE coupled to a 1D, 2 × 2 parabolic system.

More precisely, we consider the system

⎧

⎨
⎩

𝜙𝑡 − 𝜈𝜙𝑥2,𝑥2
= 0, (𝑥2, 𝑡) ∈ (−2, 2) × (0, 𝑇),

𝜓𝑡 − 𝜈𝜓𝑥2,𝑥2
= −𝜁, 𝜁𝑡 − 𝜅𝜁𝑥2,𝑥2 = 0, (𝑥2, 𝑡) ∈ (−2, 2) × (0, 𝑇),

𝜙|𝑥2=−2 = 𝜓|𝑥2=−2 = 𝜁|𝑥2=−2 = 0, 𝜙|𝑥2=2 = 𝑘(𝑡), 𝜓|𝑥2=2 = ℓ(𝑡), 𝜁|𝑥2=2 = 𝑞(𝑡), 𝑡 ∈ (0, 𝑇),

+ …

where we choose the boundary controls 𝑘, ℓ and 𝑞 such that ((𝜙, 0, 𝜓), 𝜁)(⋅ , 𝑇) = (0, 0).

This can be done in view of the results in [8]. We see that, in this last step, the ghost is zero.

It is clear that, after this construction, the proof is done; the previous argument is illustrated in Fig. 2. �

Some remarks and related open questions are in order:

• The argument in the proof is also applicable to a domain with a flat piece of boundary, see for in-

stance Fig. 3. It would be interesting to deduce an extension to other boundaries, maybe taking into

account an appropriate variable change.

• It is possible to improve the result in several directions. Thus, only two scalar controls are needed

in Step 4 and this means that Theorem 2.1 remains true with two components of f𝜀 equal to zero; also,

the control region canbe composedof only three faces; on the other hand, it is found in [5] that a similar

result can be deduced in dimension two in a rectangle with ghosts (F𝜖, 𝐺𝜖) that converge much better

to zero, etc.
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Fig. 2Main idea: drive (u, 𝜃) at 𝑡 = 𝑇3 exactly to (U, Θ).

• It is unknownwhether the same result can be proved for the so called “full” Boussinesq system, where

the heat PDE is

𝜃𝑡 + u ⋅ ∇𝜃 − 𝜅Δ𝜃 = 𝜈𝐷u ∶ ∇u.

• If we view this result as a preliminary step in the proof of null controllability, it becomes clear that

what remains to do is to get an estimate of (h𝜀, 𝛽𝜀) somewhere independent of 𝜀. But this is at present

unknown.

• On the other hand, it would be interesting to figure out whether this result implies approximate con-

trollability in the sense indicated above. Again, this is an open question.

Fig. 3 The control acts on 𝛾, the complement of the flat boundary.

3. A minimal time control problem

In this section, wewill be concernedwith a control problemwhere the goal is to find theminimal timeneeded

to drive the system near to a desired state.
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For simplicity, wewill consider the Navier-Stokes PDEswith controls in the right hand side. Thus, letΩ ⊂

R𝑁 be a bounded connected open set with (for instance) Lipschitz-continuous boundary, let 𝜔 ⊂⊂ Ω be a

(small) open set and consider the controlled system

�

u𝑡 + (u ⋅ ∇)u− 𝜈Δu+ ∇𝑝 = f1𝜔, ∇ ⋅ u = 0, (x, 𝑡) ∈ Ω × (0, 𝑇),

u = 0, (x, 𝑡) ∈ 𝜕Ω × (0, 𝑇),

u(⋅ , 0) = u0.

(3.1)

The problem is the following:

Given u0,u𝑇 ∈ 𝐻 and 𝛿 > 0, find the minimal time 𝑇 > 0 satisfying

‖u(⋅ , 𝑇) − u𝑇‖ ≤ 𝛿, (3.2)

where u is, together with some 𝑝, a solution to (3.1) for some f.

For general u0 and u𝑇 in 𝐻, the existence of times 𝑇 such that (3.2) holds is unknown. But, even if they

exist, it is not clear at all that a minimal time can be found.

These considerations justify the following approximated (or penalized) version of the problem:

�
MinimizeΦ(𝑇, f) ∶=

𝑇2

2
+
𝑏

2
�
𝜔×(0,+∞)

|f|2 𝑑𝑥𝑑𝑡

Subject to: (𝑇, f) ∈ ℋ𝑎𝑑,

(3.3)

where 𝑏 > 0 and

ℋ𝑎𝑑 ∶= {(𝑇, f) ∶ 𝑇 ≥ 0, f ∈ 𝐿2(𝜔 × (0,+∞))𝑁, ‖u(⋅ , 𝑇) − u𝑇‖ = 𝛿}.

Thus, it can be a good strategy to solve (3.3) for any 𝑏 > 0, then take 𝑏 → 0+ and see what happens.

Note that, in several particular situations, the assumptionℋ𝑎𝑑 ≠ ∅ canbeasserted; for instance, if‖u𝑇‖ <

𝛿 this is the case.

In a work in collaboration with I. Marı́n-Gayte (see [10]), a set of results have been obtained for (3.3):

• First, it is proved that, ifℋ𝑎𝑑 ≠ ∅, there exist optimal couples (𝑇, f).

Fig. 4 A numerical test. The domain, the control region and the mesh. Number of points: 1287.
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• Then, it is found that, if (𝑇, f) is optimal and an associated u is regular enough, a suitable optimality

system is satisfied. More precisely, the following coupled system must hold for 𝑇, f, u, 𝑝, amultiplier 𝜆

and the adjoint variables z and 𝑞:

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

Classical OS for given 𝜆 and 𝑇:

⎡
⎢
⎢
⎢
⎣

Navier-Stokes for (u, 𝑝) and f

Ajoint system for (z, 𝑞) and u

…

Pontryagin for f and z: f = −
1

𝜆𝑏
z�
𝜔×(0,𝑇)

Additional conditions for 𝜆 and 𝑇:

�
‖u(⋅ , 𝑇) − u𝑇‖ = 𝛿

𝑇 = −𝜆(u𝑡(⋅ , 𝑇),u(⋅ , 𝑇) − u𝑇)

Fig. 5 A numerical test. The target 𝜃𝑇.

For the proof, the Dubovitsky-Milyutin principle can be used. The argument reads as follows:

– First, we note that, if (𝑇, f) is optimal, there cannot exist descent directions forΦ at the same time

admissible for the imposed constraints. Consequently, the intersection of the associated cones of

directions must be empty.

– By duality, we find that a nontrivial linear combination of dual directions must vanish. After a re-

formulation and a detailed analysis, we deduce that there exist 𝜆 and (z, 𝑞) satisfying the previous

optimality system.

• Finally, under the assumptionℋ𝑎𝑑 ≠ ∅, efficient numerical methods are exhibit for the computation

of (an approximation to) an optimal (𝑇, f). Among others, the following strategy is proposed:

1. In a first (preliminar) step, for a lot of (𝜆, 𝑇), compute the solution to

OC problem

⎧
⎪

⎨
⎪
⎩

Navier-Stokes for (u, 𝑝) and f

Ajoint system for (z, 𝑞) and u

+ …

Pontryagin for f and z: f = −
1

𝜆𝑏
z�
𝜔×(0,𝑇)

2. Then, solve the 2 × 2 system

�
‖u(⋅ , 𝑇) − u𝑇‖ = 𝛿

𝑇 = −𝜆(u𝑡(⋅ , 𝑇),u(⋅ , 𝑇) − u𝑇)

This gives a (candidate to) solution 𝜆𝑏 and 𝑇𝑏.
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Fig. 6 A numerical test. Solving the equation 𝑇 = −𝜆(𝜃𝑡(⋅ , 𝑇), 𝜃(⋅ , 𝑇) − 𝜃𝑇). Computed values: 𝑇 = 13.8741, 𝜇 =

199.374, 𝜆 = 2.5142 × 105.

In order to illustrate themethod, let us give the results of an experiment for a simpler model. Specifically,

we consider the problem

�
Minimize Ξ(𝑇, 𝑓) ∶=

𝑇2

2
+
𝑏

2
�
𝜔×(0,+∞)

|𝑓|2 𝑑𝑥𝑑𝑡,

Subject to: (𝑇, 𝑓) ∈ 𝒦𝑎𝑑

(3.4)

where

𝒦𝑎𝑑 ∶= {(𝑇, 𝑓) ∶ 𝑇 ≥ 0, 𝑓 ∈ 𝐿2(𝜔 × (0,+∞)), ‖𝜃(⋅ , 𝑇) − 𝜃𝑇‖ = 𝛿}

and, for each 𝑓 ∈ 𝐿2(𝜔 × (0,+∞)), we denote by 𝜃 the associated solution to

�

𝜃𝑡 − Δ𝜃 = 𝑓1𝜔, (x, 𝑡) ∈ Ω × (0, 𝑇),

𝜃 = 0, (x, 𝑡) ∈ 𝜕Ω × (0, 𝑇),

𝜃|𝑡=0 = 0.

(3.5)

The domain, the control region and the mesh are depicted in Fig. 4. For the numerical solution of the

state systems (3.5) we have used standard implcit Euler finite different approximations on time andℙ1 finite

element techniques in space.

We have taken

𝑏 = 100, 𝛿 = 0.05 and 𝜃𝑇(x) = 𝑅2 − |x|2

(see Fig. 5).

The computation of 𝑇, 𝜇 and 𝜆 = 1/(𝑏(2𝜇 −1)) is explained in Fig. 6 and the computed final state 𝜃(⋅ , 𝑇)

is given in Fig. 7.

We will end this section with several comments and additional questions:

• First, note that we can formulate and solve similar problems for the Boussinesq system, the variable

density Navier-Stokes PDEs, boundary controlled models, etc.

• Obviously, the most interesting question is what happens to the solution to (3.3) as 𝑏 → 0+? More

precisely,when canweensureuniformestimates of the solutions (𝑇, f)under the assumptionℋ𝑎𝑑 ≠ ∅?

• Finally, observe that an unexplored variant of the considered control problem consists of searching for

the minimal time to escape from u0.
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Fig. 7 A numerical test. The computed 𝜃(⋅ , 𝑇)with ‖𝜃(⋅ , 𝑇) − 𝜃𝑇‖ = 𝛿.
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[11] A. V. Fursikov and O. Yu. Èmanuilov. Exact controllability of the Navier-Stokes and Boussinesq equations. Uspekhi Mat. Nauk,

54(3(327)):93–146, 1999. doi:10.1070/rm1999v054n03ABEH000153.

[12] S. Guerrero. Local exact controllability to the trajectories of the Boussinesq system. Ann. Inst. H. Poincaré C Anal. Non Linéaire,

23(1):29–61, 2006. doi:10.1016/j.anihpc.2005.01.002.

[13] Sergio Guerrero, O. Yu. Imanuvilov, and J.-P. Puel. A result concerning the global approximate controllability of the Navier-Stokes

system in dimension 3. J. Math. Pures Appl. (9), 98(6):689–709, 2012. doi:10.1016/j.matpur.2012.05.008.

[14] Oleg Yu. Imanuvilov. Remarks on exact controllability for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var., 6:39–72,

2001. doi:10.1051/cocv:2001103.
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Abstract

The main objective of this presentation is to explore mathematical programs that incorporate data un-

certainty in the vanishing constraints (UMPVC) and to solve them by using a robust optimization frame-

work to deal with the worst-case scenario. To begin with, we derive robust Fritz-John conditions for the

UMPVCs and introduce extended no nonzero abnormal multiplier constraint qualification to obtain robust

Karush-Kuhn-Tucker conditions. We also identify the robust strong stationary points of the UMPVC and

attain sufficient optimality conditions under generalized convexity assumptions. We also identify robust

weak stationary points of the UMPVC using a tightened nonlinear programming approach to seek neces-

sary and sufficient robust optimality conditions. The robust version of several constraint qualifications

(CQ), like Abadie CQ, Mangasarian-Fromovitz CQ, and linearly independent CQ, are introduced to handle

the uncertainties associated with the special structure of the vanishing constraints. Several algorithms are

given to apply the results and various examples are presented to illustrate the algorithms.

1. Introduction

A class of nonlinear optimization problems known as mathematical programs with vanishing constraints

(MPVC), was initially introduced in [1]. MPVCs are not only rooted in modeling optimal topology design for

mechanical structures but also applicable in various technical domains such as mixed-integer nonlinear op-

timal control problems [12], economic dispatch problems [11], and robot motion planning [13]. However,

MPVCs present conceptual and numerical challenges, as standard optimization techniques often struggle

due to the combinatorial nature of the vanishing constraints. The difficulties arise from the frequent inabil-

ity to satisfy standard constraint qualifications, including the Mangasarian-Fromovitz constraint qualifica-

tion (MFCQ) and the linearly independent constraint qualification (LICQ), at interesting feasible points [8].

Researchers have explored MPVC-tailored constraint qualifications to derive KKT necessary optimality cri-

teria [5, 6]. [2] approached the problem using topological methods in critical point theory, providing in-

sights into stationary points of the MPVCs. The exact penalty theorem, first-order stationary conditions,

and second-order stationary conditions have been addressed in [7] and [4]. Results about both weak and

strong duality for MPVCs can be found in [9,19], while [10] discusses Newton-type methods and optimality

conditions.

Recently, within the scope of robust optimization, studies have examined MPECs in the presence of un-

certainty in the data within the feasible region [15]. Nevertheless, as far as we are aware, no results have

yet been found that discuss the optimality conditions for the uncertain MPVC optimization problems, where

the vanishing constraint function involves uncertain parameters. Motivated by the aforementioned findings,

we focus on examining the KKT optimality conditions for strong andweak stationary points of the uncertain

MPVC. Since handling the data uncertainty of the vanishing constraint functions poses trouble, analyzing

such an uncertain optimization problem is frequently difficult. To tackle the proposed uncertain optimiza-

tion problem, we deploy the robust deterministic methodology to investigate robust optimality conditions.

2. Some details

Letℝ𝑛 andℝ𝑛
+ be the Euclidean space of dimension 𝑛 and the nonnegative orthant of ℝ𝑛, respectively. Con-

sider the following MPVC:

�

min 𝔣(𝑥)

subject to 𝑥 ∈ ℱ ∶= {𝑥 ∈ ℝ𝑛 ∣ ℌ𝑖(𝑥) ≥ 0, ∀𝑖 ∈ 𝒫 ∶= {1, 2, … , 𝑝},

𝔊𝑖(𝑥)ℌ𝑖(𝑥) ≤ 0, ∀𝑖 ∈ 𝒫},

(MPVC)

where 𝔣, ℌ𝑖, 𝔊𝑖 ∶ ℝ
𝑛 → ℝ are continuously differentiable functions. A point 𝑥̃ within the feasible set ℱ is a

global minimizer of the MPVC iff

𝔣(𝑥) ≥ 𝔣(𝑥̃), ∀𝑥 ∈ ℱ.
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Any point 𝑥̃ ∈ ℱ is a local minimizer of the MPVC iff there exists 𝜖 > 0 such that

𝔣(𝑥) ≥ 𝔣(𝑥̃), ∀𝑥 ∈ ℬ(𝑥̃, 𝜖) ∩ ℱ.

where ℬ(𝑥̃, 𝜖) ∶= {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥 − 𝑥̃‖ ≤ 𝜖}.

Some constraint qualifications that could be satisfied at an optimal point are given as follows:

Definition 2.1 [1] We say that

• the Abadie constraint qualification (ACQ) is satisfied at 𝑥̃ ∈ ℱ iff 𝒯(𝑥̃) = ℒ(𝑥̃),where

𝒯(𝑥̃) ∶= �𝑑 ∈ ℝ𝑛�∃{𝑥𝑛} ⊆ ℱ, ∃{𝑡𝑛} ↓ 0 ∶ 𝑥𝑛 → 𝑥̃ and
𝑥𝑛 − 𝑥̃

𝑡𝑛
→ 𝑑�

is the standard tangent cone at any point 𝑥̃ ∈ ℱ and

ℒ(𝑥̃) ∶= {𝑑 ∈ ℝ𝑛 ∶ ∇ℌ(𝑥̃)𝑇𝑑 = 0, ∀𝑖 ∈ ℐ0+(𝑥̃),

∇ℌ(𝑥̃)𝑇𝑑 ≥ 0, ∀𝑖 ∈ ℐ00(𝑥̃) ∪ ℐ0−(𝑥̃),

∇𝔊𝑖(𝑥̃)
𝑇𝑑 ≤ 0, ∀𝑖 ∈ ℐ+0(𝑥̃)},

is the linearized cone of the MPVC at point 𝑥̃ ∈ ℱwith the indices

ℐ0(𝑥̃) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) = 0}, ℐ+(𝑥̃) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) > 0},

ℐ00(𝑥̃) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) = 0,𝔊𝑖(𝑥̃) = 0}, ℐ0+(𝑥̃) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) = 0,𝔊𝑖(𝑥̃) > 0},

ℐ0−(𝑥̃) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) = 0,𝔊𝑖(𝑥̃) < 0}, ℐ+0(𝑥̃) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) > 0,𝔊𝑖(𝑥̃) = 0},

ℐ+−(𝑥̃) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) > 0,𝔊𝑖(𝑥̃) < 0};

• themodified Abadie constraint qualification (VC-ACQ) holds at 𝑥̃ ∈ ℱ iff

ℒ𝑉𝐶(𝑥̃) ⊆ 𝒯(𝑥̃),

where
ℒ𝑉𝐶(𝑥̃) ∶= {𝑑 ∈ ℝ𝑛 ∶ ∇ℌ(𝑥̃)𝑇𝑑 = 0, ∀𝑖 ∈ ℐ0+(𝑥̃),

∇ℌ(𝑥̃)𝑇𝑑 ≥ 0, ∀𝑖 ∈ ℐ00(𝑥̃) ∪ ℐ0−(𝑥̃),

∇𝔊𝑖(𝑥̃)
𝑇𝑑 ≤ 0, ∀𝑖 ∈ ℐ00(𝑥̃) ∪ ℐ+0(𝑥̃)}.

Theorem 2.2 [1, Theorem 1] If 𝑥̃ ∈ ℱ is a local minimum of the MPVC such that

• the ACQ is satisfied at 𝑥̃, then there exist ̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫 such that

∇𝔣(𝑥̃) −

𝑝

�

𝑖=1

̂𝜆ℌ𝑖 ∇ℌ𝑖(𝑥̃) +
𝑝

�

𝑖=1

̂𝜆𝔊𝑖 ∇𝔊𝑖(𝑥̃) = 0, (2.1)

and

�
̂𝜆ℌ𝑖 free, 𝑖 ∈ ℐ0+(𝑥̃), ̂𝜆ℌ𝑖 ≥ 0, 𝑖 ∈ ℐ0−(𝑥̃) ∪ ℐ00(𝑥̃), ̂𝜆ℌ𝑖 = 0, 𝑖 ∈ ℐ+0(𝑥̃) ∪ ℐ+−(𝑥̃),

̂𝜆𝔊𝑖 ≥ 0, 𝑖 ∈ ℐ+0(𝑥̃), ̂𝜆𝔊𝑖 = 0, 𝑖 ∈ ℐ0(𝑥̃) ∪ ℐ+−(𝑥̃);
(2.2)

• VC-ACQ holds at 𝑥̃, then there exist ̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫 such that

∇𝔣(𝑥̃) −

𝑝

�

𝑖=1

̂𝜆ℌ𝑖 ∇ℌ𝑖(𝑥̃) +
𝑝

�

𝑖=1

̂𝜆𝔊𝑖 ∇𝔊𝑖(𝑥̃) = 0, (2.3)

and

�
̂𝜆ℌ𝑖 free, 𝑖 ∈ ℐ0+(𝑥̃), ̂𝜆ℌ𝑖 ≥ 0, 𝑖 ∈ ℐ0−(𝑥̃) ∪ ℐ00(𝑥̃), ̂𝜆ℌ𝑖 = 0, 𝑖 ∈ ℐ+0(𝑥̃) ∪ ℐ+−(𝑥̃),

̂𝜆𝔊𝑖 ≥ 0, 𝑖 ∈ ℐ00(𝑥̃) ∪ ℐ+0(𝑥̃), ̂𝜆𝔊𝑖 = 0, 𝑖 ∈ ℐ0−(𝑥̃) ∪ ℐ0+(𝑥̃) ∪ ℐ+−(𝑥̃).
(2.4)
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3. Main Results

In this section, we deal with the MPVC with data uncertainty in the vanishing constraints𝔊𝑖(𝑥), 𝑖 ∈ 𝒫 due to

either measurement errors or insufficient data. The associated uncertain problem is given by:

�

min 𝔣(𝑥)

s.t. ℌ𝑖(𝑥) ≥ 0, ∀𝑖 ∈ 𝒫,

𝔊𝑖(𝑥, 𝑢𝑖)ℌ𝑖(𝑥) ≤ 0, ∀𝑖 ∈ 𝒫,

(UMPVC)

where 𝑢𝑖 ∈ 𝒰𝑖 is the uncertain parameter for any convex compact set𝒰𝑖 ⊆ ℝ𝑚, the functions 𝔣, ℌ𝑖 ∶ ℝ
𝑛 → ℝ

are continuously differentiable and the functions𝔊𝑖 ∶ ℝ
𝑛 ×ℝ𝑚 → ℝ are continuously differentiable wrt the

first component for every 𝑖 ∈ 𝒫. The robust counterpart of the UMPVC is given as follows:

�

min 𝔣(𝑥)

s.t. 𝑥 ∈ Ω ∶= {𝑥 ∈ ℝ𝑛 ∣ ℌ𝑖(𝑥) ≥ 0, ∀𝑖 ∈ 𝒫,

𝔊𝑖(𝑥, 𝑢𝑖)ℌ𝑖(𝑥) ≤ 0, ∀𝑢𝑖 ∈ 𝒰𝑖, ∀𝑖 ∈ 𝒫}.

(RMPVC)

Any point 𝑥̃ ∈ Ω is a robust global minimizer of the UMPVC iff

𝔣(𝑥) ≥ 𝔣(𝑥̃), ∀𝑥 ∈ Ω.

Any point 𝑥̃ ∈ Ω is a robust local minimizer of the UMPVC iff there exists 𝜖 > 0 such that

𝔣(𝑥) ≥ 𝔣(𝑥̃), ∀𝑥 ∈ ℬ(𝑥̃, 𝜖) ∩ Ω.

It is worth mentioning that a robust local minimizer of the UMPVC is equivalent to a local minimizer of the

RMPVC.

Let us define a function 𝔊̂𝑖 ∶ ℝ
𝑛 → ℝ such that 𝔊̂𝑖(𝑥) = sup

𝑢𝑖∈𝒰𝑖
𝔊𝑖(𝑥, 𝑢𝑖) for each 𝑖 ∈ 𝒫. From [17,

Theorem 2.4], we get

{∇𝔊̂𝑖(𝑥̃)} = ∪𝑢𝑖∈𝒰𝑖(𝑥̃)
{∇𝑥𝔊𝑖(𝑥̃, 𝑢𝑖)},

where, 𝒰𝑖(𝑥̃) ∶= {𝑢𝑖 ∈ 𝒰𝑖 ∶ 𝔊𝑖(𝑥̃, 𝑢𝑖) = 𝔊̂𝑖(𝑥̃)} for every 𝑖 ∈ 𝒫, Subsequently, the expression for the RMPVC

can be reformulated as follows:

�

min 𝔣(𝑥)

s.t. ℌ𝑖(𝑥) ≥ 0, ∀𝑖 ∈ 𝒫,

𝜙𝑖(𝑥) = 𝔊̂𝑖(𝑥)ℌ𝑖(𝑥) ≤ 0, ∀𝑖 ∈ 𝒫.

(MPVC2)

3.1. Robust strong stationary points of the UMPVC

We establish the standard Fritz-John (FJ) type necessary optimality conditions [18] to identify a robust local

minimizer of the UMPVC.

Theorem 3.1 (Robust FJ conditions for UMPVC) Suppose 𝑥̃ ∈ Ω is a robust local minimizer of the UMPVC.

Assume that 𝔊𝑖(𝑥, ⋅) is concave on𝒰𝑖 for each 𝑥 ∈ ℝ𝑛 and for each 𝑖 ∈ 𝒫. Then, there exist ̂𝜆𝔣 ≥ 0, ̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈

𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, not all zero, and 𝑢̃𝑖 ∈ 𝒰𝑖, 𝑖 ∈ 𝒫 such that

̂𝜆𝔣∇𝔣(𝑥̃) −
𝑝

�

𝑖=1

̂𝜆ℌ𝑖 ∇ℌ𝑖(𝑥̃) +
𝑝

�

𝑖=1

̂𝜆𝔊𝑖 ∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖) = 0, (3.1)

and

�
̂𝜆ℌ𝑖 free, 𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 ≥ 0, 𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 = 0, 𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+−(𝑥̃, 𝑢̃𝑖),

̂𝜆𝔊𝑖 ≥ 0, 𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖), ̂𝜆𝔊𝑖 = 0, 𝑖 ∈ ℐ̃0(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+−(𝑥̃, 𝑢̃𝑖)
(3.2)

where,

ℐ̃0(𝑥̃, 𝑢̃𝑖) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) = 0}, ℐ̃00(𝑥̃, 𝑢̃𝑖) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) = 0,𝔊𝑖(𝑥̃, 𝑢̃𝑖) = 0},

ℐ̃0+(𝑥̃, 𝑢̃𝑖) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) = 0,𝔊𝑖(𝑥̃, 𝑢̃𝑖) > 0}, ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) = 0,𝔊𝑖(𝑥̃, 𝑢̃𝑖) < 0},

ℐ̃+0(𝑥̃, 𝑢̃𝑖) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) > 0,𝔊𝑖(𝑥̃, 𝑢̃𝑖) = 0}, ℐ̃+−(𝑥̃, 𝑢̃𝑖) ∶= {𝑖 ∈ 𝒫 ∶ ℌ𝑖(𝑥̃) > 0,𝔊𝑖(𝑥̃, 𝑢̃𝑖) < 0}.(3.3)

Priyanka Bharati and Vivek Laha

65



The UMPVC fails to satisfy several constraint qualifications because of its nonconvex feasible set. We

require an appropriate constraint qualification to establish a robust KKT condition from the robust FJ con-

ditions for the UMPVC. We suggest an extended version of the no non-zero abnormal multiplier constraint

qualification (ENNAMCQ) for the UMPVC, which emanates from the NNAMCQ introduced by [21].

Definition 3.2 We say that RMPVC-ENNAMCQ is satisfied at 𝑥̃ ∈ Ω iff for any 𝑢̃𝑖 ∈ 𝒰𝑖(𝑥̃), 𝑖 ∈ 𝒫, one has

⎧
⎪

⎨
⎪
⎩

−∑
𝑖∈ℐ̃0+(𝑥̃,𝑢̃𝑖)∪ℐ̃0−(𝑥̃,𝑢̃𝑖)∪ℐ̃00(𝑥̃,𝑢̃𝑖)

̂𝜆ℌ𝑖 ∇ℌ𝑖(𝑥̃) + ∑
𝑖∈ℐ̃+0(𝑥̃,𝑢̃𝑖)

̂𝜆𝔊𝑖 ∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖) = 0,

̂𝜆ℌ𝑖 ≥ 0 (𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖)), ̂𝜆𝔊𝑖 ≥ 0 (𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖))

⟹

̂𝜆ℌ𝑖 = 0 (ℐ̃0+(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖)), ̂𝜆𝔊𝑖 = 0 (𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖)).

(RMPVC-ENNAMCQ)

We can now give a robust KKT necessary optimality condition for the RMPVC problem using the EN-

NAMCQ constraint qualification and FJ condition.

Theorem 3.3 (Robust KKT conditions for the UMPVC) Suppose 𝑥̃ ∈ Ω is a robust local minimizer of the

UMPVC. Assume that 𝔊𝑖(𝑥, ⋅) is concave on 𝒰𝑖 for each 𝑥 ∈ ℝ𝑛 and for each 𝑖 ∈ 𝒫. If RMPVC-ENNAMCQ holds

at 𝑥̃, then there exist ̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, and 𝑢̃𝑖 ∈ 𝒰𝑖, 𝑖 ∈ 𝒫 such that

∇𝔣(𝑥̃) −

𝑝

�

𝑖=1

̂𝜆ℌ𝑖 ∇ℌ𝑖(𝑥̃) +
𝑝

�

𝑖=1

̂𝜆𝔊𝑖 ∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖) = 0 (3.4)

and

�
̂𝜆ℌ𝑖 free, 𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 ≥ 0, 𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 = 0, 𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+−(𝑥̃, 𝑢̃𝑖),

̂𝜆𝔊𝑖 ≥ 0, 𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖), ̂𝜆𝔊𝑖 = 0, 𝑖 ∈ ℐ̃0(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+−(𝑥̃, 𝑢̃𝑖).
(3.5)

We define strong stationary points for the RMPVC by adopting the KKT conditions to the UMPVC and

following the stationary points concept as outlined in [3] for the MPVC.

Definition 3.4 (Robust strong stationary point of the UMPVC) A point 𝑥̃ ∈ Ω is cosidered as a robust

strong stationary point of the UMPVC iff there exist ̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫 and 𝑢̃𝑖 ∈ 𝒰𝑖, 𝑖 ∈ 𝒫 which

fulfill the equations (3.4) and (3.5).

Further, we will need the following indexing based on index sets of (3.3), which is dependent on 𝑥̃ ∈ Ω

and for any 𝑢̃𝑖 ∈ 𝒰𝑖 ∶

ℐ+0+ ∶= {𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆ℌ𝑖 > 0}, ℐ−0+ ∶= {𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆ℌ𝑖 < 0},

ℐ+00 ∶= {𝑖 ∈ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆ℌ𝑖 > 0}, ℐ+0− ∶= {𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆ℌ𝑖 > 0},

ℐ++0 ∶= {𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆𝔊𝑖 > 0}.

(3.6)

Theorem 3.5 (Robust sufficient optimality condition) Suppose that 𝑥̃ ∈ Ω is a robust strong stationary

point of the UMPVC, i.e., there exist ̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, and 𝑢̃𝑖 ∈ 𝒰𝑖, 𝑖 ∈ 𝒫 such that (3.4) and

(3.5) are satisfied. If 𝔣 is pseudoconvex at 𝑥̃ and 𝔊𝑖(⋅, 𝑢̃𝑖)(𝑖 ∈ ℐ++0), −ℌ𝑖(𝑖 ∈ ℐ+0+ ∪ ℐ+00 ∪ ℐ+0−), ℌ𝑖(𝑖 ∈ ℐ−0+) are

quasiconvex at 𝑥̃ over Ω, then

(a) 𝑥̃ is a robust global minimizer of the UMPVC whenever ℐ−0+ ∪ ℐ++0 = ∅;

(b) 𝑥̃ is a robust local minimizer of the UMPVC.

3.2. Robust weak stationary points of the UMPVC

In this segment, we try to find out optimality conditions to identify robust weak stationary points of the

UMPVC. For any 𝑥̃ ∈ Ω, a tightened nonlinear programming problem associated with the MPVC2 is given as

follows:

⎧
⎪

⎨
⎪
⎩

min 𝔣(𝑥)

s.t. ℌ𝑖(𝑥) = 0, ∀𝑖 ∈ ̂ℐ0+(𝑥̃) ∪ ̂ℐ00(𝑥̃),
ℌ𝑖(𝑥) ≥ 0, ∀𝑖 ∈ ̂ℐ0−(𝑥̃) ∪ ̂ℐ+(𝑥̃),
𝔊̂𝑖(𝑥) ≤ 0, ∀𝑖 ∈ 𝒫.

(RTNLP(𝑥̃))
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It is straightforward to observe that the feasible set of the RTNLP(𝑥̃) is within the feasible set of the

MPVC2. Therefore, if 𝑥̃ is a local minimum of the RMPVC, it will also be a local minimum of the RTNLP(𝑥̃).We

establish a robust FJ type necessary optimality condition to identify a robust local minimizer of the UMPVC

by using the standard FJ conditions given in [18] for the RTNLP(𝑥̃).

Theorem 3.6 (Robust FJ conditions for UMPVC) Suppose 𝑥̃ ∈ Ω is a robust local minimizer of the UMPVC.

Assume that 𝔊𝑖(𝑥, ⋅) is concave on𝒰𝑖 for each 𝑥 ∈ ℝ𝑛 and for each 𝑖 ∈ 𝒫. Then, there exist ̂𝜆𝔣 ≥ 0, ̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈

𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, not all zero, and 𝑢̃𝑖 ∈ 𝒰𝑖, 𝑖 ∈ 𝒫 such that

̂𝜆𝔣∇𝔣(𝑥̃) −
𝑝

�

𝑖=1

̂𝜆ℌ𝑖 ∇ℌ𝑖(𝑥̃) +
𝑝

�

𝑖=1

̂𝜆𝔊𝑖 ∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖) = 0, (3.7)

and

�
̂𝜆ℌ𝑖 free , 𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 ≥ 0, 𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 = 0, 𝑖 ∈ ℐ̃+(𝑥̃, 𝑢̃𝑖),

̂𝜆𝔊𝑖 ≥ 0, 𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖), ̂𝜆𝔊𝑖 = 0, 𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃0+(𝑥̃, 𝑢̃𝑖).
(3.8)

Using RTNLP(𝑥̃), we can provide the ENNAMCQ for the RMPVC at 𝑥̃.

Definition 3.7 We say that RTNLP-ENNAMCQ is satisfied at 𝑥̃ ∈ Ω iff for any 𝑢̃𝑖 ∈ 𝒰𝑖(𝑥̃), 𝑖 ∈ 𝒫, one has

⎧
⎪

⎨
⎪

⎩

−∑
𝑖∈ℐ̃0+(𝑥̃,𝑢̃𝑖)∪ℐ̃00(𝑥̃,𝑢̃𝑖)∪ℐ̃0−(𝑥̃,𝑢̃𝑖)

̂𝜆ℌ𝑖 ∇ℌ𝑖(𝑥̃)
+∑

𝑖∈ℐ̃+0(𝑥̃,𝑢̃𝑖)∪ℐ̃00(𝑥̃,𝑢̃𝑖)
̂𝜆𝔊𝑖 ∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖) = 0,

̂𝜆ℌ𝑖 ≥ 0 (𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖)), ̂𝜆𝔊𝑖 ≥ 0 (𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖))

⟹

̂𝜆ℌ𝑖 = 0 (𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃0−(𝑥̃, 𝑢̃𝑖)), ̂𝜆𝔊𝑖 = 0 (𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖)).

(RTNLP-ENNAMCQ)

We can now give the robust KKT necessary optimality condition for the UMPVC using Theorem 3.6 and

constraint qualification RTNLP-ENNAMCQ.

Theorem 3.8 (Robust KKT optimality conditions for UMPVC) Suppose 𝑥̃ ∈ Ω is a robust local minimizer of

the UMPVC. Assume that 𝔊𝑖(𝑥, ⋅) is concave on 𝒰𝑖 for each 𝑥 ∈ ℝ𝑛 and for each 𝑖 ∈ 𝒫. If RTNLP-ENNAMCQ

holds at 𝑥̃, then there exist ̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, and 𝑢̃𝑖 ∈ 𝒰𝑖, 𝑖 ∈ 𝒫 such that

∇𝔣(𝑥̃) −

𝑝

�

𝑖=1

̂𝜆ℌ𝑖 ∇ℌ𝑖(𝑥̃) +
𝑝

�

𝑖=1

̂𝜆𝔊𝑖 ∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖) = 0 (3.9)

and

�
̂𝜆ℌ𝑖 free , 𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 ≥ 0, 𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 = 0, 𝑖 ∈ ℐ̃+(𝑥̃, 𝑢̃𝑖),

̂𝜆𝔊𝑖 ≥ 0, 𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖), ̂𝜆𝔊𝑖 = 0, 𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃0+(𝑥̃, 𝑢̃𝑖).
(3.10)

Now we define weak stationary points for the RMPVC by following the above KKT conditions of the RM-

PVC.

Definition 3.9 (Robust weak stationary points for the UMPVC) Any point 𝑥̃ ∈ Ω is said to be a robust weak

stationary point for the UMPVC iff there exist ̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫 and 𝑢̃𝑖 ∈ 𝒰𝑖, 𝑖 ∈ 𝒫 which satisfy

equations (3.9) and (3.10).

Alongside the index sets specified in equation (3.3), we require additional indexing based on the 𝑥̃ ∈ Ω.

ℐ+0+ ∶= {𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆ℌ𝑖 > 0}; ℐ−0+ ∶= {𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆ℌ𝑖 < 0};

ℐ+0− ∶= {𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆ℌ𝑖 > 0}; ℐ−00 ∶= {𝑖 ∈ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆ℌ𝑖 < 0};

ℐ+00 ∶= {𝑖 ∈ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆ℌ𝑖 > 0}; ℐ++0 ∶= {𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆𝔊𝑖 > 0};

ℐ∗+00 ∶= {𝑖 ∈ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∶ ̂𝜆𝔊𝑖 > 0}.

(3.11)
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Theorem 3.10 (Robust sufficient optimality conditions using weak stationarity) Let 𝑥̃ ∈ Ω be a robust

weak stationary point for the UMPVC. If 𝔣 is pseudoconvex at 𝑥̃ and𝔊𝑖(⋅, 𝑢̃𝑖)(𝑖 ∈ ℐ++0∪ℐ
∗+
00 ), −ℌ𝑖(𝑖 ∈ ℐ+0+∪ℐ

+
0−∪

ℐ+00), ℌ𝑖(𝑖 ∈ ℐ−0+ ∪ ℐ−00) are quasiconvex at 𝑥̃ over Ω, then

(a) 𝑥̃ is a global robust minimizer of the UMPVC whenever ℐ−0+ ∪ ℐ−00 ∪ ℐ++0 ∪ ℐ∗+00 = ∅;

(b) 𝑥̃ is a local robust minimizer of the UMPVC whenever ℐ∗+00 ∪ ℐ−00 = ∅.

3.3. Robust constraint qualifications for the UMPVC

This section must find the standard KKT conditions of a strong stationary point for the UMPVC under some

constraint qualifications. Furthermore, we will give the relation between those constraint qualifications.

The following lemma gives the standard linearized cone of the UMPVC at a robust local minimizer.

Lemma 3.11 Suppose 𝑥̃ ∈ Ω is a robust local minimizer of the UMPVC. Then, the robust linearized cone of the

UMPVC at 𝑥̃ is given by

ℒ𝑅𝑀𝑃𝑉𝐶(𝑥̃) ∶= {𝑑 ∈ ℝ𝑛 ∶ ∇ℌ(𝑥̃)𝑇𝑑 = 0, ∀𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖),

∇ℌ(𝑥̃)𝑇𝑑 ≥ 0, ∀𝑖 ∈ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃0−(𝑥̃, 𝑢̃𝑖),

∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖)
𝑇𝑑 ≤ 0, ∀𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖)},

for some 𝑢̃𝑖 ∈ 𝒰𝑖(𝑥̃), 𝑖 ∈ 𝒫.

Based on the robust linearized cone of the UMPVC, we give an extended version of the Abadie constraint

qualification, denoted by EACQ, for the UMPVC.

Definition 3.12 (EACQ for the RMPVC) Let 𝑥̃ be a robust local minimizer of the UMPVC. Then, the EACQ

holds at 𝑥̃ iff 𝒯𝑅𝑀𝑃𝑉𝐶(𝑥̃) = ℒ𝑅𝑀𝑃𝑉𝐶(𝑥̃).

The following theorem gives the standard KKT conditions for a robust local minimizer of the UMPVC when

EACQ is satisfied.

Theorem 3.13 Suppose 𝑥̃ is a robust local minimizer of the UMPVC and EACQ satisfied at 𝑥̃. Then, there exist

̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫 and 𝑢̃𝑖 ∈ 𝒰𝑖, 𝑖 ∈ 𝒫 such that

∇𝔣(𝑥̃) −

𝑝

�

𝑖=1

̂𝜆ℌ𝑖 ∇ℌ𝑖(𝑥̃) +
𝑝

�

𝑖=1

̂𝜆𝔊𝑖 ∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖) = 0, (3.12)

and

�
̂𝜆ℌ𝑖 free, 𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 ≥ 0, 𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 = 0, 𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+−(𝑥̃, 𝑢̃𝑖),

̂𝜆𝔊𝑖 ≥ 0, 𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖), ̂𝜆𝔊𝑖 = 0, 𝑖 ∈ ℐ̃0(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+−(𝑥̃, 𝑢̃𝑖).
(3.13)

We give extended versions of VC-MFCQ, VC-LICQ and VC-ACQ provided by [1] for the UMPVC.

Definition 3.14 Let 𝑥̃ ∈ Ω be a local robust minimizer of the UMPVC. Then,

(a) VC-EMFCQ is satisfied at 𝑥̃ iff the gradients

∇ℌ𝑖(𝑥̃), 𝑖 ∈ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃0+(𝑥̃, 𝑢̃𝑖)

are linearly independent, and there exists a vector 𝑑̃ such that

�

∇ℌ𝑖(𝑥̃)
𝑇𝑑̃ = 0, ∀𝑖 ∈ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃0+(𝑥̃, 𝑢̃𝑖),

∇ℌ𝑖(𝑥̃)
𝑇𝑑̃ > 0, ∀𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖),

∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖)
𝑇𝑑̃ < 0, ∀𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖).

(3.14)

is satisfied for some 𝑢̃𝑖 ∈ 𝒰𝑖(𝑥̃);
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(b) VC-ELICQ is satisfied at 𝑥̃ iff the gradients

∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖), 𝑖 ∈ ℐ̃+0(𝑥̃, 𝑢̃𝑖), (3.15)

∇ℌ𝑖(𝑥̃), 𝑖 ∈ ℐ̃0(𝑥̃, 𝑢̃𝑖)

are linearly independent for any 𝑢̃𝑖 ∈ 𝒰𝑖(𝑥̃). We can identify that, if VC-ELICQ holds at 𝑥̃, then VC-

EMFCQ is also satisfied at 𝑥̃;

Now, we define a modified EACQ which is weaker than the EACQ.

Definition 3.15 Let 𝑥̃ be the robust local minimizer of the UMPVC. Then, themodified extended Abadie con-

straint qualification (VC-EACQ) holds at 𝑥̃ iff

ℒ𝑉𝐶𝑅𝑀𝑃𝑉𝐶(𝑥̃) ⊆ 𝒯𝑅𝑀𝑃𝑉𝐶(𝑥̃),

where
ℒ𝑉𝐶𝑅𝑀𝑃𝑉𝐶(𝑥̃) ∶= {𝑑 ∈ ℝ𝑛 ∶∇ℌ(𝑥̃)𝑇𝑑 = 0, ∀𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖),

∇ℌ(𝑥̃)𝑇𝑑 ≥ 0, ∀𝑖 ∈ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃0−(𝑥̃, 𝑢̃𝑖),

∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖)
𝑇𝑑 ≤ 0, ∀𝑖 ∈ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+0(𝑥̃, 𝑢̃𝑖)}

,

for some 𝑢̃𝑖 ∈ 𝒰𝑖(𝑥̃), 𝑖 ∈ 𝒫.

Relation between different constraint qualifications in a flow chart

�� ��EACQ

⇓�� ��VC-ELICQ ⇒
�� ��VC-EMFCQ ⇒

�� ��VC-EACQ

We have the following robust KKT condition under the assumption of VC-EACQ.

Theorem 3.16 (Robust KKT conditions under VC-EACQ) Let 𝑥̃ be a robust local minimizer of the UMPVC such

that VC-EACQ holds at 𝑥̃. Then, there exist ̂𝜆ℌ𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, ̂𝜆𝔊𝑖 ∈ ℝ, 𝑖 ∈ 𝒫, and 𝑢̃𝑖 ∈ 𝒰𝑖, 𝑖 ∈ 𝒫 such that

∇𝔣(𝑥̃) −

𝑝

�

𝑖=1

̂𝜆ℌ𝑖 ∇ℌ𝑖(𝑥̃) +
𝑝

�

𝑖=1

̂𝜆𝔊𝑖 ∇𝑥𝔊𝑖(𝑥̃, 𝑢̃𝑖) = 0, (3.16)

and

�
̂𝜆ℌ𝑖 free, 𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 ≥ 0, 𝑖 ∈ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃00(𝑥̃, 𝑢̃𝑖), ̂𝜆ℌ𝑖 = 0, 𝑖 ∈ ℐ̃+(𝑥̃, 𝑢̃𝑖),

̂𝜆𝔊𝑖 ≥ 0, 𝑖 ∈ ℐ̃00(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+0(𝑥̃, 𝑢̃𝑖), ̂𝜆𝔊𝑖 = 0, 𝑖 ∈ ℐ̃0+(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃0−(𝑥̃, 𝑢̃𝑖) ∪ ℐ̃+−(𝑥̃, 𝑢̃𝑖).
(3.17)

4. Conclusion

We have studied mathematical programs with vanishing constraints with uncertainty in the feasible region

denoted byUMPVC and used the robust optimization approach to dealwith theworst case scenario. First, we

use the Fritz-John approach to identify robust strong stationary points of the UMPVC and introduce RMPVC-

ENNAMCQtoderive the robustKKTnecessary and sufficient optimality conditions. Further,weutilize a tight-

enednonlinear programming approach to determine robustweak stationary points of theUMPVC.Necessary

and sufficient conditions are deived under RTNLP-ENNAMCQ and generalized convexity assumptions. Sev-

eral other constraint qualifications, like EACQ, VC-EACQ, VC-EMFCQ, VC-ELICQ, are introduced to deal with

theuncertainty of the feasible regionand relationships among themare given. The results are illustratedwith

suitable algorithms and examples. Further, the results can be extended for multiobjective optimization [20],

minimax programming [14] and nonsmooth problems [16] with vanishing constraints.
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Abstract

In thepresentpaperwemotivate the incorporationof amoregeneral integral notion, namely theHenstock-

Kurzweil integral, in a formulation of infinite horizon optimal control problems and investigate its impact.

This results from the necessity of distinguishing between different interpretations of the improper integral

objective (e.g. Lebesgue, improperRiemann etc.) whichwas addressed in [18]. A first result concerning suf-

ficient optimality conditions for the new class of optimal control problems is obtained. Relations between

admissible sets and optimal solutions of the new control problem and the problems involving Lebesgue or

improper Riemann integrals are discussed by means of an example. The applicability of sufficient optimal-

ity conditions is also shown.

1. Introduction

The class of infinite horizon optimal control problems deserved much interest in recent time, since it has a

great amount on applications in various fields, such as economics, biology, continuummechanics. For some

innovatory applications of this class of problems in drug and terror models we refer the reader to [11].

In an optimal control problem in Lagrange form one usually minimizes an integral functional of the form
𝑏

∫
𝑎

𝑟(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡. If the integral is taken over an unbounded interval it makes an essential differencewhich

integral notion is used. In [18] it was shown that in dependence on the used integral, i.e. Lebesgue or im-

proper Riemann integral, the admissible set of the corresponding optimal control problem changes also. In

general so does the optimal solution, cf. the same paper. The main reason for this discrepancy is that the

Lebesgue integral is an ”absolute” integral, i.e. a function 𝑟 is Lebesgue integrable over [0,∞) if and only if

its absolute value |𝑟| is Lebesgue integrable over [0,∞) as well, while the improper Riemann integral is a

non-absolute one. To convince yourself in this fact consider for instance the integrand 𝑟 defined by the rule

𝑟(𝑡) =
sin(𝑡)

𝑡
. Obviously, 𝑟 itself yields a finite value of the improper Riemann integral R -∫

∞

0

sin(𝑡)

𝑡
𝑑𝑡, namely

𝜋/2, in constrast to the function |𝑟|which produces a divergent improper Riemann integral R -∫
∞

0
�
sin(𝑡)

𝑡
�𝑑𝑡.

However, most part of theoretical results on infinite horizon optimal control problems deal with problems

involving the Lebesgue integral, while from the numerical point of view it is comfortable to use the Riemann

interpretationof the integral because of the simple constructionof integral sums. To the knowledgeof author,

by now there are no results about sufficient and necessary optimality conditions for control problems with

the improper Riemann integral involved, which do not rely on a kind of absolute integrability assumption for

the objective. One of the reasons for it is that the Riemann integrable functions do not build quite satisfactory

functional spaces to work with. The sketched theoretical-numerical discrepancy lead to the subject of this

paper.

The idea of this paper is to use amore general integration theory, namely the Henstock-Kurzweil integra-

tion, in order to formulate anoptimal control problemwith infinite horizonand toobtain sufficient optimality

conditions via duality theory approach. For the cases, when the optimal value of the objective is not changed

through the generalization of the integral notion and expending of the admissible set, the derived results on

duality theory could fill the gap arised through the absence of duality theory for control problems involving

the improperRiemann integral. TheHenstock-Kurzweil integral, sometimes also called generalizedRiemann

integral or a gauge integral, is a generalization of both Lebesgue and Riemann integration theories and pre-

serves some useful properties of Lebesgue integral being simultaneously a ”non-absolute” integral, so that

all Riemann integrable functions are also Henstock-Kurzweil integrable. Originally, this integral notion was

introduced by a chech mathematician Jaroslav Kurzweil in last sixties of the last century while investigating

differential equations with highly oscillating terms. Afterwards, an english mathematician Ralph Henstock

independently rediscovered this integral andmade significant contributions to its theory. For further reading

on Henstock-Kurzweil integral and its properties we refer among others to [19], [15].
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The paper has the following structure. Section 2 introduces the necessary facts concerning Henstock-

Kurzweil integration. In section 3 a class of infinite horizon optimal control problems arising through using

the Henstock-Kurzweil integration theory is described. Section 4 is devoted to the construction of a dual

problem and deriving sufficient conditions for strong duality between problems (𝑃𝐻𝐾) and (𝐷𝐻𝐾), which in

turn is sufficient for optimality of the involved process. A comparison to the construction of a dual problem in

case of a control problemwith the Lebesgue interpretation of the integral is also given. In section 5 we show

with the help of an example how the admissible set and the optimal solution of a problem of the new class

can relate to those of the corresponding control problems involving the widely used Lebesgue and improper

Riemann integrals. In this section we also apply the result on sufficient optimality conditions and compare

dual problems obtained for all three types of discussed integrals. Section 6 contains open questions and

conclusions.

2. Preliminaries

2.1. Definitions

Let us introduce 𝔹 as a measurable set in s-dimensional Euclidean space. We denote byℳ𝑛(𝔹), 𝐿𝑛𝑝(𝔹) and

𝐶0,𝑛(ℝ+) the spaces of all vector functions 𝑥 ∶ 𝔹 → ℝ𝑛with Lebesguemeasurable, in the𝑝th power Lebesgue

integrable or continuous components, respectively ( [9], p. 146 andpp. 285 ff.; [10], pp. 228 ff.). For𝑛 = 1, we

suppress the superscript in the labels of the spaces. We write [0,∞) = ℝ+. In the sequel the notations L -∫,

R -∫ and HK -∫ stand respectively for the Lebesgue, the Riemann and the Henstock-Kurzweil interpretations

of the integral.

Definition 2.1 (a) A continuous function 𝜈 ∶ ℝ+ → ℝ+ is called a weight function.

(b) If it additionally satisfies L -∫
∞

0
𝜈(𝑡) 𝑑𝑡 < ∞ ,we call it density function.

Definition 2.2 (a) By means of a weight function 𝜈, we define for any 1 ≤ 𝑝 < ∞ the weighted Lebesgue

space

𝐿𝑛𝑝(𝔹, 𝜈) = � 𝑥 ∈ ℳ𝑛(𝔹) | (L -�
𝔹

| 𝑥(𝑡) |𝑝 𝜈(𝑡) 𝑑𝑡)1/𝑝 < ∞� (2.1)

as well as

𝐿𝑛∞(𝔹, 𝜈) = �𝑥 ∈ ℳ𝑛(𝔹) | 𝑒𝑠𝑠 sup
𝑡∈𝔹

| 𝑥(𝑡) 𝜈(𝑡) | < ∞� (2.2)

and

(b) the weighted Sobolev space

𝑊
1,𝑛
𝑝 (ℝ+, 𝜈) = � 𝑥 ∈ ℳ𝑛(ℝ+ ) � 𝑥 ∈ 𝐿𝑛𝑝(ℝ

+, 𝜈) , 𝑥̇ ∈ 𝐿𝑛𝑝(ℝ
+, 𝜈) � (2.3)

(see [14], p. 11 f.), here 𝑥̇ denotes the generalized derivative. Equipped with the norm

‖𝑥‖
𝑊
1,𝑛
𝑝 (ℝ+,𝜈)

= ‖𝑥‖
𝐿𝑛𝑝(ℝ

+,𝜈)
+ ‖𝑥̇‖

𝐿𝑛𝑝(ℝ
+,𝜈)

, (2.4)

𝑊
1,𝑛
𝑝 (ℝ+, 𝜈) becomes a Banach space (this can be confirmed analogously to [14], p. 19, Theorem 3.6.).

(c) the space of functions of bounded variation

𝐵𝑉(𝔹) = �𝑥 ∈ 𝐿𝑛1(𝔹) | 𝑉𝑎𝑟(𝑥, 𝔹) = sup��

𝔹

𝑥(𝑡)𝑑𝑖𝑣𝜙(𝑡)𝑑𝑡 ∶ 𝜙 ∈ 𝐶1𝑐 (𝔹, IR
𝑛), ‖𝜙‖𝐿∞(𝔹) ≤ 1� < ∞�

The following definition is leaned on [15], pp. 139 – 140 and [5], p. 626 ff. 𝐵𝑉(IR+) is a non separable Banach

space.

Definition 2.3 Given an interval 𝐼 = [𝑎, 𝑏] ⊆ IR+. Then

(a) a tagged partition of 𝐼 is a finite set of ordered pairs 𝒫 = {(𝑡𝑖, 𝐼𝑖), 𝑖 = 1,… , 𝑟} such that 𝐼𝑖 are closed

subintervals having disjoint interiors, 𝑡𝑖 ∈ 𝐼𝑖 and ∪
𝑟
𝑖=1𝐼𝑖 = 𝐼. The point 𝑡𝑖 is called the tag associated

with the interval 𝐼𝑖.

(b) a function 𝛿 ∶ 𝐼 → IR+ is called a gauge.
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(c) a tagged partition 𝑃 is said to be 𝛿-fine, if for all 𝑖 ∈ {1, … , 𝑟} the following inclusion holds:

𝐼𝑖 ⊂ (𝑡𝑖 − 𝛿(𝑡𝑖), 𝑡𝑖 + 𝛿(𝑡𝑖)).

Definition 2.4 (a) Given a tagged partition 𝒫 = {(𝑡𝑖, 𝐼𝑖), 𝑖 = 1,… , 𝑟} of 𝐼, we call

𝑆(𝑓, 𝒫) =

𝑟

�

𝑖=1

𝑓(𝑡𝑖)𝜇(𝐼𝑖)

the Riemann sumwith respect to 𝒫, where 𝜇(⋅) denotes the Lebesgue measure.

(b) A function 𝑓 ∶ 𝐼 → IR is called Henstock-Kurzweil integrable or shortly HK-integrable, if there is an 𝐴 ∈ IR

so that for all 𝜖 > 0 there exists a gauge 𝛿 on 𝐼 so that for every 𝛿-fine partition 𝑃 of 𝐼 |𝑆(𝑓, 𝑃) − A| < 𝜖

holds. We call the number 𝐴 the Henstock-Kurzweil integral of 𝑓 over 𝐼 and write 𝐴 = HK -∫
𝐼
𝑓 =

HK -∫
𝑏

𝑎
𝑓.

(c) We denote by 𝐻𝐾(𝐼) the space of all HK-integrable functions on 𝐼. This space can be equipped with the

Alexiewicz semi-norm, ‖𝑓‖𝐴 = sup
𝑡∈𝐼

�HK -∫
𝑡

𝑎
𝑓�, which induces the normed space of equivalence classes.

Definition 2.5 As a kind of analogon of the weighted Lebesgue- and Sobolev spaces defined in Definition

2.2 we introduce

(a) by means of a weight function 𝜈 for a measurable set 𝔹 the weighted space

𝐻𝐾𝑛(𝔹, 𝜈) = � 𝑥 ∈ ℳ𝑛(𝔹) |HK -∫
𝔹
𝑥(𝑡) 𝜈(𝑡) 𝑑𝑡 < ∞� ; whereas if 𝜈(𝑡) ≡ 1, we denote the space by

𝐻𝐾𝑛(𝔹).

(b) the weighted space 𝐻𝐾1,𝑛(𝔹, 𝜈) = � 𝑥 ∈ 𝐻𝐾𝑛(𝔹, 𝜈) � 𝑥̇ ∈ 𝐻𝐾𝑛(𝔹, 𝜈) �.

Lemma 2.6 Let a density function 𝜈 be given. Any linear, continuous functional 𝜑 ∶ 𝐻𝐾(ℝ+, 𝜈) → ℝ can be

represented by a function 𝑦 ∈ 𝐵𝑉(ℝ+):

⟨ 𝜑 , 𝑥 ⟩ = HK -�
∞

0

𝑦(𝑡) 𝑥(𝑡) 𝜈(𝑡) 𝑑𝑡 ∀ 𝑥 ∈ 𝐻𝐾(ℝ+, 𝜈) . (2.5)

We can apply [10], p. 287, Theorem 3.2, since the measure generated by the density function 𝜈 is 𝜎-finite onℝ+ .

The next analogon of Hölder’s inequality is taken from [24], p. 62.

Theorem 2.7 (Hölder’s inequality for distributions)

Let 𝑓 ∈ 𝒜𝐶 = �𝑓 ∈ 𝒟′ | ∃ 𝐹 ∈ 𝐶0( ̄IR) with 𝐹(−∞) = 0, 𝐹′ = 𝑓�. For 𝑔 ∈ 𝐵𝑉(IR) it holds then the inequality

�HK -�
∞

−∞

𝑓𝑔� ≤ 2‖𝑓‖𝐴 ⋅ ‖𝑔‖𝐵𝑉. (2.6)

2.2. Infinite horizon optimal control problem

It is considered the infinite horizon control problem of minimizing the integral objective

𝐽𝐻𝐾∞ (𝑥, 𝑢) = HK -
∞

∫
0

𝑟(⋅, 𝑥(⋅), 𝑢(⋅)) 𝜈̃(⋅) → min! (2.7)

with respect to all pairs satisfying the following constraints:

(𝑥, 𝑢) ∈ 𝐻𝐾1,𝑛(ℝ+, 𝜈) × 𝐻𝐾𝑚(ℝ+, 𝜈) ; (2.8)

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) a.e. on ℝ+ ; (2.9)

𝑥(0) = 𝑥0 ; (2.10)

𝑢(𝑡) ∈ 𝑈 a.e. on ℝ+ (2.11)

Hereby𝑈 denotes a compact convex subset ofℝ𝑚, 𝜈 and 𝜈̃ are weight functions due to the Definition 2.1. The

functions 𝑥 and𝑢 are called the state and the control function respectively. The integral in (2.7) is understood

in Henstock-Kurzweil sense. We refer to problem (2.7) – (2.11) as to the problem (𝑃𝐻𝐾). We now introduce

Assumption 1 The function 𝑟(𝑡, 𝜉, 𝑣) is continuous in 𝑡, continuously differentiable in 𝜉 and 𝑣 and convex in 𝑣.

Definition 2.8 (a) A pair (𝑥, 𝑢) is called admissible for the problem (𝑃𝐻𝐾), if it satisfies the conditions (2.8)

– (2.11) and the Henstock-Kurzweil integral in (2.7) exists and has a finite value.
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(b) An admissible pair (𝑥∗, 𝑢∗) is called a global optimal solution of the problem (𝑃𝐻𝐾), if for any admissible

pair (𝑥, 𝑢) the inequality 𝐽𝐻𝐾∞ (𝑥∗, 𝑢∗) ≤ 𝐽𝐻𝐾∞ (𝑥, 𝑢) holds.

We also introduce the following problems with the Lebesgue and improper Riemann interpretation of the

integral in the objective:

(𝑃𝐿) ∶

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐽𝐿∞(𝑥, 𝑢) = L -
∞

∫
0

𝑟(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝜈̃(𝑡)𝑑𝑡 → min !

(𝑥, 𝑢) ∈ 𝑊
1,1
2 (IR+, 𝜈) × 𝐿12(IR

+, 𝜈)

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑎.𝑒. 𝑜𝑛 IR+

𝑢(𝑡) ∈ 𝑈 𝑎.𝑒. 𝑜𝑛 IR+

𝑥(0) = 𝑥0

; (𝑃𝑅) ∶

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐽𝑅∞(𝑥, 𝑢) = R -
∞

∫
0

𝑟(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝜈̃(𝑡)𝑑𝑡 → min !

(𝑥, 𝑢) ∈ 𝑊
1,1
2 (IR+, 𝜈) × 𝐿12(IR

+, 𝜈)

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑎.𝑒. 𝑜𝑛 IR+

𝑢(𝑡) ∈ 𝑈 𝑎.𝑒. 𝑜𝑛 IR+

𝑥(0) = 𝑥0

.

3. Dual problem and sufficient optimality conditions

Generally speaking we call a problem (D):max
𝑦∈𝑌

𝑔(𝑦)weakly dual to the problem (P):min
𝑥∈𝑋

𝑓(𝑥), if for all 𝑥 ∈ 𝑋

and for all 𝑦 ∈ 𝑌 the inequality 𝑓(𝑥) ≥ 𝑔(𝑦) holds. If there are some 𝑥∗ ∈ 𝑋 and 𝑦∗ ∈ 𝑌 such that the

equation 𝑓(𝑥∗) = 𝑔(𝑦∗) is satisfied, we call these two problems strong dual to each other. Similar idea of

duality can be applied to optimal control problems and specifically to the problems with infinite horizon,

see [13], [21], [22], [16]. The special construction scheme for dual problems used in cited papers is due to

R. Klötzler, [13]. We follow this scheme in the present paper as well. Before formulating the main result we

need some auxiliary result.

Lemma 3.1 Let IR+ =
𝑟−1

⋃
𝑘=0

[𝜏𝑘, 𝜏𝑘+1), 𝜏0 ∶= 0, 𝜏𝑟 ∶= ∞ be a partition of the half-axis IR+ into disjoint intervals.

Furthermore, let (𝑥∗, 𝑢∗) be an admissible pair of (𝑃𝐻𝐾) and 𝑆 ∶ IR
+ × IR𝑛 → IR be a function of the form

𝑆(𝑡, 𝜉) = 𝑎(𝑡) + 𝑦(𝑡)𝑇(𝜉 − 𝑥∗(𝑡)), (3.1)

having 𝑎 ∈ 𝐻𝐾1,1(IR+);
𝑦

𝜈
,
𝑦̇

𝜈
∈ 𝐵𝑉(IR+), 𝑦 ∈ 𝐶1(𝜏𝑘, 𝜏𝑘+1) for all 𝑘 = 1,… , 𝑟 − 1. Then for any 𝑥 ∈

𝐻𝐾1,𝑛(IR+, 𝜈) with 𝑥(0) = 𝑥0 we have:

lim
𝑇→∞

𝑆(𝑇, 𝑥(𝑇)) = 0, (3.2)

HK -

∞

�

0

𝑑

𝑑𝑡
𝑆(⋅, 𝑥(⋅)) = −𝑆(0, 𝑥0) +

𝑟−1

�

𝑘=1

(𝑆(𝜏𝑘 − 0, 𝑥(𝜏𝑘)) − 𝑆(𝜏𝑘 + 0, 𝑥(𝜏𝑘))). (3.3)

Proof: We estimate �HK -
∞

∫
0

𝑆(⋅, 𝑥(⋅))� ≤ �HK -
∞

∫
0

𝑎(⋅)� + �HK -
∞

∫
0

𝑦(⋅)𝑇(𝑥(⋅) − 𝑥∗(⋅))� and applying the Hölder’s

inequality to the last term obtain

�HK -

∞

�

0

𝑆(⋅, 𝑥(⋅))� ≤ ‖𝑎‖𝐻𝐾1(IR+) + 2�
𝑦

𝜈
�
𝐵𝑉(IR+)

⋅ ‖𝑥 − 𝑥∗‖𝐻𝐾1(IR+,𝜈) < ∞. (3.4)

From the finiteness of the integral HK -
∞

∫
0

𝑆(⋅, 𝑥(⋅)) we conclude (3.2), since

lim
𝑇→∞

HK -

𝑇

�

0

𝑆(⋅, 𝑥(⋅)) = lim
𝑇→∞

�HK -

𝑇−1

�

0

𝑆(⋅, 𝑥(⋅)) + HK -

𝑇

�

𝑇−1

𝑆(⋅, 𝑥(⋅))� = lim
𝑇→∞

HK -

𝑇

�

0

𝑆(⋅, 𝑥(⋅)) + lim
𝜏→∞

𝑆(𝜏, 𝑥(𝜏)),

whereby 𝜏 ∈ [𝑇−1, 𝑇]. Similarly, one shows the existence and finiteness of the integral HK -
∞

∫
0

𝑑𝑆(⋅,𝑥(⋅))

𝑑𝑡
using the

expression
𝑑𝑆(𝑡,𝑥(𝑡))

𝑑𝑡
= 𝑎̇(𝑡)+ 𝑦̇(𝑡)𝑇(𝑥(𝑡)−𝑥∗(𝑡))+𝑦(𝑡)𝑇(𝑥̇(𝑡)− 𝑥̇∗(𝑡)) for the linear function 𝑆 given in (3.1):

�HK -

∞

�

0

𝑑𝑆(⋅, 𝑥(⋅))

𝑑𝑡
� ≤ ‖𝑎̇‖𝐻𝐾1(IR+) + 2�

𝑦̇

𝜈
�
𝐵𝑉(IR+)

⋅ ‖𝑥 − 𝑥∗‖𝐻𝐾1(IR+,𝜈) + 2�
𝑦

𝜈
�
𝐵𝑉(IR+)

⋅ ‖𝑥̇ − 𝑥̇∗‖𝐻𝐾1(IR+,𝜈) < ∞.

The condition (3.3) can now be derived by means of (3.2).

We introduce the Hamiltonian as ℋ(𝑡, 𝜉, 𝜂) = sup
𝑣∈𝑈

𝐻(𝑡, 𝜉, 𝑣, 𝜂) with 𝐻(𝑡, 𝜉, 𝑣, 𝜂) = −𝑟(𝑡, 𝜉, 𝑣) +
1

𝜈̃(𝑡)
<

𝜂, 𝑓(𝑡, 𝜉, 𝑣) >where H represents the Pontryagin’s function. Furthermore, we define the reachable set

𝑅(𝑡) = �𝜉 ∈ IR𝑛 �
∃ (𝑥, 𝑢) ∈ 𝐻𝐾1,𝑛(ℝ+, 𝜈) × 𝐻𝐾𝑚(ℝ+, 𝜈)mit

𝜉 = 𝑥(𝑡), 𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑢(𝑡) ∈ 𝑈, 𝑥(0) = 𝑥0
� (3.5)
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and

𝑌𝐻𝐾 =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑆 ∶ IR+ × IR𝑛 → IR

�

�

�

𝑆(𝑡, 𝜉) = 𝑎(𝑡) + 𝑦(𝑡)𝑇(𝜉 − 𝑥∗(𝑡))

𝑎 ∈ 𝐻𝐾1,1(IR+),
𝑦

𝜈
,
𝑦̇

𝜈
∈ 𝐵𝑉(IR+),

𝑦 ∈ 𝐶0[𝜏𝑘, 𝜏𝑘+1] ∩ 𝐶1(𝜏𝑘, 𝜏𝑘+1), 𝑘 = 1,… , 𝑟 − 1

1

𝜈̃(𝑡)
𝜕𝑡𝑆(𝑡, 𝜉) +ℋ(𝑡, 𝜉, 𝜕𝜉𝑆(𝑡, 𝜉)) ≤ 0

∀(𝑡, 𝜉) ∈ �IR+\{𝜏1, … , 𝜏𝑟−1}� × 𝑅(𝑡)

⎫
⎪
⎪

⎬
⎪
⎪
⎭

. (3.6)

Using the scheme for constructing dual problems described in [13] we construct a problem (𝐷𝐻𝐾) and prove

Theorem 3.2 (Weak duality relation)

Let a problem (𝑃𝐻𝐾) be given. Then for the problem (𝐷𝐻𝐾):

𝑔∞(𝑆) ∶= −𝑆(0, 𝑥0) + inf
𝛽∈Γ

�

𝑟−1

�

𝑘=1

(𝑆(𝜏𝑘 − 0, 𝛽𝑘) − 𝑆(𝜏𝑘 + 0, 𝛽𝑘))� → sup! w.r.t. 𝑆 ∈ 𝑌𝐻𝐾 (3.7)

Γ = �𝛽 = (𝛽1, … , 𝛽𝑟−1) ∈ IR(𝑟−1)𝑛 | 𝛽𝑘 ∈ 𝑅(𝜏𝑘)� (3.8)

the following weak duality relation is true:

inf(𝑃𝐻𝐾) ≥ sup(𝐷𝐻𝐾). (3.9)

Definition 3.3 A linear in 𝜉 ansatz 𝑆 is called admissible for the problem (𝐷𝐻𝐾), if the inclusion 𝑆 ∈ 𝑌𝐻𝐾
holds.

Proof: Let (𝑥, 𝑢) be admissible for (𝑃𝐻𝐾) and 𝑆 be admissible for (𝐷𝐻𝐾), i.e. 𝑆 ∈ 𝑌𝐻𝐾. Thenwe have the following

estimate

𝐽𝐻𝐾∞ (𝑥, 𝑢) = HK -�
∞

0

𝑟(⋅, 𝑥(⋅), 𝑢(⋅))𝜈̃(⋅) =

= HK -�
∞

0

�−𝐻(⋅, 𝑥(⋅), 𝑢(⋅), 𝜕𝜉𝑆(⋅, 𝑥(⋅)))� 𝜈̃(⋅) + HK -�
∞

0

�
𝜕𝜉𝑆(⋅, 𝑥(⋅))

𝜈̃(⋅)
𝑔(⋅, 𝑥(⋅), 𝑢(⋅))� 𝜈̃(⋅)

= HK -�
∞

0

�−𝐻(⋅, 𝑥(⋅), 𝑢(⋅), 𝜕𝜉𝑆(⋅, 𝑥(⋅))) −
𝜕𝑡𝑆(⋅, 𝑥(⋅))

𝜈̃(⋅)
� 𝜈̃(⋅) + HK -�

∞

0

�
𝜕𝑡𝑆(⋅, 𝑥(⋅))

𝜈̃(⋅)
+
𝜕𝜉𝑆(⋅, 𝑥(⋅))

𝜈̃(⋅)
𝑥̇(⋅)� 𝜈̃(⋅)

≥ −HK -�
∞

0

�ℋ(⋅, 𝑥(⋅), 𝜕𝜉𝑆(⋅, 𝑥(⋅))) +
𝜕𝑡𝑆(⋅, 𝑥(⋅))

𝜈̃(⋅)
� 𝜈̃(⋅) + HK -�

∞

0

�𝜕𝑡𝑆(⋅, 𝑥(⋅)) + 𝜕𝜉𝑆(⋅, 𝑥(⋅))𝑥̇(⋅)� .

Taking theHamilton-Jacobi inequality, which has to be fulfilled by S, see the definition of the set𝑌𝐻𝐾, and Lemma

3.1 into account one arrives at

𝐽𝐻𝐾∞ (𝑥, 𝑢) ≥ −HK -�
∞

0

sup
𝜉∈𝑅(𝑡)

��ℋ(⋅, 𝜉, 𝜕𝜉𝑆(𝑡, 𝜉)) +
𝜕𝑡𝑆(⋅, 𝜉)

𝜈̃(⋅)
�� 𝜈̃(⋅)

+HK -�
∞

0

�𝜕𝑡𝑆(⋅, 𝑥(⋅)) + 𝜕𝜉𝑆(⋅, 𝑥(⋅))𝑥̇(⋅)� ≥ HK -�
∞

0

𝑑

𝑑𝑡
𝑆(⋅, 𝑥(⋅)) = lim

𝑇→∞
HK -�

𝑇

0

𝑑

𝑑𝑡
𝑆(⋅, 𝑥(⋅))

= lim
𝑇→∞

𝑆(𝑇, 𝑥(𝑇)) − 𝑆(0, 𝑥(0)) +

𝑟−1

�

𝑘=1

(𝑆(𝜏𝑘 − 0, 𝑥(𝜏𝑘)) − 𝑆(𝜏𝑘 + 0, 𝑥(𝜏𝑘)))

= −𝑆(0, 𝑥0) +

𝑟−1

�

𝑘=1

(𝑆(𝜏𝑘 − 0, 𝑥(𝜏𝑘)) − 𝑆(𝜏𝑘 + 0, 𝑥(𝜏𝑘))) ≥ −𝑆(0, 𝑥0) + inf
𝛽∈Γ

�

𝑟−1

�

𝑘=1

(𝑆(𝜏𝑘 − 0, 𝛽𝑘) − 𝑆(𝜏𝑘 + 0, 𝛽𝑘))�

which closes the proof.

Remark 3.4 As we can see, the proper decision variable in the dual problem (𝐷𝐻𝐾) is (𝑎, 𝑦), but we use

𝑆 ∈ 𝑌𝐻𝐾 for simplicity. Furthermore, the component 𝑦 of the dual process 𝑆 belongs to a Banach space,

whereas the state trajectory itself does not. This can be advantageous in deriving existence results for the

primal problem (𝑃𝐻𝐾).
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Theorem 3.5 An admissible pair (𝑥∗, 𝑢∗) is a global minimizer of (𝑃𝐻𝐾), if there exists an admissible 𝑆∗ for

(𝐷𝐻𝐾), such that the following conditions are fulfilled for almost all 𝑡 > 0:

(M) ℋ(𝑡, 𝑥∗(𝑡), 𝜕𝜉𝑆
∗(𝑡, 𝑥∗(𝑡))) = 𝐻(𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡), 𝜕𝜉𝑆

∗(𝑡, 𝑥∗(𝑡)))

(HJ)
1

𝜈̃(𝑡)
𝑆∗𝑡 (𝑡, 𝑥

∗(𝑡)) +ℋ(𝑡, 𝑥∗(𝑡), 𝜕𝜉𝑆(𝑡, 𝑥
∗(𝑡))) = 0

(B) inf
𝜁∈IR𝑛(𝑟−1)

�
𝑟−1

∑
𝑘=1

(𝑆∗(𝜏𝑘 − 0, 𝜁𝑘) − 𝑆∗(𝜏𝑘 + 0, 𝜁𝑘))� =
𝑟−1

∑
𝑘=1

(𝑆∗(𝜏𝑘 − 0, 𝑥∗(𝜏𝑘)) − 𝑆∗(𝜏𝑘 + 0, 𝑥∗(𝜏𝑘)))

Proof: follows immediately from Theorem 3.2 and the assumptions of this theorem.

To compare the constructed dual problem (𝐷𝐻𝐾)with (𝐷𝐿) for the corresponding control problem involving

the Lebesgue integral, cf. [16], p. 107 ff., we notice that the dual ansatz 𝑆 has to belong to the set

𝑌𝐿 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑆 ∶ IR+ × IR𝑛 → IR

�

�

�

𝑆(𝑡, 𝜉) = 𝑎(𝑡) + 𝑦(𝑡)𝑇(𝜉 − 𝑥∗(𝑡))

𝑎 ∈ 𝑊1
1 ([𝜏𝑟−1, ∞)) ∩ 𝐶0[𝜏𝑘, 𝜏𝑘+1] ∩ 𝐶1(𝜏𝑘, 𝜏𝑘+1)

𝑦 ∈ 𝑊
1,𝑛
𝑞 ([𝜏𝑟−1, ∞), 𝜈

1−𝑞) ∩ 𝐶0[𝜏𝑘, 𝜏𝑘+1] ∩ 𝐶1(𝜏𝑘, 𝜏𝑘+1)

𝑖 = 0,… , 𝑟 − 1

1

𝜈̃(𝑡)
𝜕𝑡𝑆(𝑡, 𝜉) +ℋ(𝑡, 𝜉, 𝜕𝜉𝑆(𝑡, 𝜉)) ≤ 0

∀(𝑡, 𝜉) ∈ �IR+\{𝜏1, … , 𝜏𝑟−1}� × 𝑅(𝑡)

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

, (3.10)

where one has (𝑎, 𝑦) ∈ 𝑊1
1 ([𝜏𝑟−1, ∞))×𝑊

1,𝑛
𝑞 ([𝜏𝑟−1, ∞), 𝜈

1−𝑞) instead of 𝑎 ∈ 𝐻𝐾1,1(IR+) and
𝑦

𝜈
,
𝑦̇

𝜈
∈ 𝐵𝑉(IR+)

in case of the problem (𝐷𝐻𝐾). Apart from that the dual problems (𝐷𝐻𝐾) and (𝐷𝐿) have the same form.

4. Example and application of the theoretical result

Example 4.1 The following example was considered in [23], p. 464, although with Lebesgue integral in-

volved in the objective function and weighted Lebesgue- and Sobolev spaces as the spaces for the state

and control functions respectively. We now change the interpretation of the integral in the objective to the

Henstock-Kurzweil integral up and consider the weighted Henstock-Kurzweil spaces as the state- and con-

trol spaces respectively. Thus, with 𝜈(𝑡) = 𝑒−𝑡 and 𝑟(𝑡) = �

sin 𝑡

𝑡
, 2𝑘𝜋 ≤ 𝑡 ≤ (2𝑘 + 1)𝜋

2
sin 𝑡

𝑡
, (2𝑘 + 1)𝜋 ≤ 𝑡 ≤ (2𝑘 + 2)𝜋

, we

obtain the problem

(𝑃1𝐻𝐾) ∶

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐽𝐻𝐾∞ (𝑥, 𝑢) = HK -
∞

∫
0

𝑟(⋅)𝑢(⋅) → max !

(𝑥, 𝑢) ∈ 𝐻𝐾1,1(IR+, 𝜈) × 𝐻𝐾1(IR+, 𝜈)

𝑥̇(𝑡) = 𝑢(𝑡) 𝑎.𝑒. 𝑜𝑛 IR+

𝑢(𝑡) ∈ [
1

2
; 1] 𝑎.𝑒. 𝑜𝑛 IR+

𝑥(0) = 0

. (4.1)

For the possibility of comparison we formulate both the corresponding problems (𝑃1𝐿 ) and (𝑃
1
𝑅 ) and denote

their admissible sets by𝒜1
𝐿 and𝒜

1
𝑅 respectively:

(𝑃1𝐿 ) ∶

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐽𝐿∞(𝑥, 𝑢) = L -
∞

∫
0

𝑟(𝑡)𝑢(𝑡)𝑑𝑡 → max !

(𝑥, 𝑢) ∈ 𝑊
1,1
2 (IR+, 𝜈) × 𝐿12(IR

+, 𝜈)

𝑥̇(𝑡) = 𝑢(𝑡) 𝑎.𝑒. 𝑜𝑛 IR+

𝑢(𝑡) ∈ [
1

2
; 1] 𝑎.𝑒. 𝑜𝑛 IR+

𝑥(0) = 0

; (𝑃1𝑅 ) ∶

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐽𝑅∞(𝑥, 𝑢) = R -
∞

∫
0

𝑟(𝑡)𝑢(𝑡)𝑑𝑡 → max !

(𝑥, 𝑢) ∈ 𝑊
1,1
2 (IR+, 𝜈) × 𝐿12(IR

+, 𝜈)

𝑥̇(𝑡) = 𝑢(𝑡) 𝑎.𝑒. 𝑜𝑛 IR+

𝑢(𝑡) ∈ [
1

2
; 1] 𝑎.𝑒. 𝑜𝑛 IR+

𝑥(0) = 0

Assertion 1 (i) The admissible set𝒜1
𝐻𝐾 of the problem (𝑃1𝐻𝐾) satisfies the relation𝒜

1
𝐻𝐾 ⊃ (𝒜1

𝐿 ∪𝒜1
𝑅).

(ii) For the optimal values it holds sup(𝑃1𝐻𝐾) = max{sup(𝑃1𝐿 ), sup(𝑃
1
𝑅 )} = sup(𝑃1𝑅 )

Proof: (i): The inclusion 𝒜1
𝐻𝐾 ⊇ (𝒜1

𝐿 ∪ 𝒜1
𝑅) is clear, since if a function is integrable in either Lebesgue or

Riemann sense, it is also integrable in Henstock-Kurzweil sense. More interesting is to prove the strict inclusion,
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(𝑃1𝐿 ) (𝑃1𝑅 ) (𝑃1𝐻𝐾)

(𝐷1
𝐿 ) has empty (𝐷1

𝑅) cannot be formulated (𝐷1
𝐻𝐾) is strong dual to (𝑃

1
𝐻𝐾)

admissible set with 𝑎(𝑡) =
𝜋

2
− HK -

𝑡

∫
0

sin(⋅)

(⋅)
, 𝑦(𝑡) ≡ 0

Tab. 1 Comparison of dual problems

means the existence of a pair (𝑥, 𝑢) ∈ 𝒜1
𝐻𝐾\(𝒜

1
𝐿 ∪𝒜

1
𝑅). We recall that𝒜1

𝐿 = ∅ and the optimal control for the

Riemann case is

𝑢∗𝑅(𝑡) = �
1 , 𝑡 ∈ [2𝑘𝜋, (2𝑘 + 1)𝜋)

1/2 , 𝑡 ∈ [(2𝑘 + 1)𝜋, (2𝑘 + 2)𝜋)
. (4.2)

We construct a function 𝑢𝐻𝐾(⋅), for which the set of discontinuity points has a positive measure. To this end we

change up the function 𝑢∗𝑅(⋅) on the Cantor set 𝐶 of measure 𝜇(𝐶) > 0 (For algorithm of construction of Cantor

sets of positive measure we refer to [2], p. 236):

𝑢𝐻𝐾(𝑡) =

⎧

⎨
⎩

�
1 , 𝑡 ∈ 𝐶̄ ∩ [2𝑘𝜋, (2𝑘 + 1)𝜋)

1/2 , 𝑡 ∈ 𝐶 ∩ [2𝑘𝜋, (2𝑘 + 1)𝜋)

�
1/2 , 𝑡 ∈ 𝐶̄ ∩ [(2𝑘 + 1)𝜋, (2𝑘 + 2)𝜋)

1 , 𝑡 ∈ 𝐶 ∩ [(2𝑘 + 1)𝜋, (2𝑘 + 2)𝜋)

. (4.3)

The so constructed suboptimal control function 𝑢𝐻𝐾(⋅) is integrable only in Henstock-Kurzweil sense, but not in

the Riemann sense, sinse the discontinuity points form a set of positive measure. With the corresponding state

function 𝑥𝐻𝐾(𝑡) ∶= 𝑥0 +HK -
𝑡

∫
0

𝑢𝐻𝐾 we arrive at the pair (𝑥𝐻𝐾, 𝑢𝐻𝐾) ∈ 𝒜1
𝐻𝐾\(𝒜

1
𝐿 ∪𝒜

1
𝑅)which proves one part

of the assertion.

(ii): For a pair (𝑥, 𝑢) ∈ (𝒜1
𝐿∪𝒜

1
𝑅) it holds 𝐽

𝐻𝐾
∞ (𝑥, 𝑢) = max{𝐽𝐿∞, 𝐽

𝑅
∞} due to the inclusion proved in (i) and to the

following implications. If the Lebesgue integral 𝐽𝐿∞(𝑥, 𝑢) exists, then the Henstock-Kurzweil integral 𝐽𝐻𝐾∞ (𝑥, 𝑢)

exists also, cf. Section 2, and the equality 𝐽𝐻𝐾∞ (𝑥, 𝑢) = 𝐽𝐿∞(𝑥, 𝑢) is valid. If the improper Riemann integral

𝐽𝑅∞(𝑥, 𝑢) exists, then 𝐽
𝐻𝐾
∞ (𝑥, 𝑢) = 𝐽𝑅∞(𝑥, 𝑢) is true as well.

Now let (𝑥, 𝑢) ∈ 𝒜1
𝐻𝐾\(𝒜

1
𝐿∪𝒜

1
𝑅). It means that (𝑥, 𝑢) is admissible neither for (𝑃1𝐿 ) nor for (𝑃

1
𝑅 ). Moreover,

we know that𝒜1
𝐿 = ∅. Furthermore, assume that 𝐽𝐻𝐾∞ (𝑥, 𝑢) > 𝐽𝑅∞(𝑥

∗
𝑅, 𝑢

∗
𝑅), whereby (𝑥

∗
𝑅, 𝑢

∗
𝑅) ≠ (𝑥, 𝑢) denotes

the optimal solution of (𝑃1𝑅 ). From (𝑥, 𝑢) ∉ 𝒜1
𝑅 we conclude that either the integral R -

∞

∫
0

𝑟(𝑡)𝑢(𝑡)𝑑𝑡 does not

exist, which means the function 𝑟(⋅)𝑢(⋅) has the set of discontinuity points of positive measure, or the control

function 𝑢(⋅) itself is not Riemann integrable so that the state equation is violated. Taking the sign of
sin 𝑡

𝑡
and

the control constraint 𝑢(𝑡) ∈ [
1

2
, 1] into account we estimate for a 𝑘 ∈ ℕ

HK -

(2𝑘+1)𝜋

�

2𝑘𝜋

sin(⋅)

(⋅)
𝑢(⋅) ≤ HK -

(2𝑘+1)𝜋

�

2𝑘𝜋

sin(⋅)

(⋅)
and HK -

(2𝑘+2)𝜋

�

(2𝑘+1)𝜋

2
sin(⋅)

(⋅)
𝑢(⋅) ≤ HK -

(2𝑘+2)𝜋

�

(2𝑘+1)𝜋

2
sin(⋅)

(⋅)

1

2

Summarizing the situation on IR+we can say that the functional 𝐽𝐻𝐾∞ attains themaximal value for𝑢(𝑡) = 𝑢∗𝑅(𝑡)

for all 𝑡 ∈ IR+. And each deviation of 𝑢(⋅) from 𝑢∗𝑅(⋅) on a set of positive Lebesguemeasure leads to a suboptimal

value of the functional. Consequently, (𝑥, 𝑢) = (𝑥∗𝑅, 𝑢
∗
𝑅) in the sense of equivalence classes, i.e. (𝑥(𝑡), 𝑢(𝑡)) =

(𝑥∗𝑅(𝑡), 𝑢
∗
𝑅(𝑡)) almost everywhere. This completes the proof.

Solution to Example 1: Rewriting the problem (𝑃1𝐻𝐾) as a minimization problem and applying Theorem

3.5 with 𝑎(𝑡) =
𝜋

2
− HK -

𝑡

∫
0

sin(⋅)

(⋅)
, 𝑦(𝑡) ≡ 0 and the linear dual variable 𝑆∗(𝑡, 𝜉) = 𝑎(𝑡) + 𝑦(𝑡)(𝜉 − 𝑥∗(𝑡)),

we obtain the strong duality between the problem (𝑃1𝐻𝐾) and the problem (𝐷1
𝐻𝐾), constructed according to

Theorem 3.2. The conditions of Theorem 3.5 are satisfied along the process (𝑥∗𝑅, 𝑢
∗
𝑅). Therefore, the process

(𝑥∗𝐻𝐾, 𝑢
∗
𝐻𝐾) = (𝑥∗𝑅, 𝑢

∗
𝑅) is a global optimal solution for the problem (𝑃1𝐻𝐾). The dual problem (𝐷1

𝐿 ) to the

problem (𝑃1𝐿 ) has an empty admissible set, since the only possible candidate for the component 𝑎(⋅), which

could lead to the strong duality between these two problems, is defined by the rule 𝑎(𝑡) =
𝜋

2
− L -

𝑡

∫
0

sin 𝜏

𝜏
𝑑𝜏

and is not admissible because of the infinite value of 𝑎(∞). For the problem (𝑃1𝑅 ) no dual problem can be

constructed due to the used duality scheme. The summary of the comparison of dual problems (𝐷1
𝐿 ), (𝐷

1
𝑅)

and (𝐷1
𝐻𝐾) is given in Table 1.
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5. Conclusions and open questions

The incorporation of the Henstock-Kurzweil integral into the setting of an optimal control problem allows

to develop a satisfactory theory for problems involving a non-absolute integral in the objective, particularly

the duality theory which is missed for optimal control problems with an improper Riemann integral. This

opens up a new research field, since the questions of existence, necessary optimality conditions, numerical

solutions etc. of this kind of problems are still uncleared.
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Abstract

In this work we are interested in a bi-optimal control problem for a linear elliptic state equation with

homogeneous boundary Dirichlet condition. The two controls variables correspond to the coefficient of

the diffusion term of the equation and the open set where the it is posed. From the practical point of view,

this problem can be interpreted as findingmaterials from themixture of other ones with different diffusion

properties and on optimal shape. We analyze a relaxation process, optimality conditions, and finally we

provide a numerical algorithm and we show some numerical experiments.

1. Introduction

Let Ω be a bounded open set ofℝ𝑁 considered as the domain of reference, a typical optimal design problem

consists in finding the optimal layout of two materials in order to minimize a certain cost functional ( [1],

[11], [14]). In this sense, in the case of two isotropic materials with diffusion constants 0 < 𝛼 < 𝛽 the

problem can be formulated from the mathematical point of view:

min
𝜔⊂Ω measurable

�
𝜔

𝐹(𝑥, 𝑢) 𝑑𝑥

�
−div�(𝛼𝜒𝜔 + 𝛽𝜒Ω∖𝜔)∇𝑢� = 𝑓 in Ω

𝑢 = 0 on 𝜕Ω

(1.1)

where 𝑓 is a given source. The control variable𝜔 ⊂ Ωmeasurable determineswhere thematerial𝛼 is placed.

Another typical problem in optimal design appears whenwe only dispose of onematerial and the control

variable corresponds to the place where thematerial is or not posed, i.e., the control variable determines the

shape of the optimal domain 𝜔 ⊂ Ω with the presence of possible holes. From the mathematical point of

view the problem can written by

min
𝜔⊂Ω open

�
𝜔

𝐹(𝑥, 𝑢) 𝑑𝑥

�
−Δ𝑢 = 𝑓 in 𝜔

𝑢 = 0 on 𝜕𝜔.

(1.2)

In this work we are interested in considering the couple problem where as in (1.1), we look for the op-

timal distribution of two conductive materials and, similarly to (1.2), we search the set where the diffusion

equations is posed. If we consider a constraint on the amounts of the materials used in the mixture, the

problem can be formulated as

min
𝜔𝛼,𝜔𝛽

�
𝜔𝛼∪𝜔𝛽

𝐹(𝑥, 𝑢) 𝑑𝑥

⎧

⎨
⎩

−div�(𝛼𝜒𝜔𝛼 + 𝛽𝜒𝜔𝛽)∇𝑢� = 𝑓 in 𝜔𝛼 ∪ 𝜔𝛽

𝑢 = 0 on 𝜕(𝜔𝛼 ∪ 𝜔𝛽)

𝜔𝛼, 𝜔𝛽 ⊂ Ω measurable, 𝜔𝛼 ∪ 𝜔𝛽 open, |𝜔𝛼| ≤ 𝜅𝛼, |𝜔𝛽| ≤ 𝜅𝛽,

(1.3)

with 𝜅𝛼, 𝜅𝛽 two positive constants.

The lack of classical solutions of (1.1) and (1.2) is well-known ( [10]). In this work, we obtain a relaxed

formulation of (1.3), system of optimality conditions, and we provide a numerical algorithm to solve it. We

show some numerical experiments ( [6]).
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2. Statement of the problem and relaxation

We are interested in the optimal design problems of the kind of (1.3) with Ω ⊂ ℝ𝑁 a bounded open set,

𝑓 ∈ 𝐻−1(Ω), 𝛼, 𝛽, 𝜅𝛼, 𝜅𝛽, four positive constants with 𝛼 < 𝛽, and 𝐹 ∶ Ω × ℝ → ℝ such that

𝐹(⋅, 𝑠) is measurable in Ω, ∀ 𝑠 ∈ ℝ, (2.1)

𝐹(𝑥, ⋅) is continuous inℝ, a.e. 𝑥 ∈ Ω, (2.2)

∃ 𝑟 ∈ 𝐿1(Ω), 𝛾 > 0, such that |𝐹(𝑥, 𝑠)| ≤ 𝑟(𝑥) + 𝛾|𝑠|2, ∀ 𝑠 ∈ ℝ, a.e. 𝑥 ∈ Ω. (2.3)

Since as we said in the introduction the problem has no solution in general, we look for a relaxed formu-

lation, it will be obtained using the homogenization theory. In this way we will use the following classical

result due to S. Spagnolo ( [12]). See also [11].

Theorem 2.1 Let Ω ⊂ ℝ𝑁 be a bounded open set, and 𝐴𝑛 ∈ 𝐿∞(Ω)𝑁×𝑁 a sequence of symmetric matrix func-

tions such that there exist 𝛼, 𝛽 > 0 satisfying

𝛼|𝜉|2 ≤ 𝐴𝑛(𝑥)𝜉 ⋅ 𝜉 ≤ 𝛽|𝜉|2, ∀ 𝜉 ∈ ℝ𝑁, a.e. 𝑥 ∈ Ω. (2.4)

Then, for a subsequence of 𝑛, still denoted by 𝑛, there exists a symmetric matrix function 𝐴 ∈ 𝐿∞(Ω)𝑁×𝑁, which

also satisfies (2.4), such that for every 𝑓 ∈ 𝐻−1(Ω), the solution 𝑢𝑛 of

�
−div(𝐴𝑛∇𝑢𝑛) = 𝑓 in Ω

𝑢𝑛 ∈ 𝐻1
0 (Ω),

satisfies

𝑢𝑛 ⇀ 𝑢 in 𝐻1
0 (Ω), 𝐴𝑛∇𝑢𝑛 ⇀ 𝐴∇𝑢 in 𝐿2(Ω)𝑁,

with 𝑢 the solution of

�
−div(𝐴∇𝑢) = 𝑓 in Ω

𝑢 ∈ 𝐻1
0 (Ω).

We say that 𝐴𝑛 𝐻-converges to 𝐴 and we write 𝐴𝑛
𝐻
⇀ 𝐴.

Weare interested in the casewhere the domains also varies. In this sense it is necessary to recall some results

about capacity.

Definition 2.2 For a bounded open set Ω ⊂ ℝ𝑁 and 𝐸 ⊂ Ω, we define the capacity of 𝐸 in Ω as

Cap(𝐸, Ω) ∶= inf ��
Ω

|∇𝜑|2𝑑𝑥 ∶ 𝜑 ∈ 𝐻1
0 (Ω), 𝜑 ≥ 1 a.e. in a neighbourhood of 𝐸� .

Definition 2.3 A set 𝑈 ⊂ Ω is said to be quasi-open if for every 𝜀 > 0, there exists 𝐺 ⊂ Ω open such that

Cap(𝑈Δ𝐺, Ω) < 𝜀. The complementary in Ω of a quasi-open set 𝑈 is said to be quasi-closed.

We define𝑀0(Ω) as the set of non-negative Borel measures which vanish on the null-capacity sets of Ω and

satisfy

𝜇(𝐸) = inf �𝜇(𝑈) ∶ 𝐸 ⊂ 𝑈, 𝑈 quasi-open�.

It is important to remark that the elements of𝑀0(Ω) are not necessarily Radon measures. They can take a

infinity values in compact subets of Ω. Namely, for every 𝜇 ∈ 𝑀0(Ω), there exists a unique quasi-closed set

that we will note by 𝐶𝜇 such that

𝜇 = ∞𝐶𝜇
in 𝐶𝜇, 𝜇 is 𝜎-finite in Ω ∖ 𝐶𝜇,

where∞𝐶𝜇
is the measure in𝑀0(Ω) defined as

∞𝐶𝜇
(𝐸) = �

∞ if Cap(𝐸 ∩ 𝐶𝜇, Ω) > 0

0 if Cap(𝐸 ∩ 𝐶𝜇, Ω) = 0.

An extension of Theorem 2.1 for the case where the open set Ω also varies is given by the following theorem

due to G. Dal Maso and F. Murat ( [4] ).
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Theorem 2.4 Assume Ω ⊂ ℝ𝑁 a bounded open set, 𝐴𝑛 ∈ 𝐿∞(Ω)𝑁×𝑁 symmetric, which satisfies (2.4) and

𝜇𝑛 ∈ 𝑀0(Ω). Then, for a subsequence of 𝑛 still denoted by 𝑛, there exits a symmetric matrix 𝐴 ∈ 𝐿∞(Ω)𝑁×𝑁 and

a measure 𝜇 ∈ 𝑀0(Ω) such that 𝐴𝑛 𝐻-converges to 𝐴 and for every 𝑓 ∈ 𝐻−1(Ω) the sequence of solutions of

�
−div(𝐴𝑛∇𝑢𝑛) + 𝜇𝑛𝑢𝑛 = 𝑓 in Ω

𝑢𝑛 ∈ 𝐻1
0 (Ω) ∩ 𝐿2𝜇𝑛(Ω),

(2.5)

converges weakly in 𝐻1
0 (Ω) to the unique solution of

�
−div(𝐴∇𝑢) + 𝜇𝑢 = 𝑓 in Ω

𝑢 ∈ 𝐻1
0 (Ω) ∩ 𝐿2𝜇(Ω).

(2.6)

We will write

(𝐴𝑛, 𝜇𝑛)
𝐻𝛾
⇀ (𝐴, 𝜇). (2.7)

Definition 2.5 For 𝑝 ∈ [0, 1], we denote by𝑚−(𝑝) and𝑚+(𝑝) the harmonic and arithmetic mean values of 𝛼

and 𝛽 with proportions 𝑝 and 1 − 𝑝 respectively, i.e.

𝑚−(𝑝) = �
𝑝

𝛼
+
1 − 𝑝

𝛽
�

−1

, 𝑚+(𝑝) = 𝑝𝛼 + (1 − 𝑝)𝛽.

We also define 𝐾(𝑝) as the set of symmetric matrices 𝑀 ∈ ℝ𝑁×𝑁 such that their eigenvalues 𝜆1 ≤ ⋯ ≤ 𝜆𝑁
satisfy

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑚−(𝑝) ≤ 𝜆𝑖 ≤ 𝑚+(𝑝), 1 ≤ 𝑖 ≤ 𝑁

𝑁

�

𝑖=1

1

𝜆𝑖 − 𝛼
≤

1

𝑚−(𝑝) − 𝛼
+

𝑁 − 1

𝑚+(𝑝) − 𝛼

𝑁

�

𝑖=1

1

𝛽 − 𝜆𝑖
≤

1

𝛽 −𝑚−(𝑝)
+

𝑁 − 1

𝛽 −𝑚+(𝑝)
.

Remark 2.6 The set 𝐾(𝑝) corresponds with the H-closure of two isotropic materials with fixed proportion 𝑝

and 1 − 𝑝, respectively, which was obtained in [13].

Using Theorem 2.4 we have obtained in [6] the following result adapted to problem (1.3).

Theorem 2.7 Assume Ω ⊂ ℝ𝑁 a bounded open set, 𝜇𝑛 ∈ 𝑀0(Ω), 𝜃
𝛼
𝑛 , 𝜃

𝛽
𝑛 ∈ 𝐿∞(Ω; [0, 1]), and 𝐴𝑛 ∈ 𝐿∞(Ω ∖

𝐶𝜇𝑛)
𝑁×𝑁 such that

𝜃𝛼𝑛 + 𝜃
𝛽
𝑛 ≤ 1 a.e. in Ω, 𝜃𝛼𝑛 + 𝜃

𝛽
𝑛 = 1 a.e. in Ω ∖ 𝐶𝜇𝑛 , 𝐴𝑛 ∈ 𝐾(𝜃𝛼𝑛 ) a.e. in Ω ∖ 𝐶𝜇𝑛 . (2.8)

Then, there exist a subsequence of 𝑛, still denoted by 𝑛, 𝜇 ∈ 𝑀0(Ω), 𝜃
𝛼, 𝜃𝛽 ∈ 𝐿∞(Ω, [0, 1]), and 𝐴 ∈ 𝐿∞(Ω ∖

𝐶𝜇)
𝑁×𝑁, satisfying

𝜃𝛼 + 𝜃𝛽 ≤ 1 a.e. in Ω, 𝜃𝛼 + 𝜃𝛽 = 1 a.e. in Ω ∖ 𝐶𝜇, 𝐴 ∈ 𝐾(𝜃𝛼) a.e. in Ω ∖ 𝐶𝜇, (2.9)

such that

𝜃𝛼𝑛
∗
⇀ 𝜃𝛼, 𝜃

𝛽
𝑛

∗
⇀ 𝜃𝛽 in 𝐿∞(Ω), (2.10)

and such that for every 𝑓 ∈ 𝐻−1(Ω), the sequence of solutions 𝑢𝑛 of (2.5) converges weakly in 𝐻1
0 (Ω) to the

solution 𝑢 of (2.6).

From Theorem 2.7 we can obtain the following relaxation version of (1.3).

Theorem 2.8 LetΩ ⊂ ℝ𝑁 be a bounded open set, 𝑓 ∈ 𝐻−1(Ω) and𝐹 satisfying 2.1, 2.2 and 2.3. Then a relaxed

formulation of (1.3) is given by

min�
Ω

𝐹(𝑥, 𝑢)𝑑𝑥

⎧
⎪

⎨
⎪
⎩

−div(𝐴∇𝑢) + 𝜇𝑢 = 𝑓 in Ω, 𝑢 ∈ 𝐻1
0 (Ω) ∩ 𝐿2𝜇(Ω)

𝜇 ∈ 𝑀0(Ω), 𝜃𝛼, 𝜃𝛽 ∈ 𝐿∞(Ω; [0, 1]), 𝐴 ∈ 𝐾(𝜃𝛼) a.e. in Ω ∖ 𝐶𝜇

𝜃𝛼 + 𝜃𝛽 = 1 a.e. in Ω ∖ 𝐶𝜇, 𝜃
𝛼 + 𝜃𝛽 ≤ 1 in Ω, �

Ω

𝜃𝛼𝑑𝑥 ≤ 𝜅𝛼, �
Ω

𝜃𝛽 ≤ 𝜅𝛽.

(2.11)

Juan Casado Díaz, Manuel Luna Laynez and Faustino Maestre

81



Remark 2.9 The set 𝐾(𝜃𝛼) has an explicit but complex identification, in this sense, having in mind that in the

relaxed formulation it is necessary 𝐴∇𝑢 only, we can replace this set by

Sp(𝐴) ⊂ �𝑚−(𝜃𝛼),𝑚+(𝜃𝛼)� a.e. in Ω ∖ 𝐶𝜇.

Then, an alternative formulation of Theorem 2.8 is the following.

min�
Ω

𝐹(𝑥, 𝑢)𝑑𝑥

⎧
⎪

⎨
⎪
⎩

−div(𝐴∇𝑢) + 𝜇𝑢 = 𝑓 in Ω, 𝑢 ∈ 𝐻1
0 (Ω) ∩ 𝐿2𝜇(Ω)

𝜇 ∈ 𝑀0(Ω), 𝜃𝛼 ∈ 𝐿∞(Ω ∖ 𝐶𝜇; [0, 1]), 𝐴 ∈ 𝐿∞(Ω ∖ 𝐶𝜇)
𝑁×𝑁 symmetric

Sp(𝐴) ⊂ [𝑚−(𝜃𝛼),𝑚+(𝜃𝛼)] a.e. in Ω ∖ 𝐶𝜇, |Ω ∖ 𝐶𝜇| − 𝜅𝛽 ≤ �
Ω∖𝐶𝜇

𝜃𝛼𝑑𝑥 ≤ 𝜅𝛼.

(2.12)

3. Numerical Algorithm

Wepropose a numerical algorithm to solve the relaxed problem (2.12). We have two controls in the problem,

the matrix 𝐴 and the measure 𝜇, since it can take the value+∞, in order to get an approximation let us use a

truncation corresponding to take 𝜇 as ameasurable function taking values in [0, 𝑛]with𝑛 a positive constant,

large enough, we could identify the set 𝐶𝜇 with the set {𝜇 = 𝑛}. Then,

�
Ω∖𝐶𝜇

𝜃𝛼𝑑𝑥 ≤ 𝜅𝛼 replaced by �
{𝜇<𝑛}

𝜃𝛼𝑑𝑥 ≤ 𝜅𝛼 ⇔ �
Ω

𝜃𝛼𝜒{[0,𝑛)}(𝜇)𝑑𝑥 ≤ 𝜅𝛼.

However the function (𝑠, 𝜇) ∈ [0, 1] × [0,∞) → 𝑠𝜒{[0,𝑛)}(𝜇) is not convex. Thus, it is more convenient to use

its convex hull given by

(𝑠, 𝜇) ∈ [0, 1] × [0,∞) → �𝑠 −
𝜇

𝑛
�
+

.

Thus, we replace (2.12) by

min�
Ω

𝐹(𝑥, 𝑢)𝑑𝑥

⎧
⎪
⎪

⎨
⎪
⎪
⎩

−div(𝐴∇𝑢) + 𝜇𝑢 = 𝑓 in Ω, 𝑢 ∈ 𝐻1
0 (Ω)

𝜇 ∈ 𝐿∞(Ω; [0, 𝑛]), 𝜃 ∈ 𝐿∞(Ω; [0, 1]), 𝐴 ∈ 𝐿∞(Ω)𝑁×𝑁 symmetric

Sp(𝐴) ⊂ [𝑚−(𝜃),𝑚+(𝜃)] a.e. in Ω

�
Ω

�𝜃 −
𝜇

𝑛
�
+

𝑑𝑥 ≤ 𝜅𝛼, �
Ω

�1 − 𝜃 −
𝜇

𝑛
�
+

𝑑𝑥 ≤ 𝜅𝛽.

(3.1)

The following theorem is proved in [6].

Theorem 3.1 Problem (3.1) has at least one solution for every𝑛 ∈ ℕ. Moreover, for every sequence of solutions

(𝜃𝑛, 𝐴𝑛, 𝜇𝑛) of (3.1), there exist a subsequence, still denoted by 𝑛, and a solution (𝜃̂
𝛼, 𝜃̂𝛽, 𝐴̂, 𝜇̂) of (2.11) such that

denoting by 𝑢𝑛 and 𝑢̂ the solutions of the respective state equations, we have

�

𝑢𝑛 ⇀ 𝑢̂ in 𝐻1
0 (Ω), (𝐴𝑛, 𝜇𝑛)

𝐻𝛾
⇀ (𝐴̂, 𝜇̂)

�𝜃𝑛 −
𝜇𝑛

𝑛
�
+ ∗
⇀ 𝜃̂𝛼, �1 − 𝜃𝑛 −

𝜇𝑛

𝑛
�
+ ∗
⇀ 𝜃̂𝛽 in 𝐿∞(Ω).

(3.2)

Moreover

lim
𝑛→∞

�
Ω

𝐹(𝑥, 𝑢𝑛) 𝑑𝑥 = �
Ω

𝐹(𝑥, 𝑢̂) 𝑑𝑥. (3.3)

Having in mind the convexity of the set of controls, for a given set of controls (𝜃𝑘, 𝐴𝑘, 𝜇𝑘)we search some

new controls

�

𝜃𝑘+1 = 𝜃𝑘 + 𝜀𝑘(𝜃̂ − 𝜃𝑘),

𝐴𝑘+1 = 𝐴𝑘 + 𝜀𝑘(𝐴̂ − 𝐴𝑘),

𝜇𝑘+1 = 𝜇𝑘 + 𝜀𝑘(𝜇̂ − 𝜇𝑘),

(3.4)
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such that the cost function decreases.

We propose to use a gradient descent method where the volume constraints are introduced by Lagrange

multipliers (to determine) in the cost functional, these Lagrange multipliers are obtained using the Uzawa

method. For more details for the algorithm see [6].

We put 𝑢𝑘 the solutin of

�
−div(𝐴𝑘∇𝑢𝑘) + 𝜇𝑘𝑢𝑘 = 𝑓 in Ω

𝑢𝑘 ∈ 𝐻1
0 (Ω).

(3.5)

We introduce the adjoint state 𝑝𝑘 as follow:

�
−div(𝐴𝑘∇𝑝𝑘) + 𝜇𝑘𝑝𝑘 = 𝜕𝑠𝐹(𝑥, 𝑢𝑘) in Ω

𝑝𝑘 ∈ 𝐻1
0 (Ω),

(3.6)

and the functions

⎧
⎪

⎨
⎪
⎩

𝐸+𝑘 =
|∇𝑢𝑘||∇𝑝𝑘| + ∇𝑢𝑘 ⋅ ∇𝑝𝑘

2
,

𝐸−𝑘 =
|∇𝑢𝑘||∇𝑝𝑘| − ∇𝑢𝑘 ⋅ ∇𝑝𝑘

2
.

(3.7)

We fix a number 𝑛 ∈ ℕ, large enough and note 𝐼𝑘 = ∫
Ω
𝐹(𝑥, 𝑢𝑘) 𝑑𝑥. The algorithm is the following:

• Initialization: consider 𝜆0,1, 𝜆0,2 ≥ 0, 𝜃0 ∈ 𝐿∞(Ω; [0, 1]), 𝐴0 ∈ 𝐿∞(Ω)𝑁×𝑁, Sp(𝐴0) ⊂ [𝑚−(𝜃),𝑚+(𝜃)],

𝜇0 ∈ 𝐿∞(Ω; [0, 𝑛]), 𝜌 > 0 small and ̄𝑗 ∈ ℕ.

• for 𝑘 ≥ 0, iterate until convergence as follow:

– We compute the solutions 𝑢𝑘, 𝑝𝑘 of (3.5) and (3.6) respectively, and later 𝐸
+
𝑘 , 𝐸

−
𝑘 defined by (3.7).

– We denote 𝜆0𝑘,1 = 𝜆𝑘,1, 𝜆
0
𝑘,2 = 𝜆𝑘,2, then for 𝑗 ≤ ̄𝑗 − 1, we define (𝜆

𝑗+1
𝑘,1 , 𝜆

𝑗+1
𝑘,2 ) by

⎧
⎪

⎨
⎪
⎩

𝜆
𝑗+1
𝑘,1 = �𝜆

𝑗
𝑘,1 + 𝜌��

Ω

�𝜃
𝑗
𝑘 −

𝜇
𝑗
𝑘

𝑛
�
+

𝑑𝑥 − 𝜅𝛼��

+

𝜆
𝑗+1
𝑘,2 = �𝜆

𝑗
𝑘,2 + 𝜌��

Ω

�1 − 𝜃
𝑗
𝑘 −

𝜇
𝑗
𝑘

𝑛
�
+

𝑑𝑥 − 𝜅𝛽��

+

,

(3.8)

with 𝜃
𝑗
𝑘, 𝜇

𝑗
𝑘 are defined by Proposition 4.2 in [6].

– We take 𝜆𝑘,1 = 𝜆
̄𝑗
𝑘,1, 𝜆𝑘,2 = 𝜆

̄𝑗
𝑘,2, 𝜃̂ = 𝜃

̄𝑗
𝑘, 𝜇̂ = 𝜇

̄𝑗
𝑘 and 𝐴̂ as a symmetricmatrix function in 𝐿∞(Ω)𝑁×𝑁

such that

⎧
⎪

⎨
⎪
⎩

𝐴̂∇𝑢𝑘 =
𝑚+(𝜃̂) + 𝑚−(𝜃̂)

2
∇𝑢𝑘 +

𝑚+(𝜃̂) − 𝑚−(𝜃̂)

2

|∇𝑢𝑘|

|∇𝑝𝑘|
∇𝑝𝑘 a.e. in {∇𝑝𝑘 ≠ 0}

𝐴̂∇𝑝𝑘 =
𝑚+(𝜃̂) + 𝑚−(𝜃̂)

2
∇𝑝𝑘 +

𝑚+(𝜃̂) − 𝑚−(𝜃̂)

2

|∇𝑝𝑘|

|∇𝑢𝑘|
∇𝑢𝑘 a.e. in {∇𝑢𝑘 ≠ 0} .

(3.9)

with Sp(𝐴̂) ⊂ [𝑚−(𝜃̂),𝑚+(𝜃̂)], a.e. in Ω where 𝑚−(𝜃̂) and 𝑚+(𝜃̂) the harmonic and arithmetic

mean values of 𝛼 and 𝛽with proportions 𝜃̂ and 1 − 𝜃̂ respectively.

– For 𝜀𝑘 ∈ (0, 1], we update 𝜃𝑘+1, 𝐴𝑘+1, 𝜇𝑘+1 by (3.4).

• Stop if convergence:
|𝐼𝑘−𝐼𝑘−1|

|𝐼0|
< 𝑡𝑜𝑙, for 𝑡𝑜𝑙 > 0 small.

We finish this section showing somenumerical experiments based in the algorithmsdescribed above. The

computationhasbeen carriedoutusing the free softwareFreeFem++v4.5 ( [8], available inhttp://www.freefem.org).

The figures are obtained using Paraview 5.10.1 (available at https://www.kitware.com/open-source/# par-

aview), which is free also.

We use 𝑃1-Lagrange finite element approximations for 𝑢𝑘 and 𝑝𝑘, solutions of the state and costate equa-

tions respectively, and 𝑃0-Lagrange finite element approximations for control variables, (𝜃𝑘, 𝐴𝑘, 𝜇𝑘). For all

simulations we consider Ω = [0, 1]2, 𝛼 = 1 and 𝛽 = 2.
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Fig. 1 Example 1: 𝜅𝛼 = 𝜅𝛽 =
1

2
: optimal 𝜃.

Example 1. We consider 𝐹(𝑥, 𝑢) = −𝑢, 𝑓 = 1 and 𝜅𝛼 = 𝜅𝛽 = 0.5. This problem has been solved by

several authors in the case where we only optimize the matrix 𝐴 and fixed 𝜇 ≡ 0 ( [1], [5], [7], [9]). We have

considered 𝑛 = 104, and we recover the optimal measure 𝜇 = 0 and (𝜃𝛼, 𝐴) given by the previous works,

see Figure 1.

Example 2. We consider 𝐹(𝑥, 𝑢) =
1

2
�
Ω

|𝑢 − 1|2 𝑑𝑥, 𝑓 = 1 and different values of 𝜅𝛼 and 𝜅𝛽. For the

first simulation we consider 𝜅𝛼 = 0.35 and 𝜅𝛽 = 0.3, in this case there is not enough material to fill out all

the domain Ω, thus we expect that the optimal 𝜇 ≢ 0 defines a smaller domain, see Figure 2.

Fig. 2 Example 2, 𝜅𝛼 = 0.35 and 𝜅𝛽 = 0.3: computed optimal 𝜃 (left), computed optimal 𝜇 (right).

For a second simulation we consider 𝜅𝛼 = 0.43 and 𝜅𝛽 = 0.62. In this case, as we expect all the domain

is filled out using both materials and holes do not appears, and 𝜇 ≡ 0, see Figure 3.

Finally, in Figure 4 we show the convergence of the algorithm for Example 2 in the case 𝜅𝛼 = 0.43 and

𝜅𝛽 = 0.62. For the rest of the numerical simulations the convergence evolution is similar.
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Fig. 3 Example 2, 𝜅𝛼 = 0.43 and 𝜅𝛽 = 0.62: computed optimal 𝜃 (left), computed optimal 𝜇 (right).

Fig. 4 Example 2, 𝜅𝛼 = 0.43 and 𝜅𝛽 = 0.62: cost evolution.
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1. Introduction

We consider control problems (𝑃)∞whose objective functional is in an economic context a utility functional,

𝐽(𝑥, 𝑢) = �
∞

0

𝑊(𝑥(𝑡), 𝑢(𝑡)) 𝑒−𝜚𝑡 𝑑𝑡 ⟶ 𝑀𝑎𝑥 ! (1.1)

where W is an instantaneous utility function and 𝜚 is a positive or zero discount rate.

The objective can also be an energy functional in mechanical or quantum mechanical systems, or it can be

chosen in such a way that the asymptotic and exponential controllability of the system is guaranteed,

𝐽(𝑥, 𝑢) = �
∞

0

1

2
�𝑥(𝑡)𝑇𝑄(𝑡)𝑥(𝑡) + 𝑢(𝑡)𝑇𝑅(𝑡)𝑢(𝑡) � 𝑒𝛽𝑡 𝑑𝑡 ⟶ 𝑀𝑖𝑛 ! (1.2)

where𝛽 > 0 assures togetherwith the choice of suitable state spaces the exponential stability of the solution.

All the target functionals considered have in common that they are given on an a priori infinite horizon

and a weight function occurs in the integrand of the objective.

We consider non-linear, non-autonomous dynamical systems. Consequently, one has to expect that con-

vexity assumptions, which are usually required for existence results, are not fulfilled. We take this into ac-

count by passing to an optimal control problemwith relaxed controls (𝑃̄)∞. Dual-based methods for solving

the problems are proposed. It turns out that (𝑃)∞ and (𝑃̄)∞ have a common dual problem. A Lotka-Volterra

model is presented as an application.

2. Problem statement

The following problem (𝑃̄)∞ is considered:

𝐽(𝑥, 𝜇) = �
∞

0

�
𝑈

𝑟(𝑡, 𝑥(𝑡), v) 𝑑𝜇𝑡(v)𝑒
−𝜚𝑡 𝑑𝑡 ⟶ 𝑀𝑖𝑛 !

𝑥 ∈ 𝑊
1,𝑛
2 ((0,∞), 𝜈), 𝜇 ∈ ℳ𝑈, 𝑈 ∈ 𝑐𝑜𝑚𝑝(ℝ𝑚),

𝑥̇(𝑡) = �
𝑈

𝑓(𝑡, 𝑥(𝑡), v)𝑑𝜇𝑡(v) a.e. on (0,∞), 𝑥(𝑡0) = 𝑥0.

All integrals are to be understood in the Lebesgue sense. The control domain 𝑈 is assumed to be compact.

𝑊
1,𝑛
2 ((0,∞), 𝜈) is a weighted Sobolev-space and relaxed controls are taken from a family of probability mea-

suresℳ𝑈, introduced in the next section.

3. Spaces of states and controls

3.1. Control spaces

The relaxed controls 𝜇 are taken from a regular family of probability measuresℳ𝑈, [4].

Definition 3.1 A relaxed control {𝜇𝑡}𝑡∈ℝ+ is a family of probability measures that has the following proper-

ties:

1. supp 𝜇𝑡 ⊆ 𝑈 a.e. on ℝ+,

2. 𝜇𝑡 is a probability measure on 𝑈 a.e. on ℝ+,
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3. For all continuous functions with compact support, 𝑔 ∈ 𝐶𝑐(ℝ+ × 𝑈), the function

𝑡 ⟶ �

𝑈

𝑔(𝑡, 𝑣) 𝑑𝜇𝑡(𝑣)

is Lebesgue - measurable.

The motivation for introducing relaxed controls is given by the following arguments:

Remark 3.2 1. In general nonlinear systems cannot be stabilized using a continuous closed loop control

𝑈(𝑥), even if each state separately can be driven asymptotically to the origin.

2. Sometimes it can be stabilized with a continuous closed loop relaxed control.

3. Relaxed control-type stabilization is usedboth in theory and in practice; themethod is knownas dither-

ing, see [1].

3.2. State spaces

A weighted Sobolev space𝑊
1,𝑛
2 ((0,∞), 𝜈)with a suitable weight function 𝜈 is chosen as the state space.

The introduction of the weighted Sobolev space𝑊
1,𝑛
2 ((0,∞), 𝜈) is motivated by the following facts. Density

and weight functions appear naturally in the objective functionals. If a classical Sobolev space𝑊
1,𝑛
2 (0, 𝑇) is

usually used as state space for control problemswith bounded time interval [0, 𝑇], the limit transition𝑇 → ∞

leads in a natural way to an improper integral

lim
𝑇→∞

𝑇

�

0

𝑓(𝑥) 𝑑𝑥

which, in general not coincides with the Lebesgue - integral, see [9].

While in the case of bounded intervals the elements of the Banach space𝑊1
1 ((0, 𝑇)) have a continuous repre-

sentative and thus the space𝑊1
1 ((0, 𝑇)) can be identified with the space of absolutely continuous functions

𝐴𝐶((0, 𝑇)), the continuation of this space to𝐴𝐶𝑙𝑜𝑐((0,∞)) loses the Banach space structure. This is an impor-

tant theoretical motivation to switch toweighted Sobolev spaces as Banach spaces in the problem definition.

Definition 3.3 (weight function/density function) Letℝ+ ∶= [0,∞). A continuous function 𝜈 ∶ ℝ+ → ℝ+

is called weight function if 𝜈 and 𝜈−1 ∈ 𝐿1,𝑙𝑜𝑐(ℝ+). If for a weight function 𝜈 also holds

�
ℝ+

𝜈(𝑡)𝑑𝑡 < ∞

we call this density function. Otherwise we name it proper weight function.

Definition 3.4 Let𝑀𝑛(ℝ+) be the set of measurable vector functions onℝ+. By means of a weight function

𝜈, we define the weighted Lebesgue space

𝐿𝑛2(ℝ+, 𝜈) = � 𝑥 ∈ 𝑀𝑛(ℝ+) | ‖𝑥‖
2
𝐿𝑛2(ℝ+,𝜈)

∶= �
ℝ+

𝑥𝑇(𝑡)𝑥(𝑡)𝜈(𝑡)𝑑𝑡 < ∞� (3.1)

the weighted Sobolev space

𝑊
1,𝑛
2 (ℝ+, 𝜈) = � 𝑥 ∈ 𝑀𝑛(ℝ+ ) � 𝑥 ∈ 𝐿𝑛2(ℝ+, 𝜈) , 𝒟𝑥 ∈ 𝐿𝑛2(ℝ+, 𝜇) �. (3.2)

where𝒟𝑥 denotes the distributional derivative (shortly denoted by 𝑥′), see [8], p. 11 ff. With the introduced

norm 𝐿𝑛2(ℝ+, 𝜈) becomes a Hilbert space. With

‖𝑥‖
𝑊

1,𝑛
2 (ℝ+,𝜈)

= ‖𝑥‖
𝐿𝑛2(ℝ+,𝜈)

+ ‖𝒟𝑥‖
𝐿𝑛2(ℝ+,𝜈)

, (3.3)

𝑊
1,𝑛
2 (ℝ+, 𝜈) becomes a Hilbert space as well (this can be confirmed analogously to [8].

The following properties of functions in weighted Sobolev spaces should be mentioned here explicitly.
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Remark 3.5 1. Let 𝑥 ∈ 𝑊1
2 (ℝ+, 𝜈), ‖𝑥‖ ≤ 𝐾, 𝜈(𝑡) = 𝑒𝛽𝑡, 𝛽 > 0, then 𝑥 is exponentially stable,

|𝑥(𝑡)| ≤ �|𝑥(0)| + 𝐶𝐾√𝑡�𝑒
−
𝛽

2
𝑡
.

2. Let 𝑥 ∈ 𝑊1
2 (ℝ+, 𝜈) and 𝑦 ∈ 𝑊1

2 (ℝ+, 𝜈
−1), 𝜈(𝑡) = 𝑒𝛽𝑡, 𝛽 > 0, then 𝑥 𝑦 is asymptotically stable,

𝑥 𝑦 ∈ 𝑊1
1 (ℝ+) and lim

𝑡→∞
𝑥(𝑡) 𝑦(𝑡) = 0.

For the proofs see [11].

4. Optimality notions

In comparison to the literature, see [3], [5], where overtaking orweakly overtaking optimality ismainly used

as optimality criterion, the classical comparison of Lebesgue integrals in the objective of ̄(𝑃) is used here.

The admissible domain𝒜 of (𝑃̄)∞ is given by

𝒜 ∶= �(𝑥, 𝜇) ∈ 𝑊
1,𝑛
2 (ℝ+, 𝜇) ×ℳ𝑈 �

𝑥′(𝑡) = ∫
𝑈
𝑓(𝑡, 𝑥(𝑡), v)𝜇𝑡(v) 𝑎.𝑒.ℝ+,

𝑥(0) = 𝑥0, 𝜇 ∈ ℳ𝑈

�.

Definition 4.1 Let the processes (𝑥, 𝜇), (𝑥∗, 𝜇∗) ∈𝒜be given. Then the pair (𝑥∗, 𝜇∗) is called globally optimal

in the sense of criterion L, if 𝐽(𝑥∗, 𝜇∗) < ∞ and for any pair (𝑥, 𝜇) ∈ 𝒜we have

𝐽(𝑥∗, 𝜇∗) ≤ 𝐽(𝑥, 𝜇).

Under conditions that ensure the existence of the solution, cf. also the contribution by I. Dikariev at the

FGS-Conference On Optimization, Gijon, Spain, (2024) , entitled

Existence Theorem for Relaxed Control Problems on Infinite Time Horizon Utilizing Weight Functions

we treat the problem ̄(𝑃)with dualmethods. Here, wemainly refer to the ideas of Carathéodory and Klötzler

for the construction of a dual problem. This dual based approach has already been used for special optimal

control problems with infinite horizon in [10,13].

5. Duality

We use a very general scheme for the construction of a dual problem, which goes back to Klötzler, [6]:

Definition 5.1 Let real functionals 𝐹 ∶ 𝑋 → ℝ̄ ∶= ℝ ∪ +∞ and 𝐺 ∶ 𝑌 → ℝ̄ with arbitrary sets 𝑋 and 𝑌 be

given. The problem

(D) 𝐺(𝑦) → sup! 𝑤.𝑟.𝑡. 𝑦 ∈ 𝑌

is called dual program to the primary program

(P) 𝐹(𝑥) → inf! 𝑤.𝑟.𝑡. 𝑥 ∈ 𝑋,

if the inequality

𝐺(𝑦) ≤ 𝐹(𝑥) ∀ 𝑥 ∈ 𝑋, ∀ 𝑦 ∈ 𝑌

or equivalently

sup
𝑦∈𝑌

𝐺(𝑦) ≤ inf
𝑥∈𝑋

𝐹(𝑥) (5.1)

holds true. Relation (5.1) is called weak duality relation. If even the equality holds in (5.1), we say that the

strong duality relation holds between both problems.

The construction is carried out in the following steps:

Step 1: Partition of the admissible set 𝒜 = 𝑋0 ∩ 𝑋1
Step 2: Define a set 𝑌 and a real functionalΦ(⋅, ⋅) ∶ 𝑋0 × 𝑌 → ℝ̄+ with

inf
(𝑥,𝜇)∈𝒜

𝐽(𝑥, 𝜇) = inf
(𝑥,𝜇)∈𝑋0

sup
𝑆∈𝑌

Φ((𝑥, 𝜇), 𝑆) (equivalence relation)

≥ sup
𝑆∈𝑌

inf
(𝑥,𝜇)∈𝑋0

Φ((𝑥, 𝜇), 𝑆)
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Step 3: For a fixed element 𝑆 ∈ 𝑌 one sets

𝐺(𝑆) ∶= inf
(𝑥,𝜇)∈𝑋0

Φ((𝑥, 𝜇), 𝑆).

We realize the scheme and construct a dual Program for (P̄)∞, with 𝜈(𝑡) = 𝑒𝛽𝑡, 𝛽 > 0

Step 1: Partition of the admissible set 𝒜 = 𝑋0 ∩ 𝑋1

𝑋0 ∶= �(𝑥, 𝜇) ∈ 𝑊
1,𝑛
2 (ℝ+, 𝜈) ×ℳ𝑈 | 𝑥(0) − 𝑥0 = 0, 𝜇 ∈ ℳ𝑈 �

𝑋1 ∶= �(𝑥, 𝜇) ∈ 𝑊
1,𝑛
2 (ℝ+, 𝜈) ×ℳ𝑈 | 𝑥

′(𝑡) − ∫
𝑈
𝑓(𝑡), 𝑥(𝑡), v)𝑑𝜇𝑡(v) = 0 a.e. on (0,∞)�

Step 2: One possible choice forΦ is a Lagrange - functional

Φ1((𝑥, 𝜇), 𝑆) = 𝐽(𝑥, 𝜇) + �𝑥′(⋅) − ∫
𝑈
𝑓(𝑡, 𝑥(⋅), 𝑣)𝑑𝜇𝑡(𝑣)�������������������

∈𝐿𝑛2((0,∞),𝑒𝛽𝑡)

, ∇𝜉𝑆(⋅, 𝑥(⋅))�������

∈𝐿𝑛2((0,∞),𝑒−𝛽𝑡)

�

where⟨⋅ , ⋅⟩ is the scalar product in 𝐿𝑛2(ℝ+), which satisfies

⟨𝜁 , 𝑝 ⟩ ≤ ‖𝜁‖𝐿𝑛2((0,∞),𝑒𝛽𝑡)‖𝑝‖𝐿𝑛2((0,∞),𝑒−𝛽𝑡).

Then we define the set 𝑌 by the following setting:

𝑆 ∈ 𝑌 ⇔ 𝑆(𝑡, 𝜉) = 𝑦𝑇(𝑡)𝜉 and 𝑦 ∈ 𝐿𝑛2(ℝ+, 𝜈
−1), (5.2)

Φ1((𝑥, 𝜇), 𝑦) = 𝐽(𝑥, 𝜇) + �𝑥′(⋅) − �
𝑈

𝑓(⋅, 𝑥(⋅), v)𝑑𝜇𝑡(v), 𝑦(⋅)�

𝐿𝑛2(ℝ+)

(5.3)

Step 3: Formulation of a dual program (integated version):

(D1) ∶ 𝐺(𝑦) ∶= inf
(𝑥,𝜇)∈𝑋0

Φ1((𝑥, 𝜇), 𝑦) → max! w.r.t. 𝑦 ∈ 𝐿𝑛2(ℝ+, 𝜈
−1).

We can identify the idea of choosing a suitable functionalΦ from Carathéodory’s approach as well, see [2,3].

It consists of adding an invariant integral to the integral in the objective. Invariancemeans that the added in-

tegral depends on the values of the function 𝑆 on the boundary of [0,∞), i.e. on 𝑆(0, 𝑥0), only. More precisely,

by choosing the function space 𝑌 it must be ensured that

�
∞

0

[�
𝑈

𝑟(𝑡, 𝑥(𝑡), v) 𝑑𝜇𝑡(v) 𝑒
𝛽𝑡 −

𝑑

𝑑𝑡
𝑆(𝑡, 𝑥(𝑡))] 𝑑𝑡 = 𝐽(𝑥, 𝜇) + 𝑆(0, 𝑥0)

= �
∞

0

[�
𝑈

𝑟(𝑡, 𝑥(𝑡), v) 𝑑𝜇𝑡(v) 𝑒
𝛽𝑡 − [∇𝑇𝜉𝑆(𝑡, 𝑥(𝑡))�

𝑈

𝑓(𝑡, 𝑥(𝑡), v)𝑑𝜇𝑡(v) + 𝑆𝑡(𝑡, 𝑥(𝑡))]𝑑𝑡.

for all (𝑥, 𝜇) ∈ 𝒜. Then we conclude

𝐽(𝑥, 𝜇) + 𝑆(0, 𝑥0) ≥ −�
∞

0

[ℋ(𝑡, 𝑥(𝑡), ∇𝑇𝜉𝑆(𝑡, 𝑥(𝑡))) + 𝑆𝑡(𝑡, 𝑥(𝑡))] 𝑑𝑡

with the Hamiltonian function

ℋ(𝑡, 𝜉, ∇𝜉𝑆(𝑡, 𝜉)) = sup{𝐻(𝑡, 𝜉, v, 𝑆𝜉(𝑡, 𝜉)) | v ∈ 𝑈}, (5.4)

and

𝐻(𝑡, 𝜉, v, 𝑆𝜉(𝑡, 𝜉)) = −𝑟(𝑡, 𝜉, v)𝑒𝛽𝑡 + ∇𝑇𝜉𝑆(𝑡, 𝜉)𝑓(𝑡, 𝜉, v).

This leads together with defect function

Λ𝑆(𝑡, 𝜉) ∶= ℋ(𝑡, 𝜉, ∇𝜉𝑆(𝑡, 𝜉)) + 𝑆𝑡(𝑡, 𝜉)
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in the Hamilton- Jacobi equation and

Λ𝑆(𝑡, 𝑥
∗(𝑡)) = 0 on [0,∞)

to the following variant of the dual problem (pointwise version):

(D2) G2(S) = −𝑆(0, 𝑥0) ⟶ max !

with respect to 𝑆 ∈ 𝑌

Λ𝑆(𝑡, 𝜉) ≤ 0 ∀𝑡 ∈ [0,∞), ∀𝜉

Λ𝑆(𝑡, 𝑥
∗(𝑡)) = 0 ∀𝑡 ∈ [0,∞).

Remark 5.2 The Hamiltonian for (𝑃)∞ and (𝑃̄)∞ coincide, since

ℋ(𝑡, 𝜉, ∇𝜉𝑆(𝑡, 𝜉)) = max{𝐻(𝑡, 𝜉, 𝑣, 𝑆𝜉(𝑡, 𝜉)) | 𝑣 ∈ 𝑈}

= max{�
𝑈

𝐻(𝑡, 𝜉, v, 𝑆𝜉(𝑡, 𝜉))𝑑𝜇𝑡(v) | 𝜇𝑡 ∈ 𝑃𝑈}

where 𝑃𝑈 is the set of probabilitymeasure concentrated on𝑈, see [4]. We conclude that both problems, (𝑃̄)∞
and (𝑃)∞, have a same dual problem (D2),

sup((D2)) ≤ inf((P̄)∞) ≤ inf((P)∞).

6. Applications

The uncontrolled bilinear Lotka-Volterra model considered is

𝑥′1(𝑡) = 𝑥1(𝑡) [𝑎 − 𝑏𝑥2(𝑡)]

𝑥′2(𝑡) = 𝑥2(𝑡) [−𝑐 + 𝑑𝑥1(𝑡)] .

6.1. A linearized Lotka-Volterra model

First we transform the non-trivial equilibrium (
𝑐

𝑑
,
𝑎

𝑏
) = (𝑥̄1, 𝑥̄2) of the uncontrolled equilibrium to the zero

point. Then we linearize the system around the uncontrolled steady state and look for a bounded control

(𝑢1, 𝑢2)which stabilizes the system exponentially. We arrive at a problem of the following type.

(Q) ∶ 𝐽(𝑥, 𝑢) =

∞

�

0

1

2
�(𝑥𝑇(𝑡)𝑥(𝑡) + 𝑢𝑇(𝑡)𝑢(𝑡))� 𝑒𝛽𝑡𝑑𝑡 ⟶ min !

with respect to

(𝑥, 𝑢) ∈ 𝑊
1,2
2 (ℝ+, 𝑒

𝛽𝑡) × 𝐿22(ℝ+, 𝑒
𝛽𝑡), 𝛽 > 0

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑢(𝑡) a. e. onℝ+ , 𝑥(0) = 𝑥0 ,

𝑢(𝑡) ∈ 𝑈 ∶= [−1, 1] × [−1, 1] a. e. onℝ+ .

For the detailed assumptions and settings see [7,13]. The corresponding dual problem (DQ) (integrated ver-

sion) is

(DQ) ∶ 𝐺(𝑦) ∶= −

∞

�

0

�
1

2
�𝑦′(𝑡) + 𝐴𝑇𝑦(𝑡)�

𝑇
�𝑦′(𝑡) + 𝐴𝑇𝑦(𝑡)� + 𝜃(𝑡, 𝑦(𝑡))� 𝑒−𝛽𝑡𝑑𝑡 − 𝑥𝑇0𝑦(0) ⟶ max !

w. r. t.

𝑦 ∈ 𝑊
2,2
2 (ℝ+, 𝑒

−𝛽𝑡) with 𝑥0 = 𝑦′(0) + 𝐴𝑇𝑦(0),

with

𝜃(𝑡, 𝑦(𝑡)) =

2

�

𝑖=1

−
1

2
𝜎2𝑖 (𝑡, 𝑦(𝑡)) + 𝜎𝑖(𝑡, 𝑦(𝑡))𝑦𝑖(𝑡) and

𝜎𝑖(𝑡, 𝑦(𝑡)) = min �max �−1, 𝑦𝑖(𝑡)𝑒
−𝛽𝑡� , 1� 𝑒𝛽𝑡
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Remark 6.1 1. In the general construction of the dual problem, (5.2),

i.e. 𝑆(𝑡, 𝜉) = 𝑦𝑇(𝑡)𝜉 and 𝑦 ∈ 𝑊
2,2
2 (ℝ+, 𝜈

−1) is used.

2. The duality construction is carried out with the Lagrange functional (5.3).

3. It can be shown that the Hamilton function (5.4) is smooth.

4. In the dual problem, the inverse weight function appears in the objective functional as well as in the

weighted Sobolev space.

5. (DQ) has an optimal solution.

6. Spectral methods can be applied to approximate the solution.

6.2. A controlled bi-linear Lotka-Volterra model

We transform the steady state of the uncontrolled equilibrium (
𝑐

𝑑
,
𝑎

𝑏
) = (𝑥̄1, 𝑥̄2) to the zero point and look for

a bounded control (𝑢1, 𝑢2) which stabilizes the non-linear system exponentially. We arrive at the following

problem:

(Q̃) ∶ 𝐽(𝑥̃, 𝑢) = �
∞

0

1

2
�𝑥̃(𝑡)𝑇𝑄(𝑡)𝑥̃(𝑡) + 𝑢(𝑡)𝑇𝑅(𝑡)𝑢(𝑡) � 𝑒𝛽𝑡 𝑑𝑡 ⟶ 𝑀𝑖𝑛 !

w.r.t.

�𝑥̃, 𝑢� ∈ 𝑊
1,2
2 (ℝ+, 𝑒

𝛽𝑡) × 𝐿22(ℝ+, 𝑒
𝛽𝑡), 𝛽 > 0

with

𝑥̃′1(𝑡) = �𝑥̃1(𝑡) +
𝑐

𝑑
� [−𝑏𝑥̃2(𝑡) − 𝑢1(𝑡)] a.e. on ℝ+,

𝑥̃′2(𝑡) = �𝑥̃2(𝑡) +
𝑎

𝑏
� [𝑑𝑥̃1(𝑡) − 𝑢2(𝑡)] a.e. on ℝ+,

𝑥̃1(0) = 𝑥01 −
𝑐

𝑑
, 𝑥̃2(0) = 𝑥02 −

𝑎

𝑏

For the duality construction we now use a nonlinear ansatz for 𝑆,

𝑆(𝑡, 𝜉) ∶= 𝑦1(𝑡) ln �𝜉1 +
𝑐

𝑑
� + 𝑦2(𝑡) ln �𝜉2 +

𝑎

𝑏
�, 𝑦 ∈ 𝑊

1,2
2 (ℝ+, 𝑒

−𝛽𝑡) (6.1)

Then

Φ2((𝑥̃, 𝑢), 𝑆) = 𝐽(𝑥, 𝑢) + �
∞

0

�𝑥̃′1(𝑡) − �𝑥̃1(𝑡) +
𝑐

𝑑
� [−𝑏𝑥̃2(𝑡) − 𝑢1(𝑡)] � 𝑆𝜉1(𝑡, 𝑥̃(𝑡)) 𝑑𝑡

+ �
∞

0

�𝑥̃′2(𝑡) − �𝑥̃2(𝑡) +
𝑎

𝑏
� [𝑑𝑥̃1(𝑡) − 𝑢2(𝑡)] � 𝑆𝜉2(𝑡, 𝑥̃(𝑡)) 𝑑𝑡

= 𝐽(𝑥̃, 𝑢) + �
∞

0

�(ln(𝑥̃1 +
𝑐

𝑑
))′(𝑡) − [−𝑏𝑥̃2(𝑡) − 𝑢1(𝑡)] � 𝑦1(𝑡) 𝑑𝑡 (6.2)

+ �
∞

0

�(ln(𝑥̃2 +
𝑎

𝑏
))′(𝑡) − [𝑑𝑥̃1(𝑡) − 𝑢2(𝑡)] � 𝑦2(𝑡) 𝑑𝑡

is well defined and all integrals exist. The final construction of the dual problem in integrated form is similar

to that introduced in [7,11] and [13].

Remark 6.2 1. In the general construction of the dual problem, the nonlinear ansatz of 𝑆, (6.1), is used.

2. The duality construction is carried out with the Lagrange functionalΦ2 in (6.2).

3. In the dual problem, the inverse weight function 𝜈−1 appears in the objective functional as well as in

the weighted Sobolev space.

4. Similar to [13] spectral methods can be applied to approximate the solution of the dual problem.
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Abstract

We provide maximal 𝐿𝑝-regularity up to the level 𝑇 < ∞ or 𝑇 = ∞ of an abstract evolution equation

in Banach space, which captures boundary closed-loop parabolic systems, defined on a bounded multidi-

mensional domain, with finitely many boundary control vectors and finitely many boundary sensors/actu-

ators. Illustrations given include classical parabolic equations as well as Navier-Stokes equations in 𝐿𝑝(Ω)

or 𝐿
𝑞
𝜎(Ω), respectively.

1. The case of boundary controls and boundary sensors/observers, [LPT.6]

Overview

The topic of maximal 𝐿𝑝-regularity was (apparently) first studied in the fundamental paper [Sim] (in Italian)

published in 1964. In it, the author considers the generator 𝐴 of a s.c. (𝐶0) semigroup 𝑒𝐴𝑡 on the Hilbert

space 𝐻 and shows a definitive result in this setting: that 𝑒𝐴𝑡 possesses maximal 𝐿𝑝-regularity up to 𝑇 on

the Hilbert space 𝐻 if and only if it is analytic (holomorphic); with 𝑇 = ∞ in case 𝑒𝐴𝑡 is, moreover, (expo-

nentially) uniformly stable. The sophisticated, technical proof was based (as stated in the paper’s title) on

the theory of singular integrals. This was truly a pioneering paper that stimulated an intense subsequent

research activity, both at the abstract Banach space setting as well as at the 𝐿𝑝 or Hölder spaces settings

for the class of (parabolic) equations. At the general Banach space setting, it was established that maxi-

mal 𝐿𝑝-regularity of the s.c. semigroup 𝑒𝐴𝑡 implies that 𝑒𝐴𝑡 is analytic, but not conversely. To date known

counterexamples exist in abstract Banach spaces setting, see [HNVW.2, Section 17.4.c]. Instead, the PDE-

framework includes: either dynamics defined on the entire multidimensional space; or on half-spaces; or

on domains exterior to multidimensional bounded domains; or else on a multidimensional domain Ω, with

possibly, open-loop inhomogeneous boundary terms on 𝜕Ω in Triebel-Lizorkin spaces, see [DHP]. Similar

results are available for Pseudodifferential setting as well. The list of significant papers will likely exceed

the length permitted for this extended abstract. Thus, we must constrain ourselves to quote only a few.

In contrast, the emphasis of the present extended abstract is quite different. While the setting is still at

the abstract Banach space level, the modeled dynamics intend to capture closed-loop boundary feedback

(parabolic) problems, with either (i) finitelymany boundary controls and interior sensors/actuators [LPT.5];

or else (ii) with finitely many boundary controls and boundary sensors/actuators [LPT.6]. The assumption

imposed on the two abstract models are automatically satisfied by the intended, motivating applications.

These include, in addition to classical parabolic dynamics, physical important dynamics such as Navier-

Stokes equations (particularly in dimension 𝑑 = 3), Boussinesq systems, Magnetohydrodynamics (MHD)

systems, etc [LPT.1, LPT.2, LPT.3, LPT.4, LPT.5, LPT.7]. Here maximal 𝐿𝑝-regularity is first established in the

Banach space 𝐿𝑞(Ω), 1 < 𝑞 < ∞, or even a suitable Besov space 𝐵
2−2/𝑝
𝑞,𝑝 (Ω)which does not recognize bound-

ary conditions (1 < 𝑝 <
2𝑞

2𝑞−1
, 𝑞 > dimension 𝑑). Next, such maximal 𝐿𝑝 regularity is exploited to obtain

(well-posedness as a nonlinear semigroup and) uniform stabilization of the full nonlinear feedbackmodel in

the vicinity of an unstable equilibrium solution.

1.1. Abstract setting

The focus of the present section is the operator

𝐴
𝐹
= −𝐴(𝐼 − 𝐺𝐹) ∶ 𝑌 ⊃ 𝒟(𝐴𝐹) ⟶ 𝑌 (1.1a)

�
𝒟(𝐴

𝐹
) = {𝑥 ∈ 𝑌 ∶ (𝐼 − 𝐺𝐹)𝑥 ∈ 𝒟(𝐴)} . (1.1b)
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and corresponding abstract equation

𝑦𝑡 = 𝐴𝐹𝑦 = −𝐴(𝐼 − 𝐺𝐹)𝑦 (1.2)

under the following standing assumptions:

(H.1) 𝑌 is a reflexive Banach space.

(H.2) −𝐴 ∶ 𝑌 ⊃ 𝒟(𝐴) ⟶ 𝑌 is the maximal dissipative generator of a 𝐶0-contraction semigroup 𝑒−𝐴𝑡 on

𝑌, 𝑡 ≥ 0, which possesses the maximal 𝐿𝑝(0, 𝑇; 𝑌)-regularity property up to 𝑇, either 0 < 𝑇 < ∞; or else

𝑇 = ∞, 1 < 𝑝 < ∞; in symbols [Dore.1]

−𝐴 ∈ 𝑀𝑅𝑒𝑔 (𝐿𝑝(0, 𝑇; 𝑌)) , either 0 < 𝑇 < ∞; or else 𝑇 = ∞, 1 < 𝑝 < ∞;

so that, a fortiori, the strongly continuous (s.c.) semigroup 𝑒𝐴𝑡 is analytic (holomorphic) on 𝑌. At the price

(harmless for the present note) of replacing 𝐴 with a suitable translation to the right (𝐴𝑘 = 𝐴 + 𝑘2𝐼), the

fractional powers 𝐴𝜃, 0 < 𝜃 < 1, of 𝐴 are well-defined [Pazy].

(H.3) 𝑈 is another Banach space and 𝐺 is the (“Green”) linear operator satisfying

𝐺 ∶ continuous 𝑈 ⟶ 𝒟(𝐴𝛼0) ⊂ 𝑌, or 𝐴𝛼0𝐺 ∈ ℒ(𝑈; 𝑌) (1.3)

for some 0 < 𝛼0 < 1.

(H.4) 𝐹 is a linear (“feedback”) operator of the form

𝐹𝑧 = ⟨𝛾𝑧, 𝑤⟩
𝑈
𝑔, 𝑤, 𝑔 ∈ 𝑈 (1.4)

where 𝛾 is a linear (trace) operator

𝛾 ∶ continuous 𝒟(𝐴𝜎) ⊂ 𝑌 ⟶ 𝑈, 0 < 𝜎 < 𝛼
0
< 1 (1.5)

so that

𝐹 ∶ continuous𝒟(𝐴𝜎) ⊂ 𝑌 ⟶ 𝑈. (1.6)

�In the applications we shall take 𝐹𝑧 =

𝐾

�

𝑘=0

⟨𝛾𝑧, 𝑤𝑘⟩𝑈 𝑔𝑘, 𝑤𝑘, 𝑔𝑘 ∈ 𝑈�

Remark 1.1 𝐹 is thus unbounded as an operator on 𝑌. For the similar problem considered in [LPT.5] in JDE,

𝐹 was a bounded operator on 𝑌. The purpose of this work is to extend to the operator (1.1) the result on

maximal 𝐿𝑝(0, 𝑇; 𝑌)-regularity of [LPT.5], 𝑇 ≤ ∞. The proof of [LPT.5] requires 𝐹 ∈ ℒ(𝑌; 𝑈). Thus, the proof

of the present note is quite different from that in [LPT.5]. See [Las] for abstract parabolic boundary problems.

With reference to assumption (H.3) centered on the constant 0 < 𝛼
0
< 1, we introduce two Banach

spaces, where 0 ∈ 𝜌(𝐴),

ℰ ≡ 𝒟(𝐴𝛼0), with norm ‖𝑥‖ℰ ≡ ‖𝑥‖𝒟(𝐴𝛼0) ≡ ‖𝐴𝛼0𝑥‖𝑌 , (1.7)

𝐸 ≡ �𝒟(𝐴∗(1−𝛼0))�
′
with norm ‖𝑧‖𝐸 ≡ ‖𝑧‖

�𝒟(𝐴
∗(1−𝛼0))�

′ = �𝐴−(1−𝛼0)𝑧�
𝑌
. (1.8)

Accordingly we introduce the following holomorphic interpolation spaces

[ℰ, 𝐸]𝜃 ≡ �𝒟 �𝐴𝛼0� , �𝒟 �𝐴∗(1−𝛼0)��
′

�
𝜃

= �
𝒟�𝐴𝛼0−𝜃� , 0 ≤ 𝜃 ≤ 𝛼

0
,

�𝒟 �𝐴∗(𝜃−𝛼0)��
′
, 𝛼

0
≤ 𝜃 ≤ 1.

(1.9a)

(1.9b)

since 𝛼
0
(1 − 𝜃) − (1 − 𝛼

0
)𝜃 = 𝛼

0
− 𝜃, with corresponding norm

‖𝑥‖[ℰ, 𝐸]𝜃
= ‖𝑥‖

𝒟(𝐴
𝛼0−𝜃)

= �𝐴𝛼0−𝜃𝑥�
𝑌
, 0 ≤ 𝜃 ≤ 𝛼

0
, (1.10)

‖𝑧‖[ℰ, 𝐸]𝜃
= ‖𝑧‖

�𝒟(𝐴
∗(𝜃−𝛼0))�

′ = �𝐴−(𝜃−𝛼0)𝑧�
𝑌
, 𝛼

0
≤ 𝜃 ≤ 1. (1.11)
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𝐸 ≡ �𝒟 �𝐴∗(1−𝛼0)��
′

𝑌

ℰ ≡ 𝒟(𝐴𝛼0)

𝒟(𝐴)

𝐴̂

𝐴

Fig 1: Symbolic illustration of the spaces and operators involved.

1.2. Main Result

Theorem 1.2 (a) Let 0 < 𝑇 < ∞. The operator 𝐴𝐹 in (1.1) defined on 𝑌 generates a s.c. semigroup 𝑇𝐹(𝑡),

which is analytic on 𝑌 and, moreover, possesses the maximal 𝐿𝑝(0, 𝑇; 𝑌)-regularity on 𝑌, 1 < 𝑝 < ∞, 𝑇 <

∞: the map

𝑓 → (𝐿𝑓)(𝑡) = �
𝑡

0

𝑒𝐴𝐹(𝑡−𝑠)𝑓(𝑠)𝑑𝑠 continuous 𝐿𝑝(0, 𝑇; 𝑌) → 𝐿𝑝(0, 𝑇; 𝒟(𝐴𝐹));

in symbols, [Dore.1]

𝐴𝐹 ∈ 𝑀𝑅𝑒𝑔 (𝐿𝑝(0, 𝑇; 𝑌)) , 1 < 𝑝 < ∞, 𝑇 < ∞. (1.12a)

(b) Let 𝑇 = ∞. Assume further that the s.c. analytic semigroup 𝑇𝐹(𝑡) is uniformly stable on 𝑌: there exist

constants𝑀 ≥ 1, 𝛿 > 0, such that

�𝑇𝐹(𝑡)�ℒ(𝑌)
≤ 𝑀𝑒−𝛿𝑡, 𝑡 ≥ 0. (1.12b)

Then, 𝑇𝐹(𝑡) possesses the maximal 𝐿𝑝(0,∞; 𝑌)-regularity on 𝑌, 1 < 𝑝 < ∞, 𝑇 = ∞; in symbols [Dore.1]

𝐴𝐹 ∈ 𝑀𝑅𝑒𝑔 (𝐿𝑝(0,∞; 𝑌)) , 1 < 𝑝 < ∞, 𝑇 = ∞. (1.12c)

Actually, in the each case (a) and (b), 𝑇𝐹(𝑡) extends/restricts with the same properties - as s.c. analytic,

uniformly stable (case (b)) semigroup, with maximal 𝐿𝑝-regularity (0 < 𝑇 < ∞ in case (a), 𝑇 = ∞ in case

(b)) - on the space 𝐸 in (1.8), on the space ℰ in (1.7), as well as on all holomorphic interpolation spaces

(1.9)-(1.11).

The proof of the present Theorem 1.2 with 𝐹 unbounded as in (1.6), 𝐹 ∈ ℒ(𝒟(𝐴𝜎), 𝑈) given in [LPT.6], is

completely different from the one in [LPT.5]. It is inspired by a proof in [LT.2] about analyticity of a specific

parabolic semigroup in an Hilbert setting. It consists of three steps, (i) first, showing 𝐿𝑝-maximal regularity

in the larger space 𝐸 in (1.8); next, (ii) showing 𝐿𝑝-maximal regularity in the smaller space ℰ in (1.7); and

finally, (iii) showing 𝐿𝑝-maximal regularity on 𝑌 by interpolation.

In contrast, the proof of [LPT.5] for 𝐹 ∈ ℒ(𝑌; 𝑈) was based on considering 𝐴∗𝐹 rather than 𝐴𝐹. With

𝐹 ∈ ℒ(𝑌; 𝑈) and 𝐺 satisfying 𝐴𝛾𝐺 ∈ ℒ(𝑈; 𝑌) for some 𝛾, 0 < 𝛾 < 1, the expression of 𝐴𝐹 makes such form

not directly suitable for deducing its maximal regularity on 𝑌, as it would leave the power 𝐴1−𝛾 on the LHS

unaccounted for on 𝑌. The form of 𝐴∗𝐹 in [LPT.5] is more amenable to show 𝐴∗𝐹 ∈ 𝑀𝑅𝑒𝑔(𝐿𝑝(0, 𝑇; 𝑌∗)) by

perturbation [Dore.2, Theorem 6.2, p311], [KW.1, Remark 1, p426, for 𝛽 = 1], [Weis]. Next, to show that the

original 𝐴𝐹 satisfies 𝐴𝐹 ∈ 𝑀𝑅𝑒𝑔(𝐿𝑝(0, 𝑇; 𝑌)) as desired, paper [LPT.5] employs the result that on the UMD

space 𝑌, the property that 𝐴𝐹 ∈ 𝑀𝑅𝑒𝑔(𝐿𝑝(0, 𝑇; 𝑌)) is equivalent to the property that the family, 𝜏 ∈ ℒ(𝑌),

𝜏 ≡ {𝑡𝑅(𝑖𝑡, 𝐴𝐹), 𝑡 ∈ ℝ\{0}} be 𝑅 − bounded,

[KW.2] where 𝑅(⋅, 𝐴𝐹) denotes the resolvent of 𝐴𝐹. And in the UMD-setting for 𝑌, the 𝑅-boundedness prop-

erty for the family 𝜏 is equivalent to the property that the corresponding dual family 𝜏′ in ℒ(𝑌∗)

𝜏′ ≡ �𝑡𝑅(𝑖𝑡, 𝐴∗𝐹), 𝑡 ∈ ℝ\{0}� be 𝑅 − bounded,

[HNVW.1, Proposition 8.4.1, p211].
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2. Illustrations

For simplicity and brevity of exposition, Example # 1 (for 𝑇 < ∞ and 𝑇 = ∞) will be restricted to a canonical

case. More general results can be given by referring to [LT.3,CV,DaV,DaG,Ves].

2.1. Case 0 < 𝑇 <∞.

Example # 1 The PDEmodel: Let Ω be a bounded domain in ℝ𝑑, 𝑑 ≥ 2, with boundary 𝜕Ω ≡ Γ, assumed

to be (𝑑 − 1)-dimensional variety with Ω locally on one side of Γ, and sufficiently smooth. We consider the

following canonical locally fully boundary closed loop parabolic system on Ω, with boundary control in the

Neumann BC and boundary sensing (observations):

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝑦(𝑡, 𝑥)

𝜕𝑡
= (Δ − 𝐼)𝑦(𝑡, 𝑥) in (0, 𝑇] × Ω

𝑦(0, 𝑥) = 𝑦0(𝑥) in Ω

𝜕𝑦(𝑡, 𝜉)

𝜕𝜈
= 𝑓(𝑡, 𝜉) ≡

𝐾

�

𝑘=0

(𝛾𝑦(𝑡, ⋅), 𝑤𝑘(⋅))Γ𝑔𝑘(𝜉)

≡ 𝐹𝑦(𝑡, ⋅) on (0, 𝑇] × Γ

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(a) Let

𝑌 ≡ 𝐿𝑞(Ω), 1 < 𝑞 < ∞, 𝐴 = −Δ + 𝐼; 𝑌 ⊃ 𝒟(𝐴) → 𝑌 (2.2a)

𝒟(𝐴) = �𝜑 ∈ 𝑊2,𝑞(Ω) ∶
𝜕𝜑

𝜕𝜈
�
Γ

= 0� . (2.2b)

Then −𝐴 generates a s.c. contraction, analytic semigroup 𝑒−𝐴𝑡, 𝑡 ≥ 0 on 𝑌 ≡ 𝐿𝑞(Ω). The fractional powers

𝐴𝜃, 0 < 𝜃 < 1, are well-defined.

(b) 𝛾 denotes any continuous operator [Trie,Wahl]

𝛾 ∶ 𝒟(𝐴𝜎) ≡ 𝑊2𝜎,𝑞(Ω) → 𝑈 ≡ 𝐿𝑞(Ω), 2𝜎 =
1

𝑞
+ 𝜀 (2.3)

in particular the trace operator

𝛾𝜓 ≡ 𝜓|Γ ∈ 𝐿𝑞(Γ), 𝜓 ∈ 𝑊2𝜎,𝑞(Ω). (2.4)

Thus, the (feedback) operator 𝐹 defined in (2.1d) satisfies

𝐹 ∶ 𝒟(𝐴𝜎) ≡ 𝑊2𝜎,𝑞(Ω) → 𝑈 ≡ 𝐿𝑞(Ω), 2𝜎 =
1

𝑞
+ 𝜀 (2.5)

as well, for all vectors 𝑤𝑘 ∈ 𝐿𝑞
′
(Γ), 𝑔 ∈ 𝐿𝑞(Γ),

1

𝑞
+

1

𝑞′
= 1, where ( , )Γ denotes the duality paring between

𝐿𝑞(Γ) and 𝐿𝑞
′
(Γ).

(c) We introduce the Neumann (Green) map [LT.4]

𝐺𝑔 ≡ 𝜑 ⟺ �(Δ − 𝐼)𝜑 ≡ 0 in Ω,
𝜕𝜑

𝜕𝜈
= 𝑔 on Γ� (2.6a)

𝐺 ∶ 𝑈 ≡ 𝐿𝑞(Ω) → 𝑊1+1/𝑞,𝑞(Ω) ⊂ 𝒟(𝐴𝛼0), 𝛼0 =
1

2
+

1

2𝑞
− 𝜀. (2.6b)

(d) We observe from (2.3) and (2.6b) that

𝜎 =
1

2𝑞
+
𝜀

2
< 𝛼0 =

1

2
+

1

2𝑞
− 𝜀 (2.7)

The abstract model. As is well known, we can rewrite (2.1a) as

𝑦𝑡 = (Δ − 𝐼)𝑦 = (Δ − 1)(𝑦 − 𝐺𝑓), since (Δ − 1)(𝐺𝑓) ≡ 0 in Ω (2.8)
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by (2.6a), recalling 𝑓 in (2.1c). Moreover

𝜕(𝑦 − 𝐺𝑓)

𝜕𝜈
=

𝜕𝑦

𝜕𝜈
−
𝜕(𝐺𝑓)

𝜕𝜈
= 𝑓 − 𝑓 ≡ 0 on Γ (2.9)

and so (𝑦−𝐺𝑓) satisfies the boundary conditions of the operator𝐴 in (2.2b). In conclusion, recalling 𝑓 = 𝐹𝑦

from (2.1d) we can rewrite (2.8) as

𝑦𝑡 = −𝐴(𝐼 − 𝐺𝐹)𝑦 = 𝐴𝐹𝑦 (2.10)

which is the abstract model on 𝑌 ≡ 𝐿𝑞(Ω) of the original PDE feedback model (2.1a-d). We now verify that

the abstract model (2.10) for (2.1a-d) satifies all abstract assumptions of Section 1.

(H.1)is satisfied since 𝑌 ≡ 𝐿𝑞(Ω), 1 < 𝑞 < ∞ is reflexive Banach space. (H.2)is satisfied since the

operator −𝐴 in (2.2a) is the maximal dissipative generator of a 𝐶0-contraction semigroup 𝑒−𝐴𝑡 on 𝑌, 𝑡 ≥ 0,

which possesses the maximal 𝐿𝑝(0, 𝑇; 𝑌)-regularity property, 0 < 𝑇 < ∞, 1 < 𝑝 < ∞. (H.3)is satisfied since

𝑈 = 𝐿𝑞(Γ) is a Banach space 𝐴𝛼0𝐺 ∈ ℒ(𝑈; 𝑌) from (2.6b), 𝛼0 < 1. (H.4)is satisfied by (2.5).

In conclusion: Problem (2.1a-d) satisfies all assumptions of Theorem 1.2, for 0 < 𝑇 < ∞, and hence

𝐴𝐹 ∈ 𝑀𝑅𝑒𝑔(𝐿𝑝(0, 𝑇; 𝐿𝑞(Ω))), 1 < 𝑝 < ∞, 1 < 𝑝 < ∞, 𝑇 < ∞ with 𝐴𝐹 = −𝐴(𝐼 − 𝐺𝐹) in (2.10). This

conclusion is true for all𝑤𝑘 ∈ 𝐿𝑞
′
(Γ), 𝑔𝑘 ∈ 𝐿𝑞(Γ). Below we shall consider the case 𝑇 = ∞.

Example # 2: We return to [LT.6, LPT.2] and consider the linearized Navier-Stokes problem over a bounded

domainΩ inℝ𝑑, 𝑑 = 2, 3,with boundary 𝜕Ω ≡ Γ (after translation by the equilibrium solution, see [LPT.2, Eq

(1.28)]))

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑤𝑡 − 𝜈𝑜Δ𝑤 + 𝐿𝑒(𝑤) + ∇𝜒 = 0 in 𝑄

div𝑤 = 0 in 𝑄

𝑤 ≡ 𝑣 ≡

𝐾

�

𝑘=0

⟨𝛾𝑤, 𝑝𝑘⟩Γ 𝑔𝑘 ≡ 𝐹𝑤 on Σ

𝑤(0, 𝑥) = 𝑤0(𝑥) on Ω

(2.11a)

(2.11b)

(2.11c)

(2.11d)

whose abstract version is given by

𝑑𝑤

𝑑𝑡
= 𝒜𝑞𝑤 −𝒜𝑞𝐷�

𝐾

�

𝑘=1

⟨𝛾𝑤, 𝑝𝑘⟩Γ 𝑔𝑘� (2.12a)

= 𝒜𝑞𝑤 −𝒜𝑞𝐷𝐹𝑤 = 𝒜𝑞(𝐼 − 𝐷𝐹) ≡ 𝔸
𝐹,𝑞
𝑤. (2.12b)

see [LPT.2, Eq (4.3)] with𝑚 ≡ 0 and a modified boundary control 𝑣. We have

𝑌 ≡ 𝐿
𝑞
𝜎(Ω), 𝑞 ≥ 2, 𝒜𝑞 = −(𝜈𝑜𝐴𝑞 + 𝐴𝑜,𝑞), 𝒟(𝒜𝑞) = 𝒟(𝐴𝑞) ⊂ 𝐿

𝑞
𝜎(Ω) [LPT.2, Eq (2.16)] (2.13)

𝐴𝑞𝑧 = −𝑃𝑞Δ𝑧, 𝒟(𝐴𝑞) = 𝑊2,𝑞(Ω) ∩𝑊
1,𝑞
0 (Ω) ∩ 𝐿

𝑞
𝜎(Ω) [LPT.2, Eq (2.14)] (2.14)

𝐿𝑒(𝑧) = (𝑦𝑒 . ∇)𝑧 + (𝑧 . ∇)𝑦𝑒 [LPT.2, Eq (1.9)] (2.15)

𝐴𝑜,𝑞𝑧 = 𝑃𝑞𝐿𝑒(𝑧) = 𝑃𝑞[(𝑦𝑒 . ∇)𝑧 + (𝑧 . ∇)𝑦𝑒], (2.16a)

𝒟(𝐴𝑜,𝑞) = 𝒟(𝐴
1/2
𝑞 ) = 𝑊

1,𝑞
0 (Ω) ∩ 𝐿

𝑞
𝜎(Ω) ⊂ 𝐿

𝑞
𝜎(Ω). [LPT.2, Eq (2.15)] (2.16b)

𝐿𝑞(Ω) = 𝐿
𝑞
𝜎(Ω) ⊕ 𝐺𝑞(Ω) (Helmholtz direct sum decomposition) (2.17)

𝐿
𝑞
𝜎(Ω) = {𝑔 ∈ 𝐿𝑞(Ω) ∶ ÷ 𝑔 = 0; 𝑔 ⋅ 𝜈 = 0 on 𝜕Ω}, [Ga] (2.18)

the solenoidal space. It is verified in [LPT.6] that all the assumptions of Theorem 1.2 are satisfied for the

feedback operator 𝔸
𝐹,𝑞

= 𝒜𝑞(𝐼 − 𝐷𝐹) in (2.12b) on 𝑌 ≡ 𝐿
𝑞
𝜎(Ω). In particular, (H.2) is verified since the

operator𝒜𝑞 in (2.13) has maximal 𝐿𝑝-regularity on 𝑌 ≡ 𝐿
𝑞
𝜎(Ω), for 0 < 𝑇 < ∞. (H.3) is satisfied with

𝑈 ≡ 𝑈𝑞 ≡ {𝑔 ∈ 𝐿𝑞(Γ) ∶ 𝑔 ⋅ 𝜈 = 0 on Γ} (2.19)

𝐷 ∶ 𝑈𝑞 → 𝑊
1/𝑞,𝑞(Ω) ∩ 𝐿

𝑞
𝜎(Ω) ⊂ 𝒟(𝐴

1/2𝑞−𝜀
𝑞 ) (2.20a)

or 𝐴
1/2𝑞−𝜀
𝑞 𝐷 ∈ ℒ(𝑈𝑞, 𝐿

𝑞
𝜎(Ω)), 𝜎0 =

1

2𝑞
− 𝜀 (2.20b)
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(H.4) is satisfied by taking

𝛾 ∶ continuous 𝒟(𝐴𝜎𝑞) ⊂ 𝑌 ≡ 𝐿
𝑞
𝜎(Ω) → 𝑈with 0 < 𝜎 < 𝜎0 =

1

2𝑞
− 𝜀 (2.21)

so that then

𝐹 ∶ continuous𝒟(𝐴𝜎𝑞) ⊂ 𝑌 → 𝑈 (2.22)

as well. Then we take 𝑝𝑘 ∈ 𝐿𝑞
′
(Γ) and 𝑔 ∈ 𝐿𝑞(Γ),

1

𝑞
+

1

𝑞′
= 1. Then all the assumptions of Theorem 1.2 are

satisfied for the feedback operator 𝔸
𝐹,𝑞

= 𝒜𝑞(𝐼 − 𝐷𝐹) in (2.12b). See [Sol.1, Sol.2,Sol.3, Sol.4] for open-loop

problems.

2.2. Case 𝑇 =∞

We return to Example # 1, except that, tomake the problemmore significant, we replace (2.1a) by the canon-

ical equation
𝜕𝑦(𝑡, 𝑥)

𝜕𝑡
= (Δ + 𝑘2)𝑦(𝑡, 𝑥) (2.23)

𝑘2 large, while keeping Eqts (2.1b-c). Thus, for 𝑓 ≡ 0, the corresponding free dynamics operator

𝐴𝜑 = (Δ + 𝑘2)𝜑, 𝑌 ≡ 𝐿𝑞(Ω) ⊃ 𝒟(𝐴) = �𝜑 ∈ 𝑊2,𝑞(Ω),
𝜕𝜑

𝜕𝜈
�
Γ

= 0� (2.24)

is the generator of a s.c. analytic semigroup on 𝑌 which is unstable and possesses maximal 𝐿𝑝(0, 𝑇; 𝑌)-

regularity, 𝑇 < ∞. We take the boundary vectors 𝑔𝑘 ∈ 𝐿𝑞(Γ) to be linearly independent. According to

Theorem 1.1(b), or the basis of the analysis of Example # 1 (𝑘2 rather than −1 is irrelevant), we only need

to verify the additional assumption that, for suitable vectors𝑤𝑘 ∈ 𝐿𝑞
′
(Γ), 𝑔𝑘 ∈ 𝐿𝑞(Γ), the semigroup 𝑇𝐹(𝑡) =

𝑒𝐴𝐹𝑡, 𝐴𝐹 = −𝐴(𝐼 − 𝐺𝐹) in (2.10), is exponentially stable

�𝑒𝐴𝐹𝑡�
ℒ(𝑌)

≡ �𝑇𝐹(𝑡)�ℒ(𝑌)
≤ 𝑀𝑒−𝛿𝑡, 𝑡 ≥ 0, 𝛿 > 0, 𝑌 ≡ 𝐿𝑞(Ω). (2.25)

This statement amounts to saying that the original boundary homogeneous problem (2.23), (2.1a-d) which

with 𝑓 ≡ 0 is unstable (i.e. it has finitely many unstable eigenvalues on 𝒞+ = {𝜆 ∈ 𝒞 ∶ Re 𝜆 ≥ 0}) can be

uniformly stabilized by a finite dimensional feedback control 𝑓(𝑡, 𝜉) = RHS of (2.1c), with suitable boundary

vectors 𝑔𝑘 ∈ 𝐿𝑞(Γ) and boundary sensors 𝑤𝑘 ∈ 𝐿𝑞
′
(Γ). This problem was originally studied in early 1980s,

see [LT.2,LT.3,Tr.1,Tr.2,Tr.3] and references therein. The vectors𝑤𝑘 have to be chosen to satisfy the algebraic

condition

rank𝑊𝑘 = ℓ𝑘 = algebraic/geometric multiplicity of the unstable eigenvalue 𝜆𝑘

of the self-adjoint operator 𝐴 in (2.24)
(2.26)

where

𝑊𝑘 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⟨𝑤1, Φ𝑘1⟩Γ , ⟨𝑤1, Φ𝑘2⟩Γ … �𝑤1, Φ𝑘ℓ𝑘
�
Γ

⟨𝑤2, Φ𝑘1⟩Γ , ⟨𝑤2, Φ𝑘2⟩Γ … �𝑤2, Φ𝑘ℓ𝑘
�
Γ

⋮ ⋮

⟨𝑤𝐾, Φ𝑘1⟩Γ , ⟨𝑤𝐾, Φ𝑘2⟩Γ … �𝑤𝐾, Φ𝑘ℓ𝑘
�
Γ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.27)

⟨⋅, ⋅⟩Γ duality pair, where {Φ𝑘1, … ,Φ𝑘ℓ𝑘
} are thenormalized eigenvectors in𝑌of theunstable eigenvalues𝜆𝑘 of

the operator𝐴 in (2.24). Condition (2.27) can always be satisfied by infinite choices of the vectors𝑤1, … , 𝑤𝐾,

since for every 𝜆𝑘, the Dirichlet traces �Φ𝑘1|Γ, Φ𝑘2|Γ, … ,Φ𝑘ℓ𝑘
|Γ� are linearly independent [Tr.4,Tr.5,Tr.6].

It is known [LT.3] that ifΩ is either a𝑑-sphereor a𝑑-parallelepiped, is it alwayspossible to select boundary

vectors 𝑔𝑘, 𝑘 = 1,… , 𝑘 such that the exponential decay (2.25) holds true [LT.3] and hence Theorem 1.2 holds

true for 𝑇 = ∞ for these special geometries. For other geometries, 𝑑 ≥ 2, technical conditions are available

which cannot be recalledhere for brevity of exposition. We refer to the reference [LT.5]Moreover, if𝑑 = 1, the

uniform stability (2.25) is impossible if 𝐴 has at least 3 unstable eigenvalues, with only to boundary vectors

𝑔1, 𝑔2 at 𝑥 = 0, or 𝑥 = 1with Ω = (0, 1) [LT.3]. See [LT.1] for Dirichlet boundary feedback problems.
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(Ed.) “Atti del convegno su equazioni differenziali e calcolo delle variazioni”; Pisa, 1985, 205-213.

[Wahl] W. vonWahl, The Equations of Navier-Stokes and Abstract Parabolic Equations. Springer FachmedienWiesbaden, Vieweg+Teub-

ner Verlag, 1985.

[Weis] L. Weis, A new approach to maximal Lp-regularity. In Evolution Equ. and Appl. Physical Life Sci., volume 215 of Lect. Notes Pure

and Applied Math., pages 195–214, New York, 2001. Marcel Dekker.

Irena Lasiecka, Buddhika Priyasad and Roberto Triggiani

101



On some stochastic aspects of stochastic elliptic inverse problems

Akhtar A. Khan1, Miguel Sama2, Hans-Jörg Starkloff3

1. aaksma@rit.edu Rochester Institute of Technology, Rochester, USA

2. msama@ind.uned.es Universidad Nacional de Educación a Distancia Madrid, Spain

3. hjstark@math.tu-freiberg.de Technische Universität Bergakademie Freiberg, Germany

Abstract

In the article conditions are investigatedwhich allow a direct transfer of results for deterministic elliptic

variational problems to corresponding results for stochastic problems. Hereby measurability issues play a

certain role and are discussed to some extend.

1. Introduction

Elliptic variational equations play an important role in mathematics, for theoretical investigations as well

as for applications. This is related to direct problems and also to inverse problems. One aim of the present

contribution consists in a discussion about possibilities to use the existing powerful abstract theory for de-

terministic problems also for stochastic problems, i.e., when some deterministic parameters in the problem

under consideration are substituted by random ones.

As a prototypical example one can mention the deterministic elliptic boundary value problem on a well-

behaved bounded domain 𝐷 ⊂ ℝ𝑛 given by

−∇ ⋅ (𝑎(𝑥)∇𝑢(𝑥)) = 𝑓(𝑥) in 𝐷, 𝑢(𝑥) = 0, on 𝜕𝐷 (1.1)

with suitable functions 𝑎, 𝑓, such that with real constants 𝑐1, 𝑐2 it holds 0 < 𝑐1 ≤ 𝑎(𝑥) ≤ 𝑐2 < ∞ for all

𝑥 ∈ 𝐷. Hereby the direct problem consists in determining 𝑢 given 𝑎 and 𝑓, whereas a typical inverse problem

consists in finding 𝑎 for given 𝑓 and 𝑢. For a mathematical treatment an abstract formulation as a variational

equation is advantageous, i.e., for all 𝑣 ∈ H10(𝐷) it holds

�
𝐷

𝑎(𝑥)∇𝑢(𝑥)∇𝑣(𝑥) d𝑥 = �
𝐷

𝑓(𝑥)𝑣(𝑥) d𝑥. (1.2)

The left hand side of (1.2) determines an elliptic trilinear form and so results from functional analysis can be

used to get results for direct and inverse problems related to this example.

Incorporating an existing uncertainty for the real systemunder investigation one can use a corresponding

stochastic model. So for examples the functions 𝑎 and 𝑓 can be assumed to be random functions or random

variables in suitable functional spaces. Then the question arises underwhich conditions one can use directly

the results from the abstract theory in order to get corresponding results for the stochastic model.

1.1. Notation

In the article all vector spaces are non-trivial real vector spaces. For a Banach space X the topological dual

space is denoted by X∗, the norm by ‖ ⋅ ‖X and the duality pairing with ⟨𝑥∗|𝑥⟩X with 𝑥∗ ∈ X∗, 𝑥 ∈ X. If X is a

Hilbert space the scalar product is denoted by ⟨⋅, ⋅⟩X.

All random variables are defined on one underlying probability space (Ω, 𝐹, ℙ)with expectation operator

𝔼[⋅]. 1𝐵 denotes the indicator function of a set 𝐵, i.e., 1𝐵(𝑥) = 1 if 𝑥 ∈ 𝐵 and 0 otherwise.

2. Deterministic elliptic variational equations

The following notations and assumptions are used throughout the article.

Assumption 2.1 LetV be aHilbert space,B be a Banach space and∅ ≠ 𝐾 ⊂ B be a convex closed set with non-

empty interior. Also let 𝑇 ∶ B× V× V → ℝ be a trilinear map (i.e., a map, linear in each of the three arguments

with the other twobeing fixed)which is symmetric, i.e.,𝑇(𝑎, 𝑢, 𝑣) = 𝑇(𝑎, 𝑣, 𝑢) for all𝑎 ∈ B, 𝑢, 𝑣 ∈ V; continuous,

i.e., there exists 𝛽 > 0 such that |𝑇(𝑎, 𝑢, 𝑣)| ≤ 𝛽‖𝑎‖B‖𝑢‖V‖𝑣‖V for all 𝑎 ∈ B, 𝑢, 𝑣 ∈ V; and elliptic on the set𝐾,

i.e., there exists 𝛼 > 0 such that 𝑇(𝑎, 𝑢, 𝑢) ≥ 𝛼‖𝑢‖2V for all 𝑎 ∈ 𝐾 and 𝑢 ∈ V.
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The famous Lax-Milgram lemma states the unique solvability of the abstract variational equation if As-

sumption 2.1 holds (see e.g. [1], Theorem 1.1.3, Remark 1.1.3).

Theorem 2.2 For given 𝑎 ∈ 𝐾, 𝑓 ∈ V∗ under Assumption 2.1 the abstract elliptic variational equation

∀𝑣 ∈ V ∶ 𝑇(𝑎, 𝑢, 𝑣) = ⟨𝑓|𝑣⟩V (2.1)

has a unique solution 𝑢 = 𝑢(𝑎, 𝑓) ∈ V and it holds ‖𝑢(𝑎, 𝑓)‖V ≤ 𝛼−1‖𝑓‖V∗ .

Also the Lemma of Céa (see e.g. [1], Theorem 2.4.1) will be important in the following.

Theorem 2.3 Let Assumption 2.1 be fulfilled, 𝑎 ∈ 𝐾, 𝑓 ∈ V∗, let V1 be a closed subspace of V and consider

the elliptic variational equation (2.1) on V with unique solution 𝑢(𝑎, 𝑓) ∈ V and on V1 with unique solution

𝑢1(𝑎, 𝑓) ∈ V1. Then it holds

‖𝑢(𝑎, 𝑓) − 𝑢1(𝑎, 𝑓)‖V ≤ 𝛽𝛼−1 inf
𝑣1∈V1

‖𝑢(𝑎, 𝑓) − 𝑣1‖V. (2.2)

Corollary 2.4 Let Assumption 2.1 be fulfilled with a separable Hilbert space V, 𝑎 ∈ 𝐾 , 𝑓 ∈ V∗ and let (V𝑛)𝑛∈ℕ
be an increasing sequence of closed subspaces of V with dense union in V. Then it holds for the sequence

(𝑢𝑛(𝑎, 𝑓))𝑛∈ℕ of solutions to the elliptic variational equations (2.1) on V𝑛 correspondingly lim𝑛→∞ 𝑢𝑛(𝑎, 𝑓) =

𝑢(𝑎, 𝑓).

For a mathematical treatment of inverse problems for deterministic elliptic variational equations like

(2.1) an investigation of the parameter to solution map 𝐾 ∋ 𝑎 ↦ 𝑢 = 𝑢(𝑎, 𝑓) ∈ V is useful. The following

two results can be found for example in [4].

Theorem 2.5 Let Assumption 2.1 be fulfilled, 𝑓 ∈ V∗ and consider the abstract elliptic variational equation

(2.1). Then the parameter to solution map 𝐾 ∋ 𝑎 ↦ 𝑢 = 𝑢(𝑎, 𝑓) ∈ V is Lipschitz continuous and it holds for

𝑎1, 𝑎2 ∈ 𝐾

‖𝑢(𝑎1, 𝑓) − 𝑢(𝑎2, 𝑓)‖V ≤ 𝛽𝛼−2‖𝑓‖V∗‖𝑎1 − 𝑎2‖B. (2.3)

Theorem 2.6 Let Assumption 2.1 be fulfilled, 𝑓 ∈ V∗ and consider the abstract elliptic variational equation

(2.1). Then for each 𝑎 in the interior of 𝐾 the parameter to solution map 𝐾 ∋ 𝑎 ↦ 𝑢 = 𝑢(𝑎, 𝑓) =∶ 𝐹(𝑎) ∈ V is

differentiable at 𝑎, and 𝛿𝑢 ∶= 𝐷𝐹(𝑎)𝛿𝑎 ∈ V with 𝛿𝑎 ∈ B is the unique solution to the variational equation

∀𝑣 ∈ V ∶ 𝑇(𝑎, 𝛿𝑢, 𝑣) = −𝑇(𝛿𝑎, 𝑢(𝑎, 𝑓), 𝑣). (2.4)

Moreover,

‖𝐷𝐹(𝑎)‖ ≤ 𝛽𝛼−1‖𝐹(𝑎)‖V ≤ 𝛽𝛼−2‖𝑓‖V∗ . (2.5)

Also higher order derivatives exist and they are defined by corresponding elliptic variational equations

(see e.g. [4]).

If some data 𝑧 ∈ V is given approximating the solution 𝑢(𝑎, 𝑓) for a given element 𝑓 ∈ V∗ and an unknown

element 𝑎 ∈ 𝐾, the inverse problem of identifying 𝑎 ∈ 𝐾 can be tackled for example minimizing some error

functional. As was shown for example in [4], using for this purpose the energy least-squares functional

𝐽(𝑎; 𝑧, 𝑓) ∶=
1

2
𝑇(𝑎, 𝑢(𝑎, 𝑓) − 𝑧, 𝑢(𝑎, 𝑓) − 𝑧) (2.6)

has the advantage that it is smooth and convex.

Theorem 2.7 Let Assumption 2.1 be fulfilled, 𝑓 ∈ V∗ and consider the abstract elliptic variational equation

(2.1). For given data 𝑧 ∈ V, energy least-squares functional 𝐾 ∋ 𝑎 ↦ 𝐽(𝑎; 𝑓) ≥ 0 is smooth and convex on 𝐾.

Due to the inherent ill-posedness usually one minimizes the regularized energy least-squares functional

𝐽𝜅(𝑎; 𝑧, 𝑓) ∶=
1

2
𝑇(𝑎, 𝑢(𝑎, 𝑓) − 𝑧, 𝑢(𝑎, 𝑓) − 𝑧) +

𝜅

2
‖𝑎‖2B (2.7)

with 𝜅 > 0. Then under additional assumptions one can show, that there is a unique solution for the mini-

mization problem for the regularized energy least-squares functional (see e.g. Sections 3 and 4 of [4]).
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3. Pathwise solutions to stochastic elliptic variational equations andmeasurability issues

In situations with a relevant uncertainty one has to consider amultitude of possible elements 𝑎 and 𝑓 (hence

also solutions 𝑢(𝑎, 𝑓)), which usually one describes using parametrized families of such elements. The non-

empty parameter set will be denoted by Ω here, its elements by 𝜔. From Theorem 2.2 one easily concludes

Proposition 3.1 Let Assumption 2.1 be fulfilled, let Ω ≠ ∅, and assume for the parametrized mappings 𝑎 ∶

Ω ∋ 𝜔 ↦ 𝑎(𝜔) ∈ 𝐾 ⊂ B and 𝑓 ∶ Ω ∋ 𝜔 ↦ 𝑓(𝜔) ∈ V∗. Then the parametrized elliptic variational equation

∀𝑣 ∈ 𝑉 ∶ 𝑇(𝑎(𝜔), 𝑢, 𝑣) = ⟨𝑓(𝜔)|𝑣⟩V (3.1)

has for all 𝜔 ∈ Ω a unique solution 𝑢(𝜔) ∶= 𝑢(𝑎(𝜔), 𝑓(𝜔)) ∈ V and it holds ‖𝑢(𝜔)‖V ≤ 𝛼−1‖𝑓(𝜔)‖V∗ .

Now assume that one wants to use a stochastic description for an uncertainty quantifaction. Then the

parameter set Ω is the basic set of a probability space (Ω, 𝐹, ℙ) with a 𝜎-algebra 𝐹 of subsets of Ω (the mea-

surable sets) and a probability measure ℙ defined on 𝐹. In order to use results from probability theory one

has to ensure that relevant mappings aremeasurable. Heremappings from the underlying probability space

into a Banach space are of interest. As a first step we define two basic 𝜎-algebras in a general Banach space

𝑋. The following definitions and propositions can be found for example in [2] and [6].

Definition 3.2 Let X be a Banach space. The 𝜎-algebra generated by the set of all open subsets of X is the

Borel-𝜎-algebra 𝐵(X), whereas the 𝜎-algebra generated by the set of all continuous linear functionals on X

is the cylindrical 𝜎-algebra, which will be denoted by 𝐶(X).

Proposition 3.3 LetX be a Banach space. Then it holds 𝐶(X) ⊆ 𝐵(X). IfX is a separable Banach space it holds

𝐶(X) = 𝐵(X).

In general there are different types of definitions of measurability. One distinguishes descriptive and

constructive definitions of measurability. Descriptive definitions of measurability are characterized by the

property, that inverse images of measurable set in the image space are measurable sets in the domain of the

mapping. They are taylored for the transfer of measures from the domain into the image space and allow

for example the definition of the distribution of random variables. Constructive definitions of measurability

are characterized by the property, that corresponding measurable maps are limits in an appropriate sense

of a sequence of simple measurable mappings. They allow for example an efficient definition of integrals

(expectations).

For mappings from a probability space (Ω, 𝐹, ℙ) into a Banach space X the most important measurability

concepts are the following three. Hereby the first two are descriptive definitions, the last is a constructive

one.

Definition 3.4 Let (Ω, 𝐹, ℙ) be a probability space, X be a Banach space and Ω ∋ 𝜔 ↦ 𝑋(𝜔) ∈ X be a

mapping.

1. 𝑋 is Borel measurable, if it is 𝐹 − 𝐵(X)-measurable, i.e., 𝑋−1(𝐵) ∈ 𝐹 for all 𝐵 ∈ 𝐵(X).

2. 𝑋 is weakly measurable, if it is 𝐹 − 𝐶(X)-measurable, i.e., for all 𝑥∗ ∈ X∗ the mapping Ω ∋ 𝜔 ↦

⟨𝑥∗|𝑋(𝜔)⟩X ∈ ℝ is Borel measurable.

3. 𝑋 is strongly measurable, if it is the pointwise limit of a sequence of finitely-valued Borel measurable

mappings, i.e.,

∀𝜔 ∈ Ω ∶ 𝑋(𝜔) = lim
𝑛→∞

𝑋𝑛(𝜔) with 𝑋𝑛 =

𝑁𝑛

�

𝑘=1

𝑥𝑛,𝑘1𝐵𝑛,𝑘 (3.2)

and 𝑁𝑛 ∈ ℕ , 𝑥𝑛,𝑘 ∈ X , 𝐵𝑛,𝑘 ∈ 𝐵(X) , 𝑘, 𝑛 ∈ ℕ.

One can remark that traditionally in the definition of strongmeasurability theℙ-almost sure convergence

is used instead of the pointwise convergence. Then the corresponding maps are not necessarily Borel mea-

surable, which may cause some (light) problems. That’s why the definition from [2] is used here.

The following relations between the measurability concepts of Banach space-valued mappings are often

used.

Proposition 3.5 Assume there are given a Banach space X, a probability space (Ω, 𝐹, ℙ) and a mapping 𝑋 ∶

Ω → X. Then it holds:
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(i) 𝑋 is strongly measurable ⇒ 𝑋 is Borel measurable;

(ii) 𝑋 is Borel measurable ⇒ 𝑋 is weakly measurable.

For a separable Banach space X it holds additionally:

(iii) 𝑋 is Borel measurable ⇒ 𝑋 is strongly measurable;

(iv) 𝑋 is weakly measurable ⇒ 𝑋 is Borel measurable.

Hence in a separable Banach space all three basic measurability concepts from above coincide. This is in

general not true for non-separable Banach spaces.

In order to apply the abstract theory for stochastic problems spaces of random variables should be vector

spaces. In general this cannot be achievedwith all themeasurability conceptswhichwere introduced earlier.

Proposition 3.6 Assume there are given a Banach space X and a probability space (Ω, 𝐹, ℙ). Then the set of

all weakly measurable mappings from Ω to X and the set of all strongly measurable mappings from Ω to X are

vector spaces. IfX is a separable Banach space, this holds also for the set of all Borel measurablemappings from

Ω to X.

A further necessary condition for using Banach spaces of (equivalence classes) of random variables is the

measurability of the norm of a random variable in a Banach space.

Proposition 3.7 Assume there are given a Banach space X, a probability space (Ω, 𝐹, ℙ) and a mapping 𝑋 ∶

Ω → X, which is Borel measurable or strongly measurable. Then the mapping Ω ∋ 𝜔 ↦ ‖𝑋(𝜔)‖X ∈ [0,∞) is

𝐹−𝐵([0,∞))-measurable, i.e., a usual real-valued random variable. IfX is a separable Banach space, this holds

also if 𝑋 is weakly measurable.

From the results above it follows that the class of strongly measurable mappings ist the most appropri-

ate class of mappings for using Banach spaces. In order to get really Banach spaces on should additionally

identify mappings which are equal to each other ℙ-almost surely.

Definition 3.8 Assume there are given a Banach space X, a probability space (Ω, 𝐹, ℙ) and 𝑝 ∈ [1,∞).

1. The set of all equivalence classes of strongly measurable mappings 𝑋 from Ω to X with 𝔼 �‖𝑋‖
𝑝
X� < ∞

is the Bochner space L𝑝(Ω;X).

2. The Bochner space L∞(Ω;X) is the set of all equivalence classes of strongly measurable mappings 𝑋

from Ω to Xwith ℙ(‖𝑋‖X ≤ 𝑀) = 1 for some𝑀 ≥ 0.

Proposition 3.9 Under the assumptions of Definition 3.8 it holds

(i) The Bochner spaces L𝑝(Ω;X) with 𝑝 ∈ [1,∞] are Banach spaces with norm ‖𝑋‖L𝑝(Ω;X) ∶= �𝔼‖𝑋‖
𝑝
X�

1/𝑝

for 1 ≤ 𝑝 < ∞ and ‖𝑋‖L∞(X) ∶= esssup
𝜔∈Ω

‖𝑋(𝜔)‖X for 𝑝 = ∞, respectively.

(ii) If X is a Hilbert space the Bochner space L2(Ω;X) is a Hilbert space with scalar product ⟨𝑋1, 𝑋2⟩L2(Ω;X) ∶=

𝔼 [⟨𝑋1, 𝑋2⟩X].

After having collected some results related to measurability issues for Banach space-valued mappings

defined on a probability space we consider the question of measurability of the parametrized solution of

the parametrized elliptic variational equation from Proposition 3.1. As usual in probability theorymappings

depending on the elementary elements 𝜔 are written also without indicating the arguments, for example

writing 𝑓(⋅), etc.

Theorem 3.10 Consider a parametrized elliptic variational equation as in Proposition 3.1 with a probability

space (Ω, 𝐹, ℙ) and a separable Hilbert space V, i.e.,

∀𝑣 ∈ V 𝑇(𝑎(𝜔), 𝑢(𝜔), 𝑣) = ⟨𝑓(𝜔)|𝑣⟩V , ℙ − a.s. (3.3)

(i) If 𝑓(⋅) is Borel measurable and if 𝑎(⋅) is weakly measurable, then the parametrized solution Ω ∋ 𝜔 ↦

𝑢(𝜔) = 𝑢(𝑎(𝜔), 𝑓(𝜔)) ∈ V is Borel measurable and it holds ‖𝑢(𝜔)‖V ≤ 𝛼−1‖𝑓(𝜔)‖V∗ , ℙ-a.s.

(ii) If additionally for 𝑝 ≥ 1 it holds 𝔼 �‖𝑓(⋅)‖
𝑝
V∗� < ∞, then it holds also 𝔼 �‖𝑢(⋅)‖

𝑝
V� < ∞.
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Proof Choose an orthonormal basis (𝑒𝑘)𝑘∈ℕ in the separable Hilbert space V and denote for 𝑛 ∈ ℕ by V𝑛
the finite-dimensional subspace of V spanned by the first 𝑛 basis elements. The parametrized solution of

(3.3) 𝑢𝑛(⋅) = ∑
𝑛
𝑘=1 𝜉

(𝑛)
𝑘 (⋅)𝑒𝑘 on V𝑛 (instead of V) can be found determining (𝜉

(𝑛)
1 (⋅), … , 𝜉

(𝑛)
𝑛 (⋅))𝑇 by the

parametrized system of linear equations

𝑛

�

𝑘=1

𝑇(𝑎(⋅), 𝑒𝑘, 𝑒ℓ)𝜉
(𝑛)
𝑘 (⋅) = ⟨𝑓(⋅)|𝑒ℓ⟩V, ℓ = 1,… , 𝑛, (3.4)

with a measurable and regular matrix of the system (𝑇(𝑎(⋅), 𝑒𝑘, 𝑒ℓ))𝑘,ℓ=1,…,𝑛 (it is strictly positive definite)

andameasurable right-hand side. Hence there exists auniquemeasurable randomsolution (𝜉
(𝑛)
1 (⋅), … , 𝜉

(𝑛)
𝑛 (⋅))𝑇

of this system and a Borel measurable solution 𝑢𝑛(⋅). By the corollary of Céa’s Lemma (see Corollary 2.4)

these randomsolutions converge pointwise (for all parameter values𝜔) to the solution of (3.3) on theHilbert

space V, so that this solution is also Borel measurable (as a pointwise limit of Borel measurable mappings in

a separable Hilbert space). �

The previous theorem gives natural sufficient conditions for a pathwise solution of random elliptic vari-

ational equations. This result can be used for example for the justification of Monte Carlo algorithms for

the solution of corresponding problems. But the concept of a pathwise solution is to weak for many other

purposes, for example further investigations of certain properties of corresponding solutions or for solution

algorithms using stochastic Galerkin methods. That’s why one is attempting to determine stochastic solu-

tions with the help of variational equations in spaces of random variables. This can be done with the help

of the Bochner spaces, which were introduced earlier and include a stronger measurability condition on the

coefficient 𝑎(⋅) in comparison with Theorem 3.10.

4. Integral stochastic elliptic variational equations as abstract elliptic variational equations

An integral stochastic elliptic variational equation is a special form of an abstract elliptic variational equa-

tion, where the Banach space and the Hilbert space are suitable Bochner spaces of equivalence classes of

random variables in the corresponding deterministic functional spaces. Here we will deal only with the

most straightforward variant of such problem formulations. In the following spaces of equivalence classes

of random variables and elements of these spaces are denoted by a tilde in order to distinguish better the

deterministic case and the stochastic case.

Assumption 4.1 Additionally to Assumption 2.1 assume that V is a separable Hilbert space and (Ω, 𝐹, ℙ) is a

probability space. We use the notations B̃ ∶= L∞(Ω;B), 𝐾̃ ∶= {𝑎̃ ∈ ̃B ∶ 𝑎̃(⋅) ∈ 𝐾 ℙ − a.s.}, Ṽ ∶= L2(Ω;V),

𝑇̃ ∶ B̃ × Ṽ × Ṽ → ℝ with 𝑇̃(𝑎̃, 𝑢̃, 𝑣̃) ∶= 𝔼 [𝑇(𝑎̃, 𝑢̃, 𝑣̃)].

One can remark, that when 𝐾 is bounded in B all equivalence classes of strongly measurable mappings

Ω → 𝐾 belong to B̃ ∶= L∞(Ω;B).

Proposition 4.2 Under Assumption 4.1 it holds: B̃ is a Banach space, Ṽ is a Hilbert space, 𝐾̃ is a non-empty

convex closed subset of B̃ with non-empty interior. Moreover the mapping Ω ∋ 𝜔 ↦ 𝑇(𝑎̃(𝜔), 𝑢̃(𝜔), 𝑣̃(𝜔)) ∈ ℝ

is a random variable with finite expectation for 𝑎̃ ∈ B̃, 𝑢̃ ∈ Ṽ, 𝑣̃ ∈ Ṽ (so that 𝑇̃ is well-defined) and 𝑇̃ is a

trilinear form, which is symmetric, continuous and elliptic on the set 𝐾̃.

Proof The first three properties are contained in Proposition 3.9 or can be checked easily. The measurabil-

ity of 𝑇(𝑎̃, 𝑢̃, 𝑣̃) follows from the continuity of 𝑇 and the fact, that all random variables 𝑎̃, 𝑢̃, 𝑣̃ are pointwise

limits of sequences of finitely-valued measurable mappings and for such random variables 𝑇(𝑎̃, 𝑢̃, 𝑣̃) is mea-

surable. Furthermore, ℙ-a.s. |𝑇(𝑎̃(𝜔), 𝑢̃(𝜔), 𝑣̃(𝜔))| ≤ 𝛽‖𝑎̃(𝜔)‖B‖𝑢̃(𝜔)‖V‖𝑣̃(𝜔)‖V ≤ 𝛽𝑀‖𝑢̃(𝜔)‖V‖𝑣̃(𝜔)‖V
for a random variable 𝑎̃ ∈ ̃Bwithℙ(‖𝑎̃‖B ≤ 𝑀) = 1 and𝑀 > 0. Hence using the Cauchy-Schwarz inequality

𝔼 [|𝑇(𝑎̃, 𝑢̃, 𝑣̃)|] ≤ 𝛽𝑀𝔼 [‖𝑢̃‖V‖𝑣̃‖V] ≤ 𝛽𝑀�𝔼 �‖𝑢̃‖2V� 𝔼 �‖𝑣̃‖
2
V� < ∞. (4.1)

Similarly one shows the continuity of 𝑇̃. The symmetry of 𝑇̃ follows by its definition. Assume now 𝑎̃ ∈ 𝐾̃.

Then due to the ellipticity of 𝑇 ℙ-a.s. 𝑇(𝑎̃(⋅), 𝑢̃(⋅), 𝑢̃(⋅)) ≥ 𝛼‖𝑢̃(⋅)‖2V, so that 𝔼 [𝑇(𝑎̃, 𝑢̃, 𝑢̃)] ≥ 𝛼𝔼 �‖𝑢̃‖2V� =

𝛼‖𝑢̃‖2
L2(Ω;V)

. �

From this one concludes easily the validity of the following main theorem.

Theorem 4.3 Let Assumption 4.1 be fulfilled and let 𝑎̃ ∈ 𝐾̃ ⊂ B̃, 𝑓̃ ∈ Ṽ∗.
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(i) The integral stochastic elliptic variational equation

find 𝑢̃ ∈ Ṽ ∶ ∀ 𝑣̃ ∈ Ṽ 𝑇̃(𝑎̃, 𝑢̃, 𝑣̃) = ⟨𝑓̃|𝑣̃⟩Ṽ =∶ 𝔼 �⟨𝑓̃|𝑣̃⟩V� (4.2)

is an abstract elliptic variational equation of the type (2.1) in corresponding Bochner spaces of equiva-

lence classes of random variables.

(ii) All results for (2.1) can directly be applied to (4.2) with a suitable change of spaces, norms etc.

(iii) In particular for 𝑎̃ ∈ 𝐾̃ and 𝑓̃ ∈ Ṽ∗ there exists a unique solution 𝑢̃ ∈ Ṽ to (4.2) and it holds ‖𝑢̃‖Ṽ ≤

𝛼−1‖𝑓̃‖Ṽ∗ .

(iv) If strongly measurable random variables 𝑎̃ and 𝑓̃ belong to 𝐾̃ and Ṽ∗, respectively, the pathwise solution

from Theorem 3.10 coincides ℙ-almost surely with the integral stochastic elliptic variational equation

(4.2). Then also the unique solution 𝑢̃ ∈ Ṽ to (4.2) coincides ℙ-a.s. with the pathwise solution from

Theorem 3.10.

In particular also the results regarding the Lipschitz continuity of the parameter to solutionmap 𝐾̃ ∋ 𝑎̃ ↦

𝑢̃(𝑎̃, 𝑓̃) ∈ Ṽ or its derivatives or the convexity of the corresponding least-squares energy functional follow

from Propositions 2.5, 2.6 and 2.7. Other proofs of these results and examples can be found e.g. in [5] or [3].
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A numerical solution approach for non-smooth optimal control

problems based on the Pontryagin maximum principle
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Abstract

We consider nonsmooth optimal control problems subject to a linear elliptic partial differential equa-

tion with homogeneous Dirichlet boundary conditions. It is well-known that local solutions satisfy the cel-

ebrated Pontryagin maximum principle. In this note, we will investigate an optimization method that is

based on the maximum principle. We prove that the discrepancy in the maximum principle vanishes along

the resulting sequence of iterates. Numerical experiments confirm the theoretical findings.

1. Introduction

In this note, we consider the following optimal control problem: Minimize

𝐽(𝑦, 𝑢) ∶=
1

2
‖𝑦 − 𝑦𝑑‖

2
𝐿2(Ω)

+�
Ω

𝑔(𝑢(𝑥)) d𝑥 (1.1)

over all 𝑢 ∈ 𝐿2(Ω) and 𝑦 ∈ 𝐻1
0 (Ω) satisfying

−Δ𝑦 = 𝑢 in Ω,

𝑦 = 0 on 𝜕Ω.

Here, Ω ⊂ ℝ𝑑 is a bounded domain, and 𝑔 ∶ ℝ → ℝ̄ = ℝ ∪ {+∞} is assumed to be proper and lower

semicontinuous. In addition, we require

lim
|𝑣|→∞

𝑔(𝑣)

|𝑣|
= +∞. (1.2)

Note, that we assume neither continuity nor convexity of 𝑔. Hence, it is impossible to prove existence of

solutions of (1.1). In fact, one can construct problemswithout solution, see [18, Section 4.5]. In this note, we

will work with the example

𝑔(𝑢) ∶=
𝛼

2
𝑢2 + 𝐼ℤ(𝑢) = �

𝛼

2
𝑢2 if 𝑢 ∈ ℤ

+∞ otherwise,
(1.3)

where 𝛼 > 0. If 𝑔 is assumed to be convex and continuous, then existence of solutions of (1.1) can be proven

by the direct method of the calculus of variations [17]. Let us remark that by the above assumptions 𝑔 is

bounded from below.

If solutions exist, then the Pontryagin maximum principle [11] is a necessary optimality condition. Its

main feature is that no differentiability with respect to the controls is needed, and so it is perfectly suited for

the problems considered here. In fact, due to the structure of the problem (linear state equation, convexity of

𝐽with respect to 𝑦), the maximum principle is sufficient. We refer to [2,4,5,12] for the Pontryaginmaximum

principle applied to optimal control problems for partial differential equations. The goal of this note is to

construct an algorithm to solve the maximum principle. We will comment on related work in Section 4.

2. Sensitivity analysis

In this section, we will perform a sensitivity analysis with respect to perturbations of the control with char-

acteristic functions. The setup is as follows: Let 𝑢, 𝑢̃ ∈ 𝐿2(Ω) be feasible controls, i.e., the integrals ∫
Ω
𝑔(𝑢) d𝑥

and ∫
Ω
𝑔(𝑢̃) d𝑥 exist. Let 𝐵 ⊂ Ω be measurable. We define

𝑢𝐵 ∶= 𝑢 + 𝜒𝐵(𝑢̃ − 𝑢).
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Let 𝑦, 𝑦𝐵 be the uniquely determined weak solutions of

−Δ𝑦 = 𝑢 −Δ𝑦𝐵 = 𝑢𝐵 in Ω,

𝑦 = 0 𝑦𝐵 = 0 on 𝜕Ω.

Let 𝑝 ∈ 𝐻1
0 (Ω) be the weak solution of the adjoint equation

−Δ𝑝 = 𝑦 − 𝑦𝑑 in Ω,

𝑝 = 0 on 𝜕Ω.

The goal is now to estimate 𝐽(𝑦𝐵, 𝑢𝐵) − 𝐽(𝑦, 𝑢) in terms of 𝑢, 𝑢̃, 𝑝 and the Lebesgue measure |𝐵| of 𝐵. Here,

we have the following result.

Lemma 2.1 Under the assumptions above, we have

𝐽(𝑦𝐵, 𝑢𝐵) − 𝐽(𝑦, 𝑢) = �
𝐵

(𝑢̃ − 𝑢)𝑝 + 𝑔(𝑢̃) − 𝑔(𝑢) d𝑥 +
1

2
‖𝑦𝐵 − 𝑦‖2

𝐿2(Ω)
.

Proof This follows directly from the definition of 𝑝 and 𝑢𝐵:

𝐽(𝑦𝐵, 𝑢𝐵) − 𝐽(𝑦, 𝑢) =
1

2
‖𝑦𝐵 − 𝑦𝑑‖

2
𝐿2(Ω)

+�
Ω

𝑔(𝑢𝐵) d𝑥 −
1

2
‖𝑦 − 𝑦𝑑‖

2
𝐿2(Ω)

−�
Ω

𝑔(𝑢) d𝑥

= �
Ω

(𝑦𝐵 − 𝑦)(𝑦 − 𝑦𝑑) +
1

2
(𝑦𝐵 − 𝑦)2 d𝑥 + �

𝐵

𝑔(𝑢̃) − 𝑔(𝑢) d𝑥

= �
𝐵

(𝑢̃ − 𝑢)𝑝 + 𝑔(𝑢̃) − 𝑔(𝑢) d𝑥 +
1

2
‖𝑦𝐵 − 𝑦‖2

𝐿2(Ω)
.

�

Wewill now prove that ‖𝑦𝐵 − 𝑦‖2
𝐿2(Ω)

is of higher order with respect to the Lebesgue measure |𝐵| of 𝐵.

Lemma 2.2 There are constants 𝑐 > 0 and 𝜈 > 1/2 independent of 𝑢, 𝑢̃, 𝐵 such that

‖𝑦𝐵 − 𝑦‖𝐿2(Ω) ≤ 𝑐 |𝐵|𝜈 ⋅ ‖𝑢̃ − 𝑢‖𝐿∞(Ω),

where |𝐵| denotes the Lebesgue measure of 𝐵. The constant 𝜈 can be chosen as

𝜈 = �

1 if 𝑑 ≤ 3,

1 − 𝜖 if 𝑑 = 4 for 𝜖 > 0,
1

2
+

2

𝑑
if 𝑑 > 4.

Proof We prove the claim by a well-known duality argument. Assume 𝑑 ≤ 3. Let 𝑤 ∈ 𝐿2(Ω) be given. Let

𝑧, 𝑞 ∈ 𝐻1
0 (Ω) be the weak solutions of

−Δ𝑧 = 𝑤 −Δ𝑞 = 𝑧 in Ω,

𝑧 = 0 𝑞 = 0 on 𝜕Ω.

Due to [15], there is 𝑐 > 0 independent of𝑤, 𝑧 such that

‖𝑧‖𝐿∞(Ω) ≤ 𝑐‖𝑤‖𝐿2(Ω).

Testing the weak formulations with 𝑧 and 𝑞 yields

‖𝑧‖2
𝐿2(Ω)

= �
Ω

𝑤𝑞 d𝑥 ≤ ‖𝑤‖𝐿1(Ω)‖𝑞‖𝐿∞(Ω) ≤ 𝑐‖𝑤‖𝐿1(Ω)‖𝑧‖𝐿2(Ω).

This proves ‖𝑧‖𝐿2(Ω) ≤ 𝑐‖𝑤‖𝐿1(Ω). Applying this estimate to 𝑧 ∶= 𝑦𝐵 − 𝑦 and 𝑤 ∶= 𝑢𝐵 − 𝑢 yields the claim

with

‖𝑦𝐵 − 𝑦‖𝐿2(Ω) ≤ 𝑐‖𝑢𝐵 − 𝑢‖𝐿1(Ω) ≤ 𝑐 |𝐵| ⋅ ‖𝑢̃ − 𝑢‖𝐿∞(Ω).

In case 𝑑 > 3 one can use the estimates from [3, Theorem 18]. �

Combining these results proves the following theorem.

Theorem 2.3 Let 𝑢, 𝑢̃ ∈ 𝐿∞(Ω). Let 𝐵 ⊂ Ω be measurable. Let 𝑢̃, 𝑦𝐵, 𝑦, 𝑝 be defined as above. Then there are

𝛾 > 0 and 𝑐 > 0 independent of 𝑢, 𝑢̃, 𝐵 such that

𝐽(𝑦𝐵, 𝑢𝐵) − 𝐽(𝑦, 𝑢) ≤ �
𝐵

(𝑢̃ − 𝑢)𝑝 + 𝑔(𝑢̃) − 𝑔(𝑢) d𝑥 + 𝑐 |𝐵|1+𝛾‖𝑢̃ − 𝑢‖2𝐿∞(Ω).
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3. Pontryagin maximum principle

With the help of Theorem 2.3 we can prove the Pontryagin maximum principle.

Theorem 3.1 Let 𝑢̄ ∈ 𝐿∞(Ω) be locally optimal with respect to 𝐿1(Ω) topology for the control problem (1.1).

Let 𝑦̄, 𝑝̄ ∈ 𝐻1
0 (Ω) be the optimal state and adjoint solving

−Δ𝑦̄ = 𝑢̄ −Δ𝑝̄ = 𝑦̄ − 𝑦𝑑 in Ω,

𝑦̄ = 0 𝑝̄ = 0 on 𝜕Ω.

Let 𝑣 ∈ ℝ be such that 𝑔(𝑣) < +∞. Then

𝑢̄(𝑥)𝑝̄(𝑥) + 𝑔(𝑢̄(𝑥)) ≤ 𝑣𝑝̄(𝑥) + 𝑔(𝑣) for almost all 𝑥 ∈ Ω. (3.1)

Proof Let 𝑣 ∈ ℝ be such that 𝑔(𝑣) < +∞. Applying Theorem 2.3 with 𝑢 ∶= 𝑢̄, 𝑢̃ ∶= 𝑣 yields

0 ≤ 𝐽(𝑦𝐵, 𝑢𝐵) − 𝐽(𝑦̄, 𝑢̄) = �
𝐵

(𝑣 − 𝑢̄)𝑝̄ + 𝑔(𝑢̃) − 𝑔(𝑢̄) d𝑥 + 𝑜(|𝐵|).

By standard arguments based on the Lebesgue differentiation theorem, see, e.g., [10, Theorem2.1], the claim

follows. �

The maximum principle is a sufficient condition for the problem considered here.

Corollary 3.2 Let 𝑢̄ ∈ 𝐿2(Ω) satisfy the conclusion (3.1) of Theorem 3.1. Then 𝑢̄ is global optimal for (1.1).

Proof Let 𝑢̃ ∈ 𝐿2(Ω) be an admissible control with associated state 𝑦̃. Then Lemma 2.1 with 𝐵 = Ω yields

𝐽(𝑦̃, 𝑢̃) − 𝐽(𝑦̄, 𝑢̄) = �
Ω

(𝑢̃ − 𝑢̄)𝑝̄ + 𝑔(𝑢̃) − 𝑔(𝑢̄) d𝑥 +
1

2
‖𝑦̃ − 𝑦̄‖2

𝐿2(Ω)
.

Since 𝑢̄ satisfies (3.1), the first expression is non-negative,which implies 𝐽(𝑦̃, 𝑢̃)−𝐽(𝑦̄, 𝑢̄) ≥
1

2
‖𝑦̃−𝑦̄‖2

𝐿2(Ω)
≥ 0.

�

4. Construction of an algorithm

We will now apply Theorem 2.3 with 𝑢 ∶= 𝑢𝑘 and 𝑢̃ ∶= 𝑢̃𝑘, where 𝑢𝑘 is the current iterate of the algorithm

to be devised. Let 𝑦𝑘 and 𝑝𝑘 be the associated state and adjoint. The control 𝑢̃𝑘 has to be computed in each

iteration. Let 𝐵𝑘 be measurable. Then we have

𝐽(𝑦𝐵𝑘 , 𝑢𝐵𝑘) − 𝐽(𝑦𝑘, 𝑢𝑘) = �
𝐵𝑘

(𝑢̃𝑘 − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥 + 𝑜(|𝐵𝑘|). (4.1)

The idea is now to choose 𝑢̃𝑘 and𝐵𝑘 such that 𝐽(𝑦𝐵𝑘 , 𝑢𝐵𝑘)− 𝐽(𝑦𝑘, 𝑢𝑘) is negative and to define the new iterate

by

𝑢𝑘+1 = 𝑢𝑘 + 𝜒𝐵𝑘(𝑢̃𝑘 − 𝑢𝑘).

In view of the maximum principle, Theorem 3.1, it is natural to choose 𝑢̃𝑘 as a function satisfying

𝑢̃𝑘(𝑥) ∈ argmin
𝑣∈ℝ

𝑣𝑝𝑘 + 𝑔(𝑣). (4.2)

In addition, 𝐵𝑘 will be chosen to get sufficient descent.

Let us comment on related work. The classic algorithm of [8] chooses 𝐵𝑘 ∶= Ω, resulting in a fixed-point

scheme to solve the maximum principle. The min-h method of [7] uses the update 𝑢𝑘+1 ∶= 𝑢𝑘 + 𝑡(𝑢̃𝑘 − 𝑢𝑘)

with 𝑡 ∈ (0, 1], and is thus only suited for convex functions 𝑔. In the monograph [14], a method similar to

ours is presented to solve optimal control problems with ODEs. Let us also also mention the review papers

[6,16]. In [9] binary control problems are solved with a similar approach: there a trust-region globalization

is proposed, whereas we use an Armijo line-search to globalize.

As motivated above, we will compute 𝑢̃𝑘 as a result of the pointwise minimization

𝑢̃𝑘(𝑥) ∈ argmin
𝑣∈ℝ

𝑣𝑝𝑘 + 𝑔(𝑣).
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Due to (1.2) this problem is solvable for all 𝑥. A measurable selection of this argmin-map exists [1]. For the

example of 𝑔 proposed in (1.3), we get

𝑢̃𝑘(𝑥) ∈ round�−
1

𝛼
𝑝𝑘(𝑥)� .

It remains to describe how 𝐵𝑘 is chosen. Here, we are faced with two competing goals: In order to make

the first term in (4.1) as small as possible, 𝐵𝑘 has to be chosen as large as possible. However, to control the

remainder term in (4.1), |𝐵𝑘| has to be chosen sufficiently small.

We propose the following line-search. Given 𝑡 ∈ (0, 1], choose 𝐵𝑡 such that

�
𝐵𝑡

(𝑢̃ − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥 ≤ 𝑡�
Ω

(𝑢̃ − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥,

|𝐵𝑡| ≤ 𝑡 ⋅ |Ω|.

(4.3)

Due to the celebrated Lyapunov convexity theorem, see, e.g., [13, Theorem5.5], ameasurable set𝐵𝑡 satisfying

(4.3) exists. Given 𝑡 and 𝐵𝑡, we set 𝑢𝑡 ∶= 𝑢𝑘 + 𝜒𝐵𝑡(𝑢̃𝑘 − 𝑢𝑘). Let 𝑦𝑡 be the associated state.

The parameter 𝑡𝑘 is determined by the following procedure: Let 𝑡𝑘 be the largest number in {𝛽𝑙 ∶ 𝑙 ∈

ℕ ∪ {0}}, where 𝛽 ∈ (0, 1), that satisfies the descent condition

𝐽(𝑦𝑡, 𝑢𝑡) − 𝐽(𝑦𝑘, 𝑢𝑘) ≤ 𝜎�
𝐵𝑡

(𝑢̃ − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥 (4.4)

where 𝜎 ∈ (0, 1), and 𝐵𝑡 is a measurable set satisfying (4.3). This condition is inspired by the well-known

Armijo line-search in nonlinear optimization. If 𝑢𝑘 does not satisfy the maximum principle, there is an ad-

missible step-size 𝑡𝑘, and the resulting algorithm produces a new iterate with smaller value of the objective.

Lemma 4.1 Suppose that

�
Ω

(𝑢̃ − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥 < 0.

There is 𝑡0 > 0 such that for all 𝑡 ∈ (0, 𝑡0) condition (4.4) is satisfied.

Proof Due to Theorem 2.3, we have

𝐽(𝑦𝑡, 𝑢𝑡) − 𝐽(𝑦𝑘, 𝑢𝑘) − 𝜎�
𝐵𝑡

(𝑢̃ − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥

≤ (1 − 𝜎)�
𝐵𝑡

(𝑢̃ − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥 + 𝑜(𝑡)

≤ 𝑡(1 − 𝜎)�
Ω

(𝑢̃ − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥 + 𝑜(𝑡),

which proves the claim. �

The resulting algorithm is sketched in Algorithm 1.

Let us now turn to the convergence analysis of Algorithm 1. Here, we follow the related analysis in [19].

Let us define

𝜌𝑘 ∶= �
Ω

(𝑢̃𝑘 − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥.

Due to the choice of 𝑢̃𝑘 in (4.2), it follows 𝜌𝑘 ≤ 0. If 𝜌𝑘 = 0 then 𝑢𝑘 satisfies themaximum principle Theorem

3.1, and the corresponding control 𝑢𝑘 is optimal by Corollary 3.2.

Lemma 4.2 Let (𝑢𝑘) be an infinite sequence generated by Algorithm 1. Then

∞

�

𝑘=0

𝑡𝑘‖𝜌𝑘‖𝐿1(Ω) < +∞.
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Algorithm 1Maximum-principle based descent algorithm

Choose 𝛽 ∈ (0, 1), 𝜎 ∈ (0, 1), 𝑢0 with ∫
Ω
𝑔(𝑢0) d𝑥 < ∞, 𝛿tol ≥ 0. Set 𝑘 ∶= 0.

loop ▷ Gradient descent

Compute state 𝑦𝑘 and adjoint 𝑝𝑘 associated to 𝑢𝑘.

Compute 𝑢̃𝑘 as in (4.2).

if �∫
Ω
(𝑢̃𝑘 − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥� ≤ 𝛿tol then ▷ Termination criterion

return 𝑢𝑘
end if

𝑡 ∶= 1.

loop ▷ Armijo line-search

Compute 𝐵𝑘,𝑡 satisfying (4.3).

Compute 𝐽(𝑦𝑡, 𝑢𝑡).

if (4.4) is satisfied then

break

end if

𝑡 ∶= 𝛽 ⋅ 𝑡.

end loop

𝑡𝑘 ∶= 𝑡. ▷ Update

𝑢𝑘+1 ∶= 𝑢𝑘 + 𝜒𝐵𝑘,𝑡𝑘
(𝑢̃𝑘 − 𝑢𝑘).

𝑘 ∶= 𝑘 + 1.

end loop

Proof Using conditions (4.4) and (4.3) shows

𝐽(𝑦𝑘+1, 𝑢𝑘+1)−𝐽(𝑦𝑘, 𝑢𝑘) ≤ 𝜎�
𝐵𝑡𝑘

(𝑢̃−𝑢𝑘)𝑝𝑘+𝑔(𝑢̃)−𝑔(𝑢𝑘) d𝑥 ≤ 𝑡𝑘�
Ω

(𝑢̃−𝑢𝑘)𝑝𝑘+𝑔(𝑢̃)−𝑔(𝑢𝑘) d𝑥 = −𝑡𝑘‖𝜌𝑘‖𝐿1(Ω).

Due to (1.2), 𝑔 has a global minimum and is bounded from below, so that 𝐽 is bounded from below by some

𝑀 ∈ ℝ. Summing this inequality over 𝑘 ∈ ℕ and using 𝐽 ≥ 𝑀 proves ∑
∞
𝑘=1 𝑡𝑘‖𝜌𝑘‖𝐿1(Ω) ≤ 𝐽(𝑦0, 𝑢0) − 𝑀 < ∞.

�

For simplicity, we assume for the subsequent convergence analysis that

dom𝑔 ∶= {𝑣 ∶ 𝑔(𝑣) < ∞} (4.5)

is compact. Then the set of iterates (𝑢𝑘) and (𝑢̃𝑘) is uniformly bounded in 𝐿∞(Ω).

Corollary 4.3 Assume (4.5). Let𝑀 > 0 such that dom𝑔 ⊂ [−𝑀,+𝑀]. Then ‖𝑢𝑘‖𝐿∞(Ω) ≤ 𝑀 and ‖𝑢̃𝑘‖𝐿∞(Ω) ≤

𝑀 for all 𝑘.

Theorem 4.4 Assume (4.5). Either the Algorithm 1 stops after finitely many steps with

��
Ω

(𝑢̃𝑘 − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥� ≤ 𝛿tol

(so that 𝑢𝑘 satisfies the maximum principle if 𝛿tol = 0), or

�
Ω

(𝑢̃ − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥 → 0,

i.e., the residual in the maximum principle tends to zero, and (𝑢𝑘) is a minimizing sequence.

Proof We follow the proof of the related result [19, Theorem 6.7]. Let us assume the algorithm generates

an infinite sequence of iterates. Let 𝑘 be such that 𝑡𝑘 < 1. Due to the line-search procedure of Algorithm 1,

it follows that 𝑡 ∶= 𝛽−1𝑡𝑘 ≤ 1 violates the descent condition (4.4), that is

0 < 𝐽(𝑦𝑡, 𝑢𝑡) − 𝐽(𝑦𝑘, 𝑢𝑘) − 𝜎�
𝐵𝑡

(𝑢̃ − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥.
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As in the proof of Lemma 4.1, we get from Theorem 2.3

0 < 𝑡(1 − 𝜎)�
Ω

(𝑢̃ − 𝑢𝑘)𝑝𝑘 + 𝑔(𝑢̃) − 𝑔(𝑢𝑘) d𝑥 + 𝑐 |𝑡|1+𝛾‖𝑢̃ − 𝑢‖𝐿∞(Ω).

Together with Corollary 4.3, we get

0 < −𝑡(1 − 𝜎)‖𝜌𝑘‖𝐿1(Ω) + 𝑐|𝑡|1+𝛾,

where 𝑐 is independent of 𝑘. This implies

‖𝜌𝑘‖𝐿1(Ω) ≤ 𝑐𝑡
𝛾
𝑘

for all 𝑘 such that 𝑡𝑘 < 1. With Lemma 4.2, we get

+∞ >

∞

�

𝑘=0

𝑡𝑘‖𝜌𝑘‖𝐿1(Ω) = � �

𝑘∶ 𝑡𝑘=1

‖𝜌𝑘‖𝐿1(Ω)�+� �

𝑘∶ 𝑡𝑘<1

𝑡𝑘‖𝜌𝑘‖𝐿1(Ω)� ≥ � �

𝑘∶ 𝑡𝑘=1

‖𝜌𝑘‖𝐿1(Ω)�+𝑐� �

𝑘∶ 𝑡𝑘<1

‖𝜌𝑘‖
1+

1

𝛾

𝐿1(Ω)
� ,

which results in lim𝑘→∞ ‖𝜌𝑘‖𝐿1(Ω) = 0. Hence, the algorithm stops after finitely many iterations if 𝛿tol > 0.

�

5. Numerical results

Let us now report about numerical experiments with Algorithm 1. Here, we consider the optimal control

problem

𝐽(𝑦, 𝑢) ∶=
1

2
‖𝑦 − 𝑦𝑑‖

2
𝐿2(Ω)

+
𝛼

2
‖𝑢‖2

𝐿2(Ω)
+ 𝐼ℤ∩[−𝑏,𝑏](𝑢)

over all 𝑢 ∈ 𝐿2(Ω) and 𝑦 ∈ 𝐻1
0 (Ω) satisfying

−Δ𝑦 = 𝑢 in Ω,

𝑦 = 0 on 𝜕Ω.

This fits into the setting of the paper with the choice

𝑔(𝑣) ∶=
𝛼

2
𝑣2 + 𝐼ℤ∩[−𝑏,𝑏]

Here, we chose Ω = (0, 1)2,

𝑦𝑑(𝑥1, 𝑥2) = 10𝑥1 sin(5𝑥1) cos(7𝑥2), 𝛼 = 0.01, 𝛽 = 0.01, 𝑏 = 10.

We discretized the problem with piecewise linear finite elements on a regular mesh for state and adjoint

variables, while the control was discretized with piecewise constant finite elements. We report the results

for a sequence of differentmeshes, where the finestmesh hasmesh-size ℎ = 1.41⋅10−3 resulting in≈ 2⋅106

degrees of freedom for the control variables, which results in a mixed-integer optimization problem with

≈ 2 ⋅ 106 integer variables. In the implementation of Algorithm 1 a greedy strategy was used to determine

𝐵𝑡. The loop in Algorithm 1 was terminated if in the inner loop 𝑡|Ω|was smaller than any of the elements in

the grid.

Now let us report about some of the results. The optimal control can be seen in the left plot of Figure 1.

In the right plot, we report about the iteration history of the residual ‖𝜌𝑘‖𝐿1(Ω). Surprisingly, the iterations

seem to bemesh independent. In addition, for this particular problem a very small number of iterations was

needed to optimize over 2 ⋅ 106 discrete control variables.

This is underlined by the results in Table 1. It shows for different discretizations the final value of the

objective 𝐽 and the final value of the residual ‖𝜌‖𝐿1(Ω). As can be seen from the last column of this table,

very few outer iterations are needed. In conclusion, this new algorithm seems to be capable of solving quite

challenging mixed-inter programs.
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Fig. 1 Optimal control (left), iteration history (right)

ℎ 𝐽 ‖𝜌‖𝐿1(Ω) It

4.42 ⋅ 10−2 4.706 3.20 ⋅ 10−6 4

2.21 ⋅ 10−2 5.048 2.02 ⋅ 10−8 6

1.13 ⋅ 10−2 5.210 6.00 ⋅ 10−11 8

5.66 ⋅ 10−3 5.293 8.91 ⋅ 10−11 8

2.83 ⋅ 10−3 5.334 6.46 ⋅ 10−12 9

1.41 ⋅ 10−3 5.354 4.11 ⋅ 10−13 10

Tab. 1 Iteration history

References

[1] J.-P. Aubin andH. Frankowska. Set-Valued Analysis, volume 2 of Systems& Control: Foundations & Applications. Birkhäuser Boston,
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[17] F. Tröltzsch. Optimal control of partial differential equations, volume 112 of Graduate Studies in Mathematics. American Mathe-

matical Society, Providence, RI, 2010. Theory, methods and applications, Translated from the 2005 German original by Jürgen

Sprekels. doi:10.1090/gsm/112.

[18] D. Wachsmuth. Iterative hard-thresholding applied to optimal control problems with 𝐿0(Ω) control cost. SIAM J. Control Optim.,

57(2):854–879, 2019. doi:10.1137/18M1194602.

[19] D.Wachsmuth. A topological derivative-based algorithm to solve optimal control problemswith 𝐿0(Ω) control cost. J. Nonsmooth

Anal. Optim., 5, 2024. doi:10.46298/jnsao-2024-12366.

Daniel Wachsmuth

115



Progress and future directions in machine learning through control

theory

Enrique Zuazua1,2,3

1. enrique.zuazua@fau.de Chair for Dynamics, Control, Machine Learning, and Numerics, Alexander von Humboldt-Professorship,

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

2. Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

3. Chair of Computational Mathematics, Fundación Deusto. Av. de las Universidades, 24, 48007 Bilbao, Basque Country, Spain

Abstract

This paper presents our recent advancements at the intersection ofmachine learning and control theory.

We focus specifically on utilizing control theoretical tools to elucidate the underlying mechanisms driving

the success of machine learning algorithms. By enhancing the explainability of these algorithms, we aim

to contribute to their ongoing improvement and more effective application. Our research explores several

critical areas:

Firstly, we investigate thememorization, representation, classification, and approximation properties of

residual neural networks (ResNets). By framing these tasks as simultaneous or ensemble control problems,

we have developed nonlinear and constructive algorithms for training. Our work provides insights into the

parameter complexity and computational requirements of ResNets.

Similarly, we delve into the properties of neural ODEs (NODEs). We demonstrate that autonomous

NODEs of sufficient width can ensure approximate memorization properties. Furthermore, we prove that

by allowing biases to be time-dependent, NODEs can track dynamic data. This showcases their potential for

syntheticmodel generation and helps elucidate the success ofmethodologies such as Reservoir Computing.

Next, we analyze the optimal architectures of multilayer perceptrons (MLPs). Our findings offer guide-

lines for designing MLPs with minimal complexity, ensuring efficiency and effectiveness for supervised

learning tasks.

The generalization and prediction capacity of trained networks plays a crucial role. To address these

properties, we present two nonconvex optimization problems related to shallow neural networks, captur-

ing the ”sparsity” of parameters and robustness of representation. We introduce a ”mean-field” model,

proving, via representer theorems, the absence of a relaxation gap. This aids in designing an optimal toler-

ance strategy for robustness and, through convexification, efficient algorithms for training.

In the context of large language models (LLMs), we explore the integration of residual networks with

self-attention layers for context capture. We treat ”attention” as a dynamical system acting on a collection of

points and characterize their asymptotic dynamics, identifying convergence towards special points called

leaders. These theoretical insights have led to the development of an interpretable model for sentiment

analysis of movie reviews, among other possible applications.

Lastly, we address federated learning, which enables multiple clients to collaboratively train models

without sharing private data, thus addressing data collection and privacy challenges. We examine train-

ing efficiency, incentive mechanisms, and privacy concerns within this framework, proposing solutions to

enhance the effectiveness and security of federated learning methods.

Our work underscores the potential of applying control theory principles to improve machine learning

models, resulting in more interpretable and efficient algorithms. This interdisciplinary approach opens

up a fertile ground for future research, raising profound mathematical questions and application-oriented

challenges and opportunities.

1. Introduction

The impact of machine learning (ML) and artificial intelligence (AI) in science is leading to rich and inno-

vative lines of research in applied mathematics. There is a significant need for theoretical foundations that

ensure the performance, reliability, and interpretability of ML methods. Specifically, mathematical models

are required to understand and optimize rapidly emerging computational architectures. This challenge can

be addressed through the lens of control theory, a combination that offers great potential.

In this paper, we discuss recent results from our group that explore the application of control tools to

some of the main architectures and methods in ML, namely neural networks, self-attention mechanisms,

and federated learning.

Control theory lies at the foundation of ML [15]. Aristotle anticipated control theory when he described

the need for automated processes to free humans from their heaviest tasks [4]. In the 1940s, NorbertWiener
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redefined the term ”cybernetics,” previously coined by André-Marie Ampère, as ”the science of communi-

cation and control in animals and machines,” which reflected the discipline’s definitive contribution to the

industrial revolution.

Wiener’s definition involves two conceptual binomials. The first is control-communication: the need for

quality information about the state of the system to make the right decisions, reach given objectives, and

avoid risky regimes. The second binomial is animal-machine: as anticipated by Aristotle, humans aim to

build machines to perform routine tasks. These concepts are integral to contemporary ML. The close link

between control theory and ML, and more generally AI, is thus inherent in Wiener’s definition. Once more,

we stand on the shoulders of giants.

2. Control-based supervised learning via neural networks

Supervised learning is one of the main paradigms of machine learning (ML), aiming to define a map that

approximates an unknown function 𝑓 ∶ 𝒳 → 𝒴 using a training dataset {(𝑥𝑖, 𝑦𝑖)}
𝑁
𝑖=1 . Neural networks form

a widely used class of functions to approximate 𝑓 , and among these, residual networks have proven to be

particularly effective. In the continuous-time limit, these discrete systems, like for instance Residual Neural

Networks (ResNets),

𝑥𝑘+1 = 𝑥𝑘 +𝑊𝑘𝝈(𝐴
𝑘𝑥𝑘𝑖 + 𝑏𝑘), 𝑘 ∈ [𝐿], (2.1)

transform into the so-called Neural ODE (NODE):

�
𝑥̇(𝑡) = 𝑊(𝑡)𝝈(𝐴(𝑡)𝑥(𝑡) + 𝑏(𝑡)), 𝑡 ∈ (0, 𝑇),

𝑥(0) = 𝑥𝑖,
(2.2)

for all 𝑖 ∈ [𝑁] ≔ {1,… ,𝑁} . Here, 𝑥 = 𝑥(𝑡) is the state if the system, representing the data under con-

sideration, evolving continuously on time in the ambient space, (𝑊(𝑡), 𝐴(𝑡), 𝑏(𝑡)) ∈ Θ𝑝 ∶= 𝐿∞�(0, 𝑇);

ℝ𝑑×𝑝 × ℝ𝑝×𝑑 × ℝ𝑝� are piecewise constant controls with 𝐿 discontinuities (which play the role of the

NN parameters to be trained), 𝐿, 𝑝 ≥ 1 represent the depth and the width of the model, respectively, and

𝝈 ∶ ℝ𝑝 → ℝ𝑝 is a Lipschitz-continuous non-linearity defined component-wise, a common example being the

rectified linear unit (ReLU): 𝑥 ↦ max{𝑥, 0} .

One of themain advantages of NODEs is the possibility to reinterpret severalmachine learning paradigms

using tools from differential equations and their control. For example, data classification can be formulated

as a simultaneous control problem for (2.2), the goal being to build controls (𝑊, 𝐴, 𝑏) driving all initial data

{𝑥𝑖}
𝑁
𝑖=1 to their corresponding targets {𝑦𝑖}

𝑁
𝑖=1 (prescribed according to the labels) through the flow map

generated by (2.2).

In [11], we prove the simultaneous controllability of (2.2) for the single-neuronwidth case (𝑝 = 1) via an

inductive algorithm that constructs explicit, piecewise constant controls (𝑊, 𝐴, 𝑏) to sequentially guide each

point 𝑥𝑖 to its target 𝑦𝑖 . Moreover, using similar techniques, we obtain a result of universal approximation

in ‖ ⋅ ‖𝐿2 for NODEs. Below, we state the two main results from [11]:

Theorem 2.1 (Controllability) Let 𝑁 ≥ 1 , 𝑑 ≥ 2 , and 𝑇 > 0 . Consider any dataset {𝑥𝑖, 𝑦𝑖}
𝑁
𝑖=1 ⊂ ℝ𝑑 with

𝑥𝑖 ≠ 𝑥𝑗 and 𝑦𝑖 ≠ 𝑦𝑗 for 𝑖 ≠ 𝑗 . Then, there exists a piecewise constant control (𝑊, 𝐴, 𝑏) ∈ Θ1 (with 𝑝 = 1)

such that the flow map Φ𝑇 generated by (2.2) satisfies

Φ𝑇(𝑥𝑖) = 𝑦𝑖, for all 𝑖 = 1,… ,𝑁.

Furthermore, the depth of the model is 𝐿 = 3𝑁 .

Theorem 2.2 (Approximation) Let 𝑑 ≥ 2 , 𝑇 > 0 and a bounded set Ω ⊂ ℝ𝑑 . Then, for any 𝑓 ∈ 𝐿2(Ω;ℝ𝑑)

and 𝜀 > 0 there exists a piecewise constant control (𝑊, 𝐴, 𝑏) ∈ Θ1 (with 𝑝 = 1) such that the flow map Φ𝑇

generated by (2.2) satisfies
‖Φ𝑇 − 𝑓‖𝐿2(Ω) < 𝜀.

The simultaneous control result in theorem 2.1 and its proof opens paths for newmethodologies in data

classification, albeit requiring very high complexity (it scaleswith 𝑁). In [3], we reduce the complexity of the

controls for binary classification by proposing new algorithms based on predetermined point clusterings.

Our strategy aims to probabilistically reduce the number of parameters needed by leveraging the spatial

structure of the data distribution, assuming that the points are in general position, i.e., no 𝑑 + 1 points can

lie on the same hyperplane in ℝ𝑑 , which is generically fulfilled by random datasets.

Enrique Zuazua

117



Theorem 2.3 Let 𝑑 ≥ 2 and 𝑁 ≥ 1 . For any dataset {(𝑥𝑖, 𝑦𝑖)}
𝑁
𝑖=1 ⊂ ℝ𝑑 × {1, 0} in general position and

any 𝑗 ∈ {1, … , 𝑑} , there exist 𝑇 > 0 and a piecewise constant control (𝑊, 𝐴, 𝑏) ∈ Θ1 (with 𝑝 = 1) with

𝐿 = 4⌈𝑚/𝑑⌉−1 discontinuities, where𝑚 = min (#{𝑖 ∶ 𝑦𝑖 = 1}, #{𝑖 ∶ 𝑦𝑖 = 0}) , such that the flowmapgenerated

by (2.2) satisfies

Φ𝑇(𝑥𝑖)
(𝑗) < 1 if 𝑦𝑖 = 1 and Φ𝑇(𝑥𝑖)

(𝑗) > 1 if 𝑦𝑖 = 0, for all 𝑖 = 1,… ,𝑁.

The described results are focused on the simplified version of (2.2) with 𝑝 = 1 neurons per layer. In [2],

we focus on the role played by the architecture through the interplay between the depth 𝐿 andwidth 𝑝 . Our

findings reveal a balancing trade-off, as shown in the following result:

Theorem 2.4 Let 𝑁 ≥ 1 , 𝑑 ≥ 2 , 𝑇 > 0 . Consider any dataset {𝑥𝑖, 𝑦𝑖}
𝑁
𝑖=1 ⊂ ℝ𝑑 with 𝑥𝑖 ≠ 𝑥𝑗 and 𝑦𝑖 ≠ 𝑦𝑗

if 𝑖 ≠ 𝑗 . For any 𝑝 ≥ 1 , there exists a piecewise constant control (𝑊, 𝐴, 𝑏) ∈ Θ𝑝 such that the flow map Φ𝑇

generated by (2.2) satisfies
Φ𝑇(𝑥𝑖) = 𝑦𝑖, for all 𝑖 = 1,… ,𝑁.

Furthermore, the depth of the model is 𝐿 = 2 ⌈𝑁/𝑝⌉ .

In the wide limit, where 𝐿 = 0 , the system (2.2) becomes autonomous and a separate study is required.

We address the relaxed problem of 𝜀 -approximate controllability of 𝑁 pairs of points and establish an ex-

plicit error decay by uniformly approximating a custom-built Lipschitz vector field that effectively interpo-

lates the dataset:

Theorem 2.5 Let 𝑁 ≥ 1 , 𝑑 ≥ 2 and 𝑇 > 0 be fixed. Consider any dataset {𝑥𝑖, 𝑦𝑖}
𝑁
𝑖=1 ⊂ ℝ𝑑 with 𝑥𝑖 ≠ 𝑥𝑗 . For

each 𝑝 ≥ 1 , there exists a control (𝑊, 𝐴, 𝑏) ∈ Θ𝑝 such that the flow map Φ𝑇 generated by (2.2) satisfies

sup
𝑖=1,…,𝑁

|𝑦𝑖 −Φ𝑇(𝑥𝑖)| ≤ 𝐶
log

2
(𝜅)

𝜅1/𝑑
,

where 𝜅 = (𝑑 + 2)𝑑𝑝 is the number of neurons in the model, and 𝐶 > 0 is a constant depending on 𝑑 , 𝑇 , but

independent of 𝜅 .

The study of the autonomous system is closely related to the turnpike principle paradigm, coined by John

vonNeumann, which ensures that optimal control strategies remain almost steady over long time periods. In

[5], we have analyzed the implications of this principle for designing simplified andmore stable architectures

for deep ResNets.

An extension of the developed theory reformulates the continuousmodel in terms of transport equations,

through the classical link between (2.2), seen as theODEof characteristics, and the hyperbolic transport PDE,

leading to the following neural transport model:

𝜕𝑡𝜌 + div𝑥(𝑊(𝑡)𝝈(𝐴(𝑡)𝑥 + 𝑏(𝑡))𝜌) = 0. (2.3)

Transforming one given probability measure into another, up to an arbitrarily small Wasserstein-1 error

[2, 11] or total variation error [12], can be reinterpreted as a control problem for (2.3). The first approach

allows us to build a bridgewith the theory of optimal transport, whereas the latter, whose theorem statement

we formulate below, has applications in generative modeling via the technique known as normalizing flows.

Theorem 2.6 Given two probability densities 𝜌0, 𝜌𝑇 ∈ 𝐿1(ℝ𝑑) , for any 𝑇 > 0 and for all 𝜀 > 0 , there exist

piecewise constant controls (𝑤, 𝑎, 𝑏) ∈ Θ1 such that the solution of (2.3) satisfies

‖𝜌(𝑇) − 𝜌𝑇‖𝐿1(ℝ𝑑) < 𝜀.

In addition to ResNets and NODEs, we have analyzed the so-called multilayer perceptron deep NN:

𝑥𝑘+1 = 𝝈𝑘+1(𝐴
𝑘𝑥𝑘 + 𝑏𝑘), 𝑘 ∈ [𝐿], (2.4)

where 𝑥𝑘 ∈ ℝ𝑑𝑘 denotes the state at layer/step 𝑘 ≥ 1 , 𝐴𝑘 ∈ ℝ𝑑𝑘+1×𝑑𝑘 , 𝑏𝑘 ∈ ℝ𝑑𝑘+1 , and {𝑑𝑘}
𝐿
𝑘=1 is a

sequence of positive integers determining the dimension of the state and the width of (2.4) at the layer 𝑘 .

Here, 𝝈𝑘+1 ∶ ℝ
𝑑𝑘+1 → ℝ𝑑𝑘+1 denotes the (component-wise) ReLU function, and max𝑘{𝑑𝑘} the total width of

(2.4). In [6], for a dataset of 𝑁 elements in ℝ𝑑, 𝑑 ≥ 1, and 𝑀 classes, we prove that (2.4) is simultaneously

controllable with width 2 and at most 2𝑁+4𝑀−1 layers. This is proven using an inductive algorithm that

provides explicit values for the parameters. This result is sharp in the sense that (2.4) with width 1 cannot

achieve simultaneous controllability. Additionally, in [6], the universal approximation (UA) for 𝐿𝑝(Ω;ℝ+)

functions (for 𝑝 ∈ [1,∞) and Ω ⊂ ℝ𝑑 bounded) is proven, using (2.4) with width 𝑑 + 1 , together with

explicit convergence rates for 𝑊1,𝑝 functions, which can be extended to changing-sign functions too.

Progress and future directions in machine learning …
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3. Representer theorem for shallow neural networks: sparsity and generalization

Besides NODEs, ResNets and deep NNs, we have also analysed the representational and generalization ca-

pacity of shallow NN, as conducted in [9]. The shallow NN is expressed as:

𝑓shallow(𝑥, Θ) ≔

𝑃

�

𝑗=1

𝜔𝑗𝜎(⟨𝑎𝑗, 𝑥⟩ + 𝑏𝑗), (3.1)

where Θ = {(𝜔𝑗, 𝑎𝑗, 𝑏𝑗) ∈ ℝ × Ω}𝑃𝑗=1 , 𝑃 denotes its width, and Ω is a compact subset of ℝ𝑑 containing a

neighborhood of 0 . We first investigate the representational capacity of (3.1).

Theorem 3.1 Assume that 𝜎 is continuous and 𝜎(𝑥) = 0 for 𝑥 ≤ 0 and 𝜎(𝑥) > 0 for 𝑥 > 0 . Fix any

consistent dataset {(𝑥𝑖, 𝑦𝑖) ∈ ℝ𝑑+1}𝑁𝑖=1 . If 𝑃 ≥ 𝑁 , then there exists Θ ∈ (ℝ × Ω)𝑃 such that

𝑓shallow(𝑥𝑖, Θ) = 𝑦𝑖, for all 𝑖 = 1,… ,𝑁.

For a fixed dataset {(𝑥𝑖, 𝑦𝑖) ∈ ℝ𝑑+1}𝑁𝑖=1 , Theorem 3.1 shows the existence of parameters for its exact

representation by (3.1), 𝑃 = 𝑁 being sufficient. Next, we consider an optimization problem, where the

objective is to minimize the ℓ1 norm of the neuron weights:

inf
{(𝜔𝑗,𝑎𝑗,𝑏𝑗)∈ℝ×Ω}

𝑁
𝑗=1

𝑁

�

𝑗=1

|𝜔𝑗|, s.t.

𝑁

�

𝑗=1

𝜔𝑗𝜎(⟨𝑎𝑗, 𝑥𝑖⟩ + 𝑏𝑗) = 𝑦𝑖, for all 𝑖 = 1,… ,𝑁. (P0)

When {𝑦𝑖}
𝑁
𝑖=1 represent observed labels affected by some level of noise, it is more meaningful to consider

the previous optimization problem under certain tolerance on the error of the prediction. This leads to the

following optimization problem parameterized by 𝜖 ≥ 0 :

inf
{(𝜔𝑗,𝑎𝑗,𝑏𝑗)∈ℝ×Ω}

𝑁
𝑗=1

𝑁

�

𝑗=1

|𝜔𝑗|, s.t. �

𝑁

�

𝑗=1

𝜔𝑗𝜎(⟨𝑎𝑗, 𝑥𝑖⟩ + 𝑏𝑗) − 𝑦𝑖� ≤ 𝜖, for all 𝑖 = 1,… ,𝑁. (P𝜖)

Problems (P0) and (P𝜖) are non-convex due to the non-linearity of 𝜎 , which induces the lack of convexity

in their feasible sets. To cure this lack of convexity we consider the following convex relaxation problems:

inf
𝜇∈ℳ(Ω)

‖𝜇‖TV, s.t.

ˆ
Ω

𝜎(⟨𝑎, 𝑥𝑖⟩ + 𝑏)𝑑𝜇(𝑎, 𝑏) = 𝑦𝑖, for all 𝑖 = 1,… ,𝑁; (PR0)

inf
𝜇∈ℳ(Ω)

‖𝜇‖TV, s.t. �

ˆ
Ω

𝜎(⟨𝑎, 𝑥𝑖⟩ + 𝑏)𝑑𝜇(𝑎, 𝑏) − 𝑦𝑖� ≤ 𝜖, for all 𝑖 = 1,… ,𝑁, (PR𝜖)

where ℳ(Ω) represents the space of Radonmeasures on Ω , and ‖⋅‖TV denotes the total variation norm. We

demonstrate that there is no gap between the primal problems and the relaxed ones, and that the extreme

points of the relaxed solution sets have an atomic structure.

Theorem 3.2 Under the setting of Theorem 3.1, the solution sets of (PR0) and (PR𝜖), denoted by 𝑆(PR0) and

𝑆(PR𝜖) , are non-empty, convex and compact in the weak-∗ sense. Moreover,

val(PR0) = val(P0), Ext(𝑆(PR0)) ⊆ �

𝑁

�

𝑗=1

𝜔𝑗𝛿(𝑎𝑗,𝑏𝑗) � (𝜔𝑗, 𝑎𝑗, 𝑏𝑗)
𝑁
𝑗=1 ∈ 𝑆(P0)� , (3.2)

val(PR𝜖) = val(P𝜖), Ext(𝑆(PR𝜖)) ⊆ �

𝑁

�

𝑗=1

𝜔𝑗𝛿(𝑎𝑗,𝑏𝑗) � (𝜔𝑗, 𝑎𝑗, 𝑏𝑗)
𝑁
𝑗=1 ∈ (P𝜖)� , (3.3)

where Ext(𝑆) represents the set of all extreme points of 𝑆 .

To study the generalization capacity of the shallow NN, we consider some testing dataset {(𝑋′, 𝑌′)} =

{(𝑥′𝑖 , 𝑦
′
𝑖 ) ∈ ℝ𝑑+1}𝑁

′

𝑖=1 with 𝑁′ ∈ ℕ+ , which differs from the training one. The generalization quality is de-

termined by the performance of this shallow NN on the testing set (𝑋′, 𝑌′) , which is assessed by comparing

the actual values {𝑦′𝑖 }
𝑁′

𝑖=1 with the predictions {𝑓shallow(𝑥
′
𝑖 , Θ)}

𝑁′

𝑖=1 . Rather than evaluating differences indi-

vidually, we analyze the discrepancies in their overall distributions to simplify the analysis. Let us denote

by

𝑚𝑥 =
1

𝑁

𝑁

�

𝑖=1

𝛿𝑥𝑖 , 𝑚𝑦 =
1

𝑁

𝑁

�

𝑖=1

𝛿𝑦𝑖 , 𝑚̄𝑦 =
1

𝑁

𝑁

�

𝑖=1

𝛿𝑓shallow(𝑥𝑖,Θ);

𝑚′
𝑥 =

1

𝑁′

𝑁′

�

𝑖=1

𝛿𝑥′𝑖
, 𝑚′

𝑦 =
1

𝑁′

𝑁′

�

𝑖=1

𝛿𝑦′𝑖
, 𝑚̄′

𝑦 =
1

𝑁′

𝑁′

�

𝑖=1

𝛿𝑓shallow(𝑥′𝑖 ,Θ)
.
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Theorem 3.3 Assume that 𝜎 is 𝐿 -Lipschitz. Let Θ be a solution of (P𝜖) for some 𝜖 ≥ 0 . Then,

𝑑KR(𝑚
′
𝑦, 𝑚̄

′
𝑦) ≤ 𝑑KR(𝑚𝑦, 𝑚

′
𝑦) + �

𝜖 + 𝑑KR(𝑚𝑥, 𝑚
′
𝑥)𝐿𝐷 val(P𝜖), if 0 ≤ 𝜖 ≤ ‖𝑌‖ℓ∞ ,

‖𝑌‖ℓ∞ , otherwise,

where 𝐷 = sup
(𝑎,𝑏)∈Ω

‖𝑎‖ and 𝑑KR represents the Kantorovich–Rubinstein distance.

In view of Theorem 3.3, the problem of minimizing the right-hand-side upper bound with respect to 𝜖

arises:
inf

0≤𝜖≤‖𝑌‖ℓ∞
𝒰(𝜖) ≔ 𝜖 + 𝑑KR(𝑚𝑥, 𝑚

′
𝑥)𝐿𝐷 val(P𝜖). (UB)

By employing the dual analysis of problems (P𝜖) and (P0), we obtain the first-order optimality condition of

(UB) in the following theorem. Let us denote by 𝑐𝜖 (resp. 𝐶𝜖 ) the minimum (resp. maximum) value of the ℓ1

norm of the dual solutions of (PR𝜖) for any 𝜖 ≥ 0 .

Theorem 3.4 Under the setting of Theorem 3.1, the solution set of problem (UB), denoted by 𝑆(UB) , is non-

empty. Moreover, the following holds:

1. If 𝑑KR(𝑚𝑥, 𝑚
′
𝑥) < (𝐿𝐷𝑐0)

−1 , then 𝑆(UB) = {0} .

2. If 𝑑KR(𝑚𝑥, 𝑚
′
𝑥) ≥ (𝐿𝐷𝑐0)

−1 , then 𝜖 ∈ 𝑆(UB) if and only if 1/𝑑KR(𝑚𝑥, 𝑚
′
𝑥)𝐿𝐷 ∈ [𝑐𝜖, 𝐶𝜖].

Fig. 3.1 The red and blue curves represent point 1 and 2 of Theorem 3.4, respectively. According to Theorem 3.4, when

the distance between the training and testing sets is less than the threshold (𝐿𝐷𝑐0)
−1 , it suffices to consider the exact

representation problem (P0). If 𝑑KR(𝑚𝑥,𝑚
′
𝑥) exceeds this threshold, the optimal 𝜖 can be determined by solving the

dual problem of (PR𝜖).

4. Dynamical System Approximation via Semi-Autonomous NODEs

Going back to the NODE context, and with the aim of reducing their complexity, measured in terms of the

number of switchings of the parameters, while preserving the exact representation capacity, in the upcoming

work [7], we study NODEs of the form

�
𝑥̇ = 𝑊𝝈(𝐴𝑥 + 𝑏(𝑡)), 𝑡 ∈ (0, 𝑇),

𝑥(0) = 𝑥𝑖,
(4.1)

where now the only time-dependent parameter is the bias 𝑏 = 𝑏(𝑡) . For this reason, we dub the model

Semi-Autonomous NODE (SA-NODE), which is still non-autonomous, but with a complexity which is greatly

reduced, since 𝑊 and 𝐴 are now time-independent. Theorem 2.1 continues to hold for (4.1) with no change

in the hypotheses. Furthermore, the semi-autonomous structure appears naturally in the proof, as the time-

dependency of the biases 𝑏(𝑡) is quickly seen to be necessary for tracking dynamic data, as the following

result assures, [7].

Theorem 4.1 Let 𝐾 ∈ ℝ𝑑 be a fixed compact set and consider the non-autonomous ODE

�
𝒛̇(𝑡) = 𝑓(𝒛, 𝑡), 𝑡 ∈ (0, 𝑇),

𝒛(0) = 𝒛0 ∈ 𝐾,
(4.2)

where 𝑓 ∶ ℝ𝑑×[0, 𝑇] → ℝ𝑑 is a continuous function and uniformly Lipschitz continuous in 𝒛 . For every 𝜀 > 0 ,

there exist 𝑝 = 𝑝(𝜀) , matrices 𝑊 ∈ ℝ𝑑×𝑝, 𝐴 ∈ ℝ𝑝×𝑑 , and a function 𝑏 = 𝑏(𝑡) ∈ 𝐿∞((0, 𝑇); ℝ𝑝) such that, for

every 𝒛0 ∈ 𝐾 , the solution 𝒙 = 𝒙(𝑡) to the SA-NODE

�
𝒙̇ =

𝑝

�

𝑖=1

𝑤𝑖𝜎(𝑎𝑖 ⋅ 𝒙 + 𝑏𝑖(𝑡)),

𝒙(0) = 𝒛0,

(4.3)
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satisfies
‖𝒛 − 𝒙‖𝐿∞([0,𝑇];ℝ𝑑) ≤ 𝜀. (4.4)

In other words, SA-NODEs learn the global flow of the ODE, and not just the local information around one

single trajectory or just the final profiles at 𝑡 = 𝑇 .

(a) SA-NODEs and exact solutions of linear ODEs for 𝑧̇1 = 𝑡 − 𝑧2, 𝑧̇2 = 𝑧1 − 𝑡 .

(b) SA-NODEs and exact solutions of nonlinear ODEs for 𝑧̇1 = 𝑧2, 𝑧̇2 = −𝑧1 − 𝑧32 .

Fig. 4.1 SA-NODEs (left) and exact solutions (center) of linear and nonlinear ODEs. On the right, themean and standard

deviation bounds of the error 𝑒(𝑡) , computed as the euclidean distance between the exact value of the trajectory and

the predicted one.

Notably, the semi-autonomous structure emerges spontaneously, roughly because Cybenko’s universal

approximation theorem yields an approximation of 𝑓(𝒛, 𝑡) of the form

𝑓(𝒛, 𝑡) ∼

𝑝

�

𝑖=1

𝑤𝑖𝜎(𝑎𝑖 ⋅ (𝒛, 𝑡)
⊤ + 𝑏𝑖) =

𝑝

�

𝑖=1

𝑤𝑖𝜎(𝑎𝑖 ⋅ 𝒛 + 𝑎𝑑+1𝑖 𝑡 + 𝑏𝑖).

The SA-NODE structure arises naturally when renaming the term 𝑎𝑑+1𝑖 𝑡 + 𝑏𝑖 as 𝑏𝑖(𝑡) .

(a) SA-NODEs solutions

(b) Exact solutions

Fig. 4.2 SA-NODEs and exact solution of 2D transport equations 𝜌𝑡 + div𝒙 (𝑓(𝑥, 𝑦, 𝑡)𝜌) = 0 , where the velocity field

is 𝑓(𝑥, 𝑦, 𝑡) = �sin(𝑥)/(1 + 𝑡2), sin(𝑦)/(1 + 𝑡2)�
⊤
. The initial datum is the gaussian profile 𝑒−𝑥

2−𝑦2 .

Numerical results confirm that SA-NODEs are a promising architecture. They not only perform well on

benchmark examples, such as linear and nonlinear dynamical systems (see Figures 4.1a-4.1b), but also on

transport equations (as shown in Figure 4.2). In Figures 4.1a-4.1b, the simulated trajectories used for train-

ing are plotted in red. In contrast, the trajectories predicted from previously unseen initial data are plotted

in green, demonstrating the excellent generalization properties of SA-NODEs.
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Furthermore, SA-NODEs significantly outperform vanilla NODEs in terms of the number of epochs and

neurons required to achieve suitable approximations of dynamical systems. On benchmark examples, and

for a fixed number of epochs and neurons, SA-NODEs consistently achieve significantly smaller errors than

vanilla NODEs, often by a couple of orders of magnitude. Additionally, even though the network widths are

the same, SA-NODEs require less time to train than vanilla NODEs. This is because the number of parameters

is reduced, with constant 𝑊 and 𝐴 . Consequently, by decreasing the number of parameters, SA-NODEs

mitigate the tendency of vanilla NODEs to overfit. This showcases the potential of SA-NODEs for synthetic

model generation and helps elucidate the success of methodologies such as Reservoir Computing.

5. Self-attention as a clustering mechanism and its role in LLMs

For supervised learning tasks in large language models (LLMs), capturing ”context” or how words relate to

one another in a sentence, is a key feature. The transformer is a state-of-the-art neural networks in LLMs,

which builds on ResNets by alternating with self-attention layers exploiting the data structure. Heuristically,

these layers capture the ”context” at the sample level by mixing its rows based on similarity between them.

For this reason, the data samples used to train suchmodels contain collections of words (i.e. sentences or

paragraphs). More precisely, the training dataset is of the form {(𝑍𝑠, 𝑦𝑠)}
𝑁
𝑠=1 , for matrices 𝑍𝑠 ∈ ℝ𝑛×𝑑 , whose

𝑛 rows encode words as points in Euclidean space ℝ𝑑 .

For a fixed data sample 𝑍 ∈ ℝ𝑛×𝑑 with rows 𝑧1, … , 𝑧𝑛 ∈ ℝ𝑑 , the (hardmax) self-attention model is given

by

𝑧𝑘+1𝑖 = 𝑧𝑘𝑖 +
𝛼

1 + 𝛼

1

|𝒞𝑖(𝑍
𝑘|

�

𝑗∈𝒞𝑖(𝑍
𝑘

�𝑧𝑘𝑗 − 𝑧𝑘𝑖 �, 𝑘 ≥ 0, (5.1a)

where 𝑧0𝑖 = 𝑧𝑖 , 𝑍
𝑘 contains the rows 𝑧𝑘1 , … , 𝑧𝑘𝑛 , 𝐴 ∈ ℝ𝑑×𝑑 is a symmetric positive definite matrix, 𝛼 > 0 ,

and
𝒞𝑖(𝑍

𝑘 = �𝑗 ∈ [𝑛] ∶ �𝐴𝑧𝑘𝑖 , 𝑧
𝑘
𝑗 � = max

ℓ∈[𝑛]
�𝐴𝑧𝑘𝑖 , 𝑧

𝑘
ℓ �� . (5.1b)

In [1], we study the asymptotic behaviour of the self-attention dynamics (5.1) as 𝑘 → ∞ . In particular, we

prove that it exhibits clustering behaviour towards special points called leaders. As an application, we use

our clustering results to design a simple and interpretable transformer-basedmodel to solve the supervised

learning task in LLMs of sentiment analysis. We use a benchmark dataset with movie reviews, labeled as

positive or negative. The proposed model contains only three components with distinct roles: the encoder,

mapping words to points in ℝ𝑑 , whose role is to select meaningful words as leaders; our transformer (5.1),

whose role is to capture ”context” by clustering themajority ofwords towards the fewmostmeaningful ones;

and the decoder, whose role is to project the final point values to a real prediction by dividing ℝ𝑑 in two half-

spaces and identifying each half-space with each sentiment. After training the model, our interpretation is

verified with examples (cf. Figure 5.1).

2 1 0 1 2

3

2

1

0

1

2
Positive review (K = 0)

unoriginal

Justin
fantastic

plain makeup

2 1 0 1 2

3

2

1

0

1

2
Positive review (K = 8)

unoriginal

Justin
fantastic

plain makeup

Fig. 5.1 Evolution of the encoded words of a positive review as they are processed by 𝐾 = 8 transformer layers.

Points are colored according to the point they follow, leaders are stars and tagged with the word they encode, squares

are non-leaders who are followed by other points, circles are the remaining points, and the triangle is the mean word.

The dashed line is the hyperplane separating the negative class (red) from the positive class (green).

6. Federated learning: training, incentive, and privacy

With the growing amount of distributed data, federated learning (FL) has emerged as a promising paradigm

to address challenges like data collection and privacy protection in centralized learning approaches.

As in supervised learning, FL aims to learn a model to approximate 𝑓 ∶ 𝒳 → 𝒴 , but under the constraint

that training data and labels are stored across distributed clients. Given 𝑚 clients, the training of FL can be

formulated as

min
𝜃∈𝒲

𝑚

�

𝑘=1

𝑝𝑘ℓ𝑘(𝜃), (6.1)
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where 𝜃 ∈ 𝒲 are trainable parameters, ℓ𝑘 ∶ 𝒲 → ℝ is client 𝑘 ’s local loss function, commonly set as the

empirical risk over its local dataset, and 𝑝𝑘 ≥ 0 with ∑
𝑚
𝑘=1 𝑝𝑘 = 1 specifies the relative impact of client 𝑘 .

To solve (6.1) efficiently, we propose in [14] an inexact and self-adaptive algorithm termed FedADMM-

InSa. We design an inexactness criterion to guide each client to independently adjust its local training accu-

racy, leading to personalized training and better adaptation to heterogeneous data. Additionally, we present

a self-adaptive scheme that dynamically adjusts each client’s penalty parameter to enhance the robustness

of our algorithm.

As in [14], existing research on FL primarily focuses on designing efficient learning algorithms. Most

existing works do not consider that clients may be reluctant to engage without appropriate compensation

(rewards from the server) for their training efforts. We address this issue in [8] by formulating incentive

mechanisms in FL within a potential game framework. We investigate the uniqueness of the Nash equilib-

rium in these games and offer the server an easily calculable threshold for the reward, under which it can

achieve effective incentives concerning clients’ training efforts.

Moreover, the privacy benefits of FL (exchangingmodel parameters instead of data) can be compromised

by data reconstruction attacks. In [13], we propose an approximate and weighted attack method to recover

clients’ private data under the widely used multiple-step local update scenarios. Experimental results vali-

date the superiority of our attack method, emphasizing the need for effective defense mechanisms in FL to

enhance privacy.
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Abstract

Additive Manufacturing (AM) has become a widely used technique in 3D printing, but it has proven to

be a very costly process, even when optimizing parameters in existing models. Due to the characteristics of

AM, and in order to optimize its process, a new approach is introduced to the problem: the discretization

of each layer to be printed. This involves establishing an order relation based on the sequence in which

the layers should be printed. The valid orders for the execution of the process, referred to as compatible

with the order relation, will be characterized. Additionally, algorithms will be provided to obtain new com-

patible orders from others that were already compatible, and strategies will be presented to optimally and

efficiently reorder non-compatible orders, converting them into compatible ones.

1. Introduction

The presentation collects part of the ideas we developed to solve a problem presented to us by a company

for optimizing the 3D-printing of an object. This process falls within the context of Additive Manufacturing

(AM) in which, each object is created from a set of layers. The use of printing layers allows for the creation of

objects with a virtually unlimited variety of geometries, adaptable to any requirements of the final product.

Pairedwith the advantage of printing any imaginable geometry, it appears the drawback of the slowness and

cost of this production process. The technology, energy and human resources employed have a very high

cost, sominimizing processing time naturally becomes a desired goal for all companies using this production

method.

As usual, the problem consists of two well-differentiated parts: Modeling and Resolution. The talk starts

by explaining some results that have been found in modeling, and it will finish with others related to op-

timization. To model the problem were used binary relations, that means equivalence relations but more,

OrderRelations.To solve the problem, that is, tominimize the processing time, were usedGenetic Algorithms.

Each of the layers of the object contains a large set of points. This set of points is the unique piece of

information required to process the object, that means that having control over this set, turns into having

control over the production of the object. To get this, it was necessary to order and classify these points in

some way. The order in which the information is provided to the device is crucial since the execution time

depends strongly on this arrangement.

After performing a series of classifications on the set of points, using certain order and equivalence rela-

tions, were obtained a Partially Ordered Set (POSet) with a computationally acceptable number (10-120) of

elements (pieces). Observing the diagram associated with the POSet from the perspective of Graph Theory,

the problem consists of a particular version of the Traveling Salesman Problem (TSP). This version is due to

the idiosyncrasies of the machines we are working with; we might refer to it as the Constrained Traveling

Salesman Problem (CTSP). To solve it, they are used genetic algorithm techniques.

2. Initial Definitions and Properties

Definition 2.1 A binary relation 𝑅 defined on a set 𝑆 is a subset of 𝑆 × 𝑆. If (𝑎, 𝑏) ∈ 𝑅 it is said to be 𝑎 is

𝑅-related to 𝑏. 𝑅 is said to be an order relation or a partial order relation on 𝑆 if it is:

• reflexive: (𝑎, 𝑎) ∈ 𝑅 ∀𝑎 ∈ 𝑆

• antisymmetric: ∀𝑎, 𝑏 ∈ 𝑆 if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∈ 𝑅 then 𝑎 = 𝑏

• transitive: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆 if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅 then (𝑎, 𝑐) ∈ 𝑅
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A set 𝑆 with a partial order relation is denoted by (𝑆, 𝑅) and is known as Partial Ordered Set or POSet. If

(𝑆, 𝑅) is a POSet, then 𝑎, 𝑏 ∈ 𝑆 are said to be comparable if 𝑎𝑅𝑏 or 𝑏𝑅𝑎.

Let𝑅 be a binary relation defined on a set 𝑆, it is said to be a total order relation if it is an order relation and

all the elements of 𝑆 are comparable. If 𝑅 is a total order (𝑆, 𝑅) is said to be a Totally Ordered Set, or TOSet.

Definition 2.2 Given a set 𝑆with 𝑛 elements, and a bijection from 𝐼 = {1, 2, … , 𝑛} to 𝑆

𝐼 → 𝑆

𝑖 → 𝑎𝑖

This establishes an indexing by means 𝐼 of the elements of 𝑆. Then, 𝑆 is said to be an 𝐼-indexed set or an

indexed set.

Definition 2.3 Given 𝜎 a permutation of elements of 𝐼

𝜎 ∶ 𝐼 → 𝐼

𝑖 → 𝜎(𝑖)

an ordering or permutation of elements of 𝑆 can be generated as

𝐼 → 𝑆

𝑖 → 𝑎𝜎(𝑖)

Wecan represent thepermutation𝜎by the imagesof thebijection that𝜎defines from 𝐼 to itself as (𝜎(1), 𝜎(2), … , 𝜎(𝑛)).

Definition 2.4 Let 𝑆 be an indexed set with 𝐶𝑎𝑟𝑑(𝑆) = 𝑛 and 𝑅 an order relation defined on 𝑆. We say that

a matrix𝑀 = (𝑚𝑖𝑗)𝑛×𝑛, is the adjacency matrix of (𝑆, 𝑅) if it satifies:

𝑚𝑅,𝑖𝑗 = �

1 if 𝑎𝑖𝑅𝑎𝑗

0 otherwise

Obviously, the adjacency matrix depends on the ordering in which the elements are taken. Thus, for each

permutation (𝜎(1), 𝜎(2), … , 𝜎(𝑛)) of elements of 𝑆, a matrix will be obtained, denoted by 𝑀𝜎
𝑅 , and whose

elements are:

𝑚𝜎
𝑅,𝑖𝑗

= �

1 if 𝑎𝜎(𝑖)𝑅𝑎𝜎(𝑗)

0 otherwise

When there is nodoubt about theorder relation, the adjacencymatrix for thepermutationdefinedby𝜎 canbe

denoted𝑀𝜎, and, for simplicity, we denote by𝑀 the adjacencymatrix for themain permutation (1, 2, 3, … , 𝑛).

We denote by 𝑀𝑆(𝑅) the set of the adjacency matrices that represent the relation 𝑅 defined on the set 𝑆.

Proposition 2.5 Let be an indexed set 𝑆 = {𝑎1, 𝑎2, … , 𝑎𝑛}, the total order relation 𝑅 such that

𝑎𝑖𝑅𝑎𝑗 if and only if 𝑗 ≤ 𝑖

i.e., the elements ordered from highest to lowest index, and the adjacency matrix 𝑀𝜎 for 𝑅 of a permutation

𝜎 = (𝜎(1), … , 𝜎(𝑛)) of elements of 𝑆, then for all 𝑖0 ∈ {1,… , 𝑛}

𝑛

�

𝑗=1

𝑚𝜎
𝑗 𝑖0

= 𝑛 − 𝜎(𝑖0) + 1

𝑛

�

𝑗=1

𝑚𝜎
𝑖0 𝑗

= 𝜎(𝑖0)

Proposition 2.6 Given an indexed set 𝑆 with 𝑛 elements and an order relation 𝑅

1 ≤ 𝐶𝑎𝑟𝑑(𝑀𝑆(𝑅) ≤ 𝑛!

If the order relation is total then 𝐶𝑎𝑟𝑑(𝑀𝑆(𝑅)) = 𝑛!
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3. Compatibility

Definition 3.1 Given a permutation 𝜎 = (𝜎(1), 𝜎(2), … , 𝜎(𝑛)) of elements of 𝐼 = {1, 2, … , 𝑛}, we define the

relation induced by 𝜎 on 𝑆 and denote it by 𝑇𝜎 the relation defined as:

(𝑎𝑖, 𝑎𝑗) ∈ 𝑇𝜎 ⟺ 𝜎−1(𝑗) ≤ 𝜎−1(𝑖)

It is easy to see that, thus defined, this is a total order relation on 𝑆.

Definition 3.2 Let 𝑆 = {𝑎1, 𝑎2, … , 𝑎𝑛} be an indexed set and let 𝑅 be an order relation defined on 𝑆. A

permutation 𝜎 of the elements of 𝑆 is said to be compatible with the relation 𝑅 if 𝑅 ⊆ 𝑇𝜎. We denote the

set of permutations compatible with the relation 𝑅 by 𝐶(𝑆, 𝑅).

Theorem 3.3 Let (𝑆, 𝑅) be an ordered indexed set and 𝜎 a permutation of elements of 𝐼; then

𝜎 is compatible with the relation 𝑅 ⇔ 𝑀𝜎
𝑅 is lower triangular.

Theorem 3.4 Given an indexed POSet (𝑆, 𝑅) with 𝑛 elements, there is always a compatible permutation.

Proof In a finite POSet, there always exist maximal elements. Let’s assume there are 𝜇1 of these maximal

elements.

Consider these maximal elements of (𝑆, 𝑅),

𝑀11, 𝑀12, … ,𝑀1𝜇1

denoting by𝑀11 = 𝑎𝜎(1), 𝑀12 = 𝑎𝜎(2), … ,𝑀1𝜇1
= 𝑎𝜎(𝜇1), we construct

(𝜎(1), 𝜎(2), … , 𝜎(𝜇1))

which verifies that if 𝑖, 𝑗 ∈ {1, 2, … , 𝜇1}, 𝑎𝜎(𝑖) and 𝑎𝜎(𝑗) are not comparable.

Let us now consider the set 𝑆1 = 𝑆−{𝑎𝜎(1), 𝑎𝜎(2), … , 𝑎𝜎(𝜇1)}, and the restriction of𝑅 on 𝑆1 that we denote

𝑅1. As in the previous step, let’s suppose that there are 𝑟2 maximal elements, and, denoting 𝜇2 = 𝜇1 +𝑟2 and

𝑀21 = 𝑎𝜎(𝜇1+1), 𝑀22 = 𝑎𝜎(𝜇1+2), … ,𝑀2𝑟2
= 𝑎𝜎(𝜇2),

we add them to the previously constructed permutation, obtaining

(𝜎(1), 𝜎(2), … , 𝜎(𝜇1), 𝜎(𝜇1 + 1),… , 𝜎(𝜇2))

that verifies

• If 1 ≤ 𝑖, 𝑗 ≤ 𝜇1 ⇒ 𝑎𝜎(𝑖) and 𝑎𝜎(𝑗) are not comparable

• If 𝜇1 < 𝑖, 𝑗 ≤ 𝜇2 ⇒ 𝑎𝜎(𝑖) and 𝑎𝜎(𝑗) are not comparable

• If 1 ≤ 𝑖 ≤ 𝜇1 < 𝑗 ≤ 𝜇2 ⇒ as 𝑎𝜎(𝑗) is maximal in 𝑆1, 𝑎𝜎(𝑖) is maximal in 𝑆 and 𝑆1 ⊆ 𝑆 therefore

𝑎𝜎(𝑖) and 𝑎𝜎(𝑗) are not comparable or 𝑎𝜎(𝑗)𝑅𝑎𝜎(𝑖).

Repeating the process 𝑘 − 1 times considering the set 𝑆𝑘 = 𝑆 − {𝑎𝜎(1), … , 𝑎𝜎(𝜇𝑘)} and taking the maximal

elements of the poset (𝑆𝑘, 𝑅𝑘) being 𝑅𝑘, the restriction of 𝑅 to the set 𝑆𝑘, we will obtain, after a finite number

of steps, a permutation of the 𝑛 elements of 𝑆

𝜎 = (𝜎(1), 𝜎(2), .., 𝜎(𝜇1), 𝜎(𝜇1 + 1), .., 𝜎(𝜇2), .., 𝜎(𝜇𝑘), 𝜎(𝜇𝑘 + 1), .., 𝜎(𝑛))

which is compatible with the relation 𝑅 by construction. �

Definition 3.5 Let be an indexed ordered set (𝑆, 𝑅)with 𝑛 elements, 𝜎1 and 𝜎2, permutations of elements of

𝑆 and 𝑘 ∈ {1,… , 𝑛 − 1}, we call the 𝑘-cut offspring permutation of 𝜎1 and 𝜎2 the permutation 𝛾 defined as:

𝛾 = (𝜎1(1), 𝜎1(2), … , 𝜎1(𝑘), 𝜎2(𝑖1), … , 𝜎2(𝑖𝑛−𝑘))

where for all ℎ ∈ {𝑖1, 𝑖2, … , 𝑖𝑛−𝑘} such that 𝑖1 < 𝑖2 < … < 𝑖𝑛−𝑘 then 𝜎2(ℎ) ∉ {𝜎1(1), … , 𝜎1(𝑘)}.

Theorem 3.6 Given an indexed ordered set (𝑆, 𝑅) with 𝑛 elements and 𝑘 ∈ {1,… , 𝑛 − 1}, the 𝑘-cut offspring

permutation of two permutations, 𝜎1 and 𝜎2, compatible 𝑅 is a permutation compatible with 𝑅.
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Proof Let be 𝜎1 = (𝜎1(1), … , 𝜎1(𝑛)), 𝜎2 = (𝜎2(1), … , 𝜎2(𝑛)) two compatible permutation and 𝑘 ∈ {1,… , 𝑛−

1}.

The 𝑘-cut offspring permutation is

𝛾 = (𝜎1(1), 𝜎1(2), … , 𝜎1(𝑘), 𝜎2(𝑖1), … , 𝜎2(𝑖𝑛−𝑘))

where for all ℎ ∈ {𝑖1, 𝑖2, … , 𝑖𝑛−𝑘} such that 𝑖1 < 𝑖2 < … < 𝑖𝑛−𝑘 then 𝜎2(ℎ) ∉ {𝜎1(1), … , 𝜎1(𝑘)}.

Let’s denote 𝑆1 = {𝑎𝜎1(1), … , 𝑎𝜎1(𝑘)} and 𝑆
2 = {𝑎𝜎2(1), … , 𝑎𝜎2(𝑘)}

• If 𝑆1 = 𝑆2, the elements belonging to 𝑆1 are compatible with each other in the resulting permutation

due to their presence in the compatible permutation 𝜎1, and the remaining elements 𝑆 − 𝑆1 with each

other as well, because they are in 𝜎2.

The elements belonging to 𝑆1 are also compatible with those in 𝑆 − 𝑆1 by verifying the compatibility

of 𝜎2.

So, in this case we have a resulting permutation compatible with the relation.

• If 𝑆1 ≠ 𝑆2

– the elements of 𝑆1 and those of 𝑆 − 𝑆1, due to the compatibility of 𝜎1 and 𝜎2, respectively, are

compatible with each other in the resulting permutation;

– if 𝑎 ∈ 𝑆1 and 𝑏 ∈ (𝑆 − 𝑆1),

𝑎 = 𝑎𝜎1(𝑗𝑎) = 𝑎𝜎2(𝑖𝑎) and 𝑗𝑎 < 𝑘 𝑏 = 𝑎𝜎1(𝑗𝑏) = 𝑎𝜎2(𝑖𝑏) and 𝑗𝑏 > 𝑘

∗ if 𝑏 ∉ 𝑆2 ⟶ 𝑖𝑏 > 𝑘 then 𝑎 and 𝑏 are compatible in the resulting permutation;

∗ if 𝑏 ∈ 𝑆2 ⟶ 𝑖𝑏 < 𝑘

· if 𝑖𝑎 < 𝑖𝑏, they are in the same order in both permutations and are therefore compatible

in the resulting permutation.

· if 𝑖𝑏 < 𝑖𝑎, as 𝑗𝑎 < 𝑘 < 𝑗𝑏, then they are interchanged in both permutations and therefore,

by Proposition ??, they are not comparable and, therefore, are compatible in the resulting

permutation.

So, in this case, we also have a resulting permutation compatible with the order relation.

Then we can conclude that the permutation resulting from two compatible permutations with the relation

𝑅 is also a compatible one. �

Definition 3.7 The procedure described in Definition 3.5 can be extended recursively to the case of𝑚 > 2

permutations and a partition, 𝑘 = (𝑘1, … , 𝑘𝑚), of 𝑛, that is ∀𝑖 ∈ {1, … ,𝑚}𝑘𝑖 ∈ {1,… , 𝑛 − 1} and

𝑚

�

𝑖=1

𝑘𝑖 = 𝑛.

Given 𝜎𝑖 = (𝜎𝑖(1), 𝜎𝑖(2), … , 𝜎𝑖(𝑛)), 𝑖 ∈ {1, … ,𝑚} permutations of elements of 𝑆 and 𝑘 = (𝑘1, … , 𝑘𝑚 = 𝑛 −
𝑚−1

�

𝑖=1

𝑘𝑖), we construct 𝛾𝑚 as follows

�
𝛾2 = 𝑘1-cut offspring permutation of 𝜎1 and 𝜎2

𝛾𝑖 = �∑
𝑖−1
𝑖=1 𝑘𝑖�-cut offspring permutation of 𝛾𝑖−1 and 𝜎𝑖, if 𝑖 ∈ {3, …𝑚}

andwecall it �𝑘1, 𝑘2, … , 𝑘𝑚−1�-cut offspringpermutationof𝜎1, 𝜎2, … , 𝜎𝑚. 𝛾𝑚 is thatwhich the elements of the

positionsbetween

𝑖−1

�

𝑗=1

𝑘𝑗 and

𝑖

�

𝑗=1

𝑘𝑗 are the first𝑘𝑖 elements of permutation𝜎𝑖 that arenot in

𝑖−1

�

𝑗=1

{𝜎𝑗(𝑖𝑗1), … , 𝜎𝑗(𝑖𝑗𝑘𝑗
)}.

Theorem 3.8 Given an indexed ordered set (𝑆, 𝑅) with 𝑛 elements, the resulting permutation of 𝑚 permuta-

tions compatible with 𝑅, 𝑘 = (𝑘1, … , 𝑘𝑚) a partition of 𝑛, that is, as in the Definition 3.7,

𝑚

�

𝑖=1

𝑘𝑖 = 𝑛, is a

permutation compatible with the relation 𝑅.
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Bárcena Petisco, Jon Asier, Universidad del Pais Vasco, 31

Bharati, Priyanka, Banaras Hindu University, 63

Bonnard, Bernard, Institut Mathématique de Bourgogne, 23

Boualam, Ilias, Entreprise Segula Matra Automotive, 23

C
Casado Dı́az, Juan, Universidad de Sevilla, 79

D
Dikariev, Ilya, Brandenburgische Technische Universität, 37, 87

Doubova, Anna, Universidad de Sevilla, 17, 46

F
Fernández Cara, Enrique, Universidad de Sevilla, 17, 55

Fueyo, Fernando, Universidad de Oviedo, 124

J
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