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1. Introduction

This paper deals with the optimization of hydrothermal problems. In a previous paper [1], we considered a hydrothermal
system with one hydro-plant and m thermal power plants that had been substituted by their thermal equivalent and ad-
dressed the problem of minimizing the cost of fuel F(P) during the optimization interval [0, T]

/ PP (1.1)

P(t) + H(t,z(t),Z (t)) = Pa(t) Vte€[0,T], (1.2)
z(0)=0, zT)=b, (1.3)
where YV is the function of thermal cost of the thermal equivalent and P(t) is the power generated by said plant.

The following must also be verified: the equilibrium equation of active power (1.2), and the boundary conditions (1.3),
where Py4(t) is the power demand, H(t,z(t),Z'(t)) is the power contributed to the system at the instant t by the hydro-plant,
z(t) being the volume that is discharged up to the instant t by the plant, Z'(t) the rate of water discharge of the plant at the
instant t, and b the volume of water that must be discharged during the entire optimization interval.

In this paper, we likewise considered constraints for the admissible generated power

P(t) = 0; H(t,z(t),Z(t)) = 0.
The mathematical problem (P;) was stated in the following terms:
T T
min F(z) = min / Y[Py(t) — H(t,z(t),Z/(t))]dt = min / L(t,z(t),Z (t))dt,
0 0

260, 260, 260,
01 = {z€ C'[0,T]2(0) = 0, 2(T) = b, 0 < H(t,z(t),Z(t)) < Pa(t) Vt € [0,T]},

where (C1) is the set of piecewise C' functions.
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The problem (P;) was formulated within the framework of optimal control [2-7] and

Yo(t) = —Ly(t,q(t).q exp{ /HZ, S))))ds, (1.4)

was called the coordination function of q € ©4, obtammg the following result:

Theorem 1. If q is a solution of (Py), then 3K € R" such that
<K if H(t,q(t),q'(t) =0,
Yq(t)is ¢ =K if 0 <H(t,q(t),q'(t)) < Pa(t),
> K if H(t,q(t),q'(t)) = Pq(t).
In another previous paper [8], a problem of hydrothermal optimization with pumped-storage plants was addressed, though
without considering constraints for the admissible generated power. In this kind of problem, the derivative of H with respect

to z' (H,) presents discontinuity at z = 0, which is the border between the power generation zone (positive values of z') and
the pumping zone (negative values of z’).

The mathematical problem (P,) was stated in the following terms:

minF(z mm/ P[P4(t) ]dtfmm/ L(t,z(¢t),Z (t))dt,

260, 260, 260,
0, = {z € C'(0,T][z(0) = 0,2(T) = b},

where L(-,-,-) and L,(-,-,-) are the class €% and L, (t,z,-) is piecewise continuous (L, (t,z,-) is discontinuous in z’ = 0).
Denoting by ¥,(t), q € ©,, the function

¥q(t) == —Lo(t.q(t / L:(s,q(s). q'(s))ds (1.5)

and by ¥, (t) and ¥, (t) the expressions obtained when considering the lateral derivatives of L with respect to z'.
The problem (P,) was formulated within the framework of non-smooth analysis [9,10], using the generalized (or Clarke’s)
gradient, the following result being proven:

Theorem 2. If q is a solution of (P;), then 3K € R" such that

¥ (0) =¥, (t) =K if q(t)#0
¥, () <K<¥ () ifq(t)=0

This paper merges the two previous studies, simultaneously considering non-regular Lagrangian and non-holonomic
inequality constraints (differential inclusions), obtaining a necessary minimum condition. Furthermore, under certain con-
vexity conditions, we shall establish the result (smooth transition) that the derivative of the minimum is continuous, presents
a constancy interval, the constant being the value for which L, (t, z, -) presents discontinuity. Finally, we shall present a solu-
tion algorithm and shall apply it to an example.

2. Mathematical statement and resolution of the problem

In this paper, we consider a hydrothermal system with one thermal plant (the thermal equivalent [11]) and one pumped
hydro-plant, which will have certain constraints in both generation and pumping for H. We shall take H,i, (maximum pump-
ing capacity) as the lower boundary and H;(t) = min{Hmax, P4(t)} (Hmax being maximum generation) as the upper boundary.

The mathematical problem (Ps;) may be stated in the following terms:

[ZIégIF rggl/ P[Pq4(t) t,z(t),7 ]dt—mm/ L(t,z(t),Z (t))dt,
0 ={z C'(0,T)]2(0) = 0, z(T) =b, Humin < H(t,2(1), Z(t)) < Hy(t) Yt € [0,T]},

where L(-,-,-) and L,(-, -, -) are the class C° and L, (t, z, -) is piecewise continuous (L, (t,z,-) is continuous with one single point
of discontinuity at z' = 0). We shall assume that ¥ is strictly increasing and strictly convex, that H verifies H, > 0,
and H,(t,z(t),0) = 0, and the strictly increasing nature of L,(t,z,-). We shall establish the necessary minimum condition
for this problem with non-regular Lagrangian and constraints on the admissible functions, employing to this end the
coordination function, Y(t).

We shall denote by Y (t) and Y (t) the expressions obtained when considering in (1.4) the lateral derivatives of L and H
with respect to z'. We shall prove that these functions also verify Theorem 2 in the same way as ¥, (t) and ¥, (t), and that for
the stated problem, except in z’' = 0 for which L, (t, z, -) is not continuous, Theorem 1 will continue to be valid. We thus obtain
the following result:
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Theorem 3. If q is a solution of (P3), then 3K € R" such that:

MIFqt)=0 = VYg(6) <K<VY(0),
<K if H(t,q(t),q'(t)) = Hmin,

(i) If ¢()#0 = Yq(t)is{ =K if Humin < H(t,q(t), q(8)) < Hi(t),
> K if H(t,q(t),q'(t)) = Hs(t).

Proof. Let us assume, for convenience sake, that there is a single interval [t,t,] with t;,t; € (0,T) where zZ/ =0 (i.e. the
hydro-plant remains shut down in the interval [t;, t;]). It is obvious that q(t) = q(t;) Vt € [t1, t3].

Let us consider the different situations that may arise in the interval [0,T] = [0,t1] U [t1, 2] U [t2, T]

(
(
(
(

a) Generation—Shut down—Generation,
b) Generation—Shut down—Pumping,
¢) Pumping—Shut down—Generation,
d) Pumping—Shut down—Pumping.

At [0, t1] we are in a zone of generation or pumping, where only intervals with minimum or maximum constraints may ap-
pear in the hydraulic power generated. From Theorem 1 we have that 3K € R* such that

<K if H(t,q(t),q'(t)) = Hmin,
Yq(t) is =K if Hmin < H(t»q(t)7q/(t)) < Hs(t)-,
> K if H(t.q().q (1)) = H(t).

On the other hand, at [t;, T] we are also in a zone of generation or pumping, and from Theorem 1 we have that 3K € R* such
that

<K if H(t,q(t),q'(t)) = Humin,
Yl](t) iS = I~< lf Hmin < H(t, Q(t)7 q/(t)) < HS(t)7
> K if H(t,q(t),q'(t)) = Hi(t).

We shall carry out the proof of Theorem 3 for case (a).
In this case, taking into consideration Theorem 2, we have that 3K* € R* such that

/ L(%.4(7),q'(2)dT — L (61, q(t / L(%,q(1),¢/(1))dt - Li(t:,q(£2),0) = K°
and from the fact that H,(t,z(t),0) = 0 Vt € [t1,t2], we have that L,(t,z(t),0) = 0, from which
)
[ Lzam.q@de—o
Jty

and therefore it is deduced that
L, (t1,4(t1),0) = L, (2, (t2), 0). (2.1)

Furthermore, Vt € [t1,t,],2/(t) = 0 is a discontinuity point of L,(t,q(t),-) and, once more, from Theorem 2

/ L(%,q(),q'(¥)dt - L3 (t.q / L:(7,q(2),q'(2)dt ~ L (€,(),0)
and, as
K = O 1 L,(1,q(1),q'(t))dt — L} (t1,q(t1),0) and [.[Lz(v:,q(r), g(7))dt =0,

we deduce that for case (a) the following expression is verified
L, (t,q(t),0) < Ly (t1,q(t1),0) < L; (£, 4(t),0). (2.2)
Besides, from Theorem 1, we have for t; that
" Hz(s.4(5),4'(s))
K = —L/(t1,q(t1),0) - ex {— 2’7’(15}. 2.3
R Y N HOYTOR 0] 2
Since Vt € [t1, t2]

Hi(5.4(9).09) g

24
H: (5.0(5).45)) @4
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we have that Vt € [tq, t3]

CH(5.96).06) [0 Hi(5.06).06) o [0 a0 g * Hy(5,9().4(5))
/ 7)==, H;<s,q<s),q'<s)>d5*/o v w i

For all t € [ty,t5], from (2.2) it is verified that

siean0-eo[- [ GG TE ] <uaen.0-en |- [ElGTE
< Li(t,q(),0) - exp [ %dg}
From (2.3) we have that
Lo (t,q(t exp{ / e ss Ss))ds} < K < Li(t,q(t),0) - exp {—/Ot%ds}

Besides, as Vt € [ty,t;], ¢'(t) =0

L, (¢t q(0), -exp

and therefore
Y5 () <K<V ()

and we obtain (i) in Theorem 3. _
To obtain (ii) in Theorem 3 we must prove that K in [0, t;] is the same that K in [t;, T]. We have for t, that

From (2.3) and (2.1) we have that

" H(5,9(9).965)) 4o

e " Hy(5,9(5).4(5)
K= Liea(e). 0 enp |- [ pEee e = o H:(5.405).4(5)

o Hi(s,q(5),q'(s)) = —L,(t2,9(t2),0) - exp {_
and from (2.4)

“H(5.90).00) 4o [ H(5,96106) g [ Hels.96,06) g [0 H(5.96).90)) 4
o Hi5,00).06) " Jo H:.900.06) " Jo Hi5,0050,06) Jo Hi(5.4(5),4))

so, we have that

s7

f2 HZ(S’q(S)vq/(S)) dS:| _ R

K= Littqie).0)ep |- [ e tises] -

and the case (a) is proven.

The below expressions are obtained by analogous reasoning:
In case (b) it is verified that

L;(t1’q(t1)70) L (t27q( ) 0)7

In case (c) it is verified that
L, (t1,q(t1),0) = L, (t2,q(t2), 0),

In case (d) it is verified that
L;/ (tl ) q(t1)7 O) = L; (t27 q(t2)7 O)*

13

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

The proof for the remaining cases would be analogous, employing (2.5) and (2.6) in case (b), (2.7) and (2.8) in case (c) and

(2.9) and (2.10) in case (d).
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If the shut down interval contains O or T, bearing in mind that

/ L,(t,q(7),q'(1))dt =0 and /ZWdL

the proof will be similar. O

3. Smooth transition

In this section, we present a qualitative aspect of the solution of the problem (P,). We prove that, under certain condi-
tions, the discontinuity of the derivative of the Lagrangian does not translate as discontinuity in the derivative of the solu-
tion. In fact, it is verified that the derivative of the extremal where the minimum is reached presents an interval of constancy,
the constant being the value for which L, (t,z, -) presents discontinuity. The character C' of the solution is thus guaranteed.

Definition 1. Let us take t; € (0,T) and ¢ > 0. We consider the auxiliary function h® defined on [0, T
0 if t€[0,to— ¢ Uto+¢T],
ho(t)y =4 (t—to+e) if t e [to— e to],
—(t—to—¢g) if teto,to+g
Notice that h' e C'(0,T], 0 < h®(t) < & Vt € [0,T], and

0 iftel0,to—e)U(to+eT],
(h*)()={1 ifte(to—eto),
-1 ifte (to7t0+8).

Theorem 4. Let L(-,-,-) be the Lagrangian of the functional F in the conditions stated above, and let us assume that the function
Ly (to,z(to), -) is strictly increasing (decreasing) and discontinuous in 0 If q is minimum (maximum) for F, then: (i) to is not an
isolated point of a change in the sign of ¢', (ii) ¢’ = 0 in some interval that contains ty and (iii) q' is continuous in t.

Proof

(i) We'll proceed by contradiction.
Let q € ©, be a minimum of F, and let us first assume that ¢’ is negative to the left of t, and positive to the right of to.
That is, let us assume that for t, € (0,T) there exist ¢ > 0 such that

q(t) <0 Vte (to—z¢,to); q(t) >0 Vte (to,to+e).

The strict growth of L,, as well as its discontinuity, implies that

L (t,q(t).q'(£)) < L, (to,q(to),0) < L} (to,q(to),0) < L (£,q(£),q'(f)) Vt € (to —e,tg) VE € (to, to +&).

Bearing in mind that Vt € [0, T], 0 < h"(t) < &, it is evident that we may choose the previous ¢ sufficiently small for the fol-
lowing inequality to be verified:

sup [Lz(t,q(t),q'(6)) + h*(£) - L(t,q(t), q'(t)] < _inf (L2 (t.q(6).4'(5) — hO(t) - Lo (£, q(6),4' (1)),

te(to—eto) te(to,to+e)

from which the following inequalities are deduced:

L = /ti Lz (t,q(t),q'(6)) + h? (£) - Lo(t,q(), g'(£))dE < & sup [sz(t q(t),q'(1) + h2(£) - L(¢,q(8), 4'(6))

te(to—s.to)

<o inf[L(ta),q(0) - Ko - Lz(t,q<r),q/<t>>]< / L6 q(0).9(0) - KO0 - Lit. (0, ¢ (€)de =

te(to,to+e)

Let us now take into account that

ho(t)=0 Vte[0,to—eUlto+¢T); (W) (t)=0 Vte[0,to—¢) U(to+eT],
then

5 F@ ) = limy o DD D )1 g0, ) + (00 Lot a0, g 0)de

—&



L. Bayon et al./Applied Mathematics and Computation 209 (2009) 10-18 15

and hence
5" F(q, h?) :/t. [ (1) - Lo(t,q(t),q (1) + 1 -sz(tq(f)ﬂ’(f))]dH/[Oﬂ[ht”( ) - Le(t,q(t).q'(t) + (-1)

Ly (t,q(t), q'(£))]dt,
we have that

3'F(g,h?) = /O (L2 (£.q(t),q'(£) + B (£) - L(,(0), q'(6)))d /[ Uﬁ[ Lo (t.q(), q'(5) = h2(£) - La(t,(6), 4'(£)))de

to—¢

=L -1,<0,

which contradicts the assumption that g is a minimum of F.If ¢’ were positive to the left of ty and negative to the right of t,,
the proof would be analogous, taking 6"F(q, —h%).
(ii) Follows from (i).
(iii) We'll proceed by contradiction. Let us assume that q'(t;) < ¢'(t{) (if we assume that q'(t;) > q'(t$), the proof will be
analogous). Bearing in mind (i) and (ii), ¢’ is discontinuous in t, only in the following cases:

(@) q'(ty) <0; q'(t5) =0,
(b) 4'(ty) =0; q'(t5) > 0.

For (a), in view of (i), there will exist an ¢ > 0 such that ¢'(x) = 0 at [to,to + ¢]. We may choose ¢ such that ¢'(x) < 0 at
[to — &, to). In this case

FFQH) = [0 La0.q0) + 000 Lea0.q@)de+ [ 10 Lta©.q10) + 1) (0
Lo (6.q(0). g (0)dt

and, by identical reasoning to that used in (i), we shall have that 6F(q, h®) < 0, which once more means a contradiction of
the fact that g is a minimum of F.

Finally, for (b), in view of (i), there will exist an ¢ > 0 such that q'(x) = 0 at [ty — ¢, tp]. We may choose ¢ such that ¢/(x) < 0
at (to, to + ¢- In this case

3F@. ) = [ R0 Lt a(0,4(0) = () (0 Lt.a©.q O)de+ [ -h(0)- Lital0.q ) - () 0
L (t,q(0). ()t

where, by identical reasoning to that used in section (i), we shall once more have the contradiction
6'F(q,—h°)<0. O

Note that this result has a very clear interpretation in terms of pumping plants: under optimum operating conditions,
pumping plants never switch brusquely from generating power to pumping water or vice versa, but rather carry out a
smooth transition, remaining inactive during a certain period of time.

4. Optimization algorithm

From the computational point of view, the construction of g, can be performed with the use of a discretized version of
Theorem 3. The problem will consist in finding for each K the function g that satisfies conditions (i) and (ii) of Theorem 3,
and from among these functions, an admissible function q; € @. In general, the construction of q, cannot be carried out all at
once over the entire interval [0, T]. The construction must necessarily be carried out by constructing and successively con-
catenating the extremal arcs, until completing the interval [0, T], where

Hpmin < H( ,q(t),q'(t)) < Hy(t) (free extremal arcs), or

q'(t) = 0 (the hydro-plant is on shut down), or
H(t,q(t),q'(t)) = Hy(t) (the hydro-plant generates all the demanded power or its technical maximum), or
H(t,q(t),q'(t)) = Hmin (the hydro-plant is functioning at its maximum pumping power).

If the values obtained for q and g’ do not obey the constraints, we force g, to belong to the boundary until the moment
when the conditions of leaving the domain (established in Theorem 3) are fulfilled.

We will denote by m the rate of water discharge at the instant t = 0 that is needed for the hydro-plant to reach its max-
imum pumping capacity: H(0,0,m) = Hyi, and we will denote by M the rate of water discharge at the instant t = 0 that is
needed for the hydro-plant to reach its maximum generating capacity, i.e. H(0,0,M) = H,(0). We also set

Kn=—Ly(0,0,m) and Ky = —L,(0,0,M)
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as the respective coordination constants for these initial rates. We observe that Vx € (m,M) (with the hypothesis
Ly»(t,z,Z") > 0), we have that
Ky < —L;(0,0,%) < Kp.

To construct the solution, we proceed by the stages shown below:
Stage I: Concatenation of extremal arcs

For each K, we construct gy.
First arc: Given K, we distinguish the following cases:

(i) If —=L;;(0,0,0) < K < —L,(0,0,0) (shut down zone), we set g;(t) = 0 in the maximal interval [0, t;], where Vt € [0, t1],
satisfying

Vo, (6) SK <Y (8).
(ii) If —L}(0,0,0) > K (hydro-generation zone) and Ky < K, there exists a positive solution g (0) for the equation

—L,(0,0,q}(0)) =K. In this case, we construct an interior arc of the extremal, q(t), which satisfies Euler’s equation
in its maximal domain [0, ;] (with g, (0) = 0), where Vt € [0, t1], satisfying g (t) > 0 and

K =Y.(t).

(iii) If —L}(0,0,0) > K (hydro—generation zone) and K < Ky, we set g (t) = w(t), the solution of the differential equation
H(t,w(t),w'(t)) = Hy(t) with w(0) = 0 in the maximal interval [0, t;], where Vt € [0, t;] it is verified that
K < Y(b).

(iv) If —L,(0,0,0) < K (pumping zone) and K <K, there exists a negative solution q;(0) for the equation

—L,(0,0,q}(0)) =K. In this case, we construct an interior arc of the extremal, q(t), which satisfies Euler’s equation
in its maximal domain [0, t;] (with q,(0) = 0), where Vt € [0, t;], satisfying qj(t) < 0 and

K =Yg, (8).

(v) If —L,(0,0,0) < K (pumping zone) and K > K,,, we set qx(t) =w(t), the solution of the differential equation
H(t,w(t),W'(t)) = Hmin wWith w(0) = 0 in the maximal interval [0, t;], where Vt € [0, t;] it is verified that

K > Yot).

ith Arc: There are two possibilities:

(A) If [ti4,t;] is a maximal interval of shut down or boundary interval of hydro-plant, ie. qi(t)=0 or
H(t, qx(t), q(t)) = Hs(t) or H(t, qg(t), q)(t)) = Hmin in said interval, we consider the maximal interval [t;, t; 1] such that
vt € [ti, tia]

_ 2(S, 4k (5), 9k (5)) " Ha(s, @(s), '(5))
K =—Ly(t,o(t),w'(t)) - exp [ ' Hz’ S ql,i < (S))ds— G, w(s),w’(s))ds]’

o(t) being an interior arc of the extremal, with w(t;) = g (t;), which satisfies Euler’s equation in its maximal domain [t;, t; 1]
and the above equation. Now, we set q(t) = w(t) Vt € [t;, tis1].
(B) If gx has an interior arc in [t;_1, t;], there are three possibilities:
(i) If H(ti, qx (i), qj (ti)) = Hmin, we consider the maximal interval [t;, ;1] such that, Vt € [t;, ti 1]

K > —Ly(t,0(t), ' (1)) - exp Ha(s, Gy (5). Gx(5)) ds—/ A 0LS), (s))ds}

Hzr S, qx(S), qx(s)

o(t) being a solution of the differential equation
H(t, w(t),w'(t)) = Hmin  With o(t;) = qg ().
If this is the case, we set gy (t) = w(t) Vt € [t;, ti1].
(ii)  If H(t;, g (), i (t;)) = Hs(t;), we consider the maximal interval [t;, t;1] such that Vt € [t;, tj;1]

/ Ha(5. 4k (). 9k(5)) 4 / Hy(5, 0)(5), 0 (5)) ds}
0 t

K< -Lto®.oO)-exp = | 5 0m.q6) S ), Ha6.06),0/6)

o(t) being a solution of the differential equation
H(t, oo(t), o' (t)) = Hs(t) - with o(ti) = gk (t:).
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If this is the case, we set g (t) = w(t), Vt € [t;, tiy1]-
(iii) In another case, we consider the maximal interval [t;, t;,1] such that, Vt € [t;, tii4]

m H.(5,x(5), Gk (5)) (s), /(r»
L, (t,o(t), @' (t)) - exp { Hz’ RORTG) / )ds =K,

2(S, Gk () qK(S)) " Hy(s, (s), @' (1))
K<-L(t,w - ex ds — = D T L ds
(t,e(t), @ p{ Hz/ 5.0, 0:5) Sy, HG.0(). /(D)
with @(t;) = qx(t;), which satisfies the above equation and «’(t) =0 in its maximal domain [t;,t;;1]. Now, we set

k() = o(t), Yt € [ti, tia].

Stage II: Calculation of K

We determine K, such that g € ©).
Varying K, we would search for the extremal that fulfils the second boundary condition g, (T) = b. The procedure is sim-
ilar to the shooting method used to resolve second-order differential equations with boundary conditions.

5. Application to a hydrothermal problem

A program that resolves the optimization problem was elaborated using the Mathematica package and was then applied
to one example of hydrothermal system made up of the thermal equivalent plant [11] and a hydraulic pumped-storage plant.

We use the quadratic model: ¥ (x) := ¢; + c2x + c3x2, for the fuel cost model of the equivalent thermal plant, where the
values for the coefficients are: ¢; = 10696.1 ($/h); ¢, = 16.5477 ($/h Mw): c3 = 0.00329982 ($/h Mw?).

The power production H of the hydro-plant (variable head) is a function of z(t) and Z/(t) and its power consumption dur-
ing pumping is a lineal function of the amount of water pumped (M - Z/(t)). Hence the function H is defined piecewise as

A(t)-Z(t) - B-z(t) - Z(t) if Z(t) >0,

H(t,z(t),Z (1)) := {M'Z’(t) if Z(t) <0,

Ph(Mw)
100

50

-100

-150

Fig. 1. Optimal solution with M.
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6 12 18 24
-20

Fig. 2. Optimal solution with M,.
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where A(t) = %y (So+t-i),B= %y. The values for the coefficients of the hydro-plant are: the efficiency G = 526,315 m*/h Mw),
the restriction on the volume b= 141.6 x 10° m3, the natural inflow i=101.952 x 10° m3/h, the initial volume
So = 203.904 x 10° m3 and the coefficient B, =149.5 x 1072 m—2 (a parameter that depends on the geometry of the tanks).
M (h Mw/m?3) is the factor of water-conversion of the pumped-storage plant and we consider two cases: (1) M; = (1,04)A(0)
and (2) M, = (1,10)A(0).

We consider a short-term hydrothermal scheduling (24 h) with an optimization interval [0,24] and we consider a discret-
ization of 96 subintervals. Figs. 1 and 2 present the optimum solution.

It can be seen how the interval of smooth transition varies when considering two different values of M.

The secant method was used to calculate the approximate value of K for which q(T) — b = 0. The algorithm shows a rapid
convergence to the optimal solution. For example, for M,, in four iterations: |q(T)—b| <1072 (m3) for K=
0.001307118235071412. The time required by the program was 27 s on a personal computer (Pentium 1V/2 GHz).

6. Conclusions and future perspectives

The main contribution of this paper is that simultaneously considers non-regular Lagrangian and non-holonomic inequal-
ity constraints for the optimization of hydrothermal problems, unifying two theories that have been addressed indepen-
dently by the authors until now. Furthermore, we have established the result called smooth transition, i.e. that the
derivative of the minimum presents a constancy interval. This behavior had been observed in pumping plants in the exam-
ples solved computationally and has now been proven theoretically.

As far as future perspectives are concerned, it would be most interesting to apply this method to models in which the
discontinuity of the Lagrangian is not produced at z’ = 0, but rather to solutions of a differential equation of the form

Z =f(t,z).
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