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ABSTRACT. In this paper we present a new method for solving systems of
ordinary nonlinear differential equations with initial conditions. The method
is based on the transformation of the problem to an optimal control problem.
We then solve it with a technique based on the use of an integral form of the
Euler equation combined with the shooting method and the cyclic coordinate
descent method. Our method substantially improves a previous approach that
uses iterative dynamic programming to solve the associated optimal control
problem. We consider the error functional instead of the classical global error,
the error functional obtained by our method being lower than that obtained
by classical methods. The method presented in this paper allows us to solve a
wide range of nth order ordinary nonlinear differential equations with initial
conditions.

1. INTRODUCTION

For hundreds of years, ordinary differential equations (ODEs) have been used
to model continuous systems in all scientific and engineering disciplines. Many
mathematicians have studied the nature of these equations and many well-developed
solution techniques exist. The most widely used mathematical formulation is that
of an initial value problem (IVP) for a first-order system of ordinary nonlinear
differential equations:

(1.1) { zi(t) = fi(t,z1(t), ..., zn(2))

zi(a) = ¥
with ¢ = 1,...,n. The numerical solution of ODEs is a well-studied problem in
numerical analysis, and books on the subject abound ([5], [12], [13]). The most
frequently employed numerical methods fall into the following categories: Taylor
methods, Runge-Kutta methods, multistep methods, extrapolation methods and
adaptive techniques. In this paper we present a new method for solving (1.1) based
on transforming the IVP to an optimal control problem (OCP).

Other numerical approximations to ODEs using a variational approach are pre-
sented in [7] and in [1]. In [7] the authors use iterative dynamic programming (IDP)
[10] to solve the OCP and obtain a piecewise-constant optimal control function. In
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[1] a suitable discretization of the error functional is pursued, and it is performed
by using Hermite’s interpolation and quadrature formulas.

We, however, propose a new methodology for solving the OCP, which has already
proven successful within the framework of hydrothermal optimization ([3], [4]).
Our method uses a variety of mathematical techniques, well known for the case
of functions, though now adapted to the case of functionals, which are efficiently
combined to afford a novel contribution. The technique is based on the use of
an integral form of the Euler equation combined with an adapted version of the
shooting method and the cyclic coordinate descent method. We shall compare the
error obtained by our approach, classical methods and [7].

The paper is organized as follows. In Section 2, we state the simple case with
a first-order ordinary nonlinear differential equation. In Section 3, we present the
optimal control algorithm for this case. In Section 4, we state the general case of
a first-order system of ordinary nonlinear differential equations. In Section 5, we
describe the algorithm that provides the solution for the general case. The results
of the application of the method to several numerical examples are presented in
Section 6. Finally, Section 7 summarizes the main conclusions of our research.

2. STATEMENT FOR A FIRST-ORDER EQUATION

In this section we consider an IVP for a first-order ordinary nonlinear differential
equation:

(2.1) { &(t) = f(t,2(t),

z(a) = x,.
Let us define the function F': [a,b] x R x R — R:
(2.2) F(t,z(t),&(¢)) = [#(8) = £(t, ()"

Next, we define the following minimization problem:

b
(2.3) Minimize: E(a:,:is)z/a F(t,z(t), z(t))dt,

subject to:  z(a) = x4,

where E(z, z) is called the error functional. If the optimal solution of (2.3) is zero,
since the function F' is continuous and nonnegative, then F' = 0. Thus, the first-
order equation (2.2) will hold for all ¢, and the solution of (2.1) is obtained. We
now formulate problem (2.3) as an OCP. We consider the state variable to be z(t)
and the control variable to be &(t). The OCP is thus

b
min E(z,u) = / F(t,z(t), u(t))dt,

u(t)
(2.4) s.t. z(t)=u(t),

z(a) = z4.

We will rely on the strategy to seek a numerical approximation of (2.1) by using
a discretization of (2.3). Citing [1]: “One may be tempted to discard this approach
as too naive to be fruitful....” However, we have found that it leads to a quite
accurate approximation and that it can be implemented very efficiently.
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3. OPTIMAL CONTROL ALGORITHM I

In this section the standard Lagrange type problem (2.4) is formulated within
the framework of optimal control ([14], [6]). The classical approach involves using
Pontryagin’s Minimum Principle (PMP), which results in a two-point boundary
value problem (TPBVP).

Let H be the Hamiltonian function associated with the problem

H(t,z,u,\) = F(t,z,u) + A - u,

where X is the costate variable. In order for u to be optimal, a nontrivial function
A must necessarily exist, such that for almost every t € [a, b,

T = H)\(t7 z, u)'))

(3.1) A= Hy(t,,u,\),
(3.2) H(t,z,u,\) = m(itr)lH(t,x,v, A),
(3.3) z(a) = xq; A(D) =0.

Let us term as the coordination function of z the function in [a, b], defined by

Y. (t) = —Fi(t, z(t), £(t)) +/ Er(s,z(s),z(s))ds.

We shall use Pontryagin’s Minimum Principle (PMP) as the basis for proving this

theorem.

Theorem 1. If z* € C is a solution of problem (2.4), then 3K € R such that

(3.4) Y.« (t) = K.

Proof. Let H be the Hamiltonian function associated with the problem
H(t,z,u,\) = F (t,z,u) + X - u.

From (3.1), there exists a piecewise C! function A that satisfies

(3.5) A=—H,=—F,.

From (3.5), it follows that

¢
(3.6) M) = K — / Fu(s, 2*(s), u(s))ds
with
K = X*(a).
From (3.2), it follows that w(t) minimizes H (¢, z*, -, A*), for each ¢t. Hence we have
(3.7) Fy+ A" (t) = 0.

From (3.6) and (3.7), we have

K = —F; (t,z"(t), u(t)) +/ Fp(s,2"(s),u(s))ds,

and the formula Y- (t) = K of Theorem 1 is verified. O

Licensed to University de Oviedo. Prepared on Fri Feb 5 05:35:50 EST 2016 for download from IP 156.35.170.12.
License or copyright restrictions may appliy to redistribution; see http://www.ams.org/journal-terms-of-use



4298 L. BAYON, J. M. GRAU, M. M. RUIZ, AND P. M. SUAREZ

We shall call this relation
t
(3.8) —Fp (¢, z(t), 2(t)) +/ Fi(s,z(s),z(s))ds = K, Vte€ [a,b],

the coordination equation for x(t), and the constant K will be termed the coordi-
nation constant of the extremal.

Thus the problem consists in finding the K and the function zx(t) that satisfy
(3.4) and (3.3). From the computational point of view, the construction can be
performed using the same procedure as the simple shooting method [2], employing
a discretized version of Equation (3.8). Thus, the method which we have developed
to obtain the solution is based on the use of an integral form of the Euler equa-
tion combined with the simple shooting method. To undertake the approximate
calculation of the solution, we use a numerical method similar to those used to
solve differential equations in combination with an appropriate adaptation of the
classical shooting method.

Step 1) Approzimate construction of Tg.

The problem will consist in finding for each K the function zy that satisfies
zx(a) = z, and condition (3.4) of Theorem 1. From the computational point of
view, the approximate construction of x i, which we shall call g, can be performed
using a discretized version of Equation (3.8). For example, the construction of each
Zr can be performed by means of polygonals (the adapted Euler’s method).

We denote

Y (tn) = “Fa'c(tna Xn, Yn) + In,

and we consider the triple recurring sequence (X, Yy, I,) with h = _lz_]-\—r_a’ with
n=0,...,N—1
and t, = a + n - h, which represents the following approximations:
T (tn) = Tr(ty) == Xn,
Tx(tn) ~ ;K(tn) =Y,
2r(t) = Tr(t) =Xn 1+ ([t —tn-1) Yno1 In [tp—1,%n],

in in

Fyo(s,x(s),@(s))ds = I, := / Fo(s, Tk (s), 2k (s))ds

a a

and which obeys the following relation of recurrence:
Xo=x4; Ig=0.
Y., must be the solution of the coordination equation, i.e.,
—Fi(tn, Xn, Yn) + I, = K,

and, using an idea similar to Euler’s method, we take

Xnt1=Xn+h-Y,
and finally

b1

Lnvi =1+ /t Fo(s, Xn+ (s —tn) - Yp, Yy)ds,

T

where the integral could be calculated using any classical approximate method.

Licensed ta University de Oviedo. Prepared on Fri Feb 5 05:35:50 EST 2016 for download from IP 156.35.170.12.
License or copyright restrictions may apply to redistribution; see hitp:/fwww.ams.orgfjournal-terms-of-use



NUMERICAL APPROXIMATION TO ODES USING ERROR FUNCTIONAL 4299

Step 2) Construction of a sequence {K7};jen (the adapted shooting method).

Varying the coordination constant, K, which is in fact the same as varying the
value of Fj;(a,z(a),(a)), we construct a sequence {K7};cn such that the Ag;(b)
converge at 0.

Stated more precisely, considering a specific tolerance Tol, we shall find the
coordination constant K7 that satisfies

(3.9) s (b)] < Tol,
where
. b ~
Ao (b) = K9 — / Fuls, 3., (5), B, (5)ds.

The procedure is similar to the shooting method used to resolve a two-point bound-
ary value problem (TPBVP). We implemented a Simple Shooting Method (SSM)
and obtained good results. The secant method was used in the present paper, the
algorithm showing rapid convergence to the optimal solution.

4. STATEMENT FOR A FIRST-ORDER SYSTEM

In this section we consider the general case of a first-order system of ordinary
nonlinear differential equations:

(4.1) { giéz))“‘;];(f’wl(t)’""x"(t))’ i=1,..

Let us define the function F : [a,b] x R™ x R™ — R:

[£4(8) — filt, @1(2), oo 2 (8))]° -

(4.2)  F(t,z1(t),...,zn(t), 21(£), ..., T (£))

n
g=1

Next, we define the following minimization problem:
(4.3)

b
Minimize:  E(x1, ..., ZTn, T}, ., ), :/ F(t,z1(t), ..., zn(t), 2L (t), ..., L (t))dt,
a
subject to: z1(a) = y1;22(a) = Y2; i Tn(a) = Yn,

where E(z1, ..., Tn, T}, ..., 2}, ) is called the error functional. If the optimal solution of
(4.3) is zero, since the function F' is continuous and nonnegative, then F' = 0. Thus,
the first-order system (4.2) will hold for all ¢, and the solution of (4.1) is obtained.
We now formulate problem (4.3) as an OCP. We denote x(t)= (z1(t), ..., Zx(t)),
v = (Y1, -, Yn), and u(t)= (ui(t),...,un(t)). We consider the state variables to be
x(t) and the control variables to be x/(t). The OCP is thus

b
min E(x,u):/ F(t,x(t),u(t))dt,

u(t)
(44) s.t. x'(t)= u(t),

x(a) =y.
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5. OPTIMAL CONTROL ALGORITHM II

In this section the problem (4.4) is formulated within the framework of optimal
control. The development is very similar to the one presented in Section 3.
Let H be the Hamiltonian function associated with the problem

H(t,x,u,\) =F (t,x,u) + A-u,

where A = (A1(¢),...,Ax(t)) is the costate vector. In order for u to be optimal, a
nontrivial function A must necessarily exist such that for almost every ¢t € [a,b],

i=1,..,n
ZC./L = H)\i(t,X, u,>\1, ey /\i—1> " )\'H—l) ceey )\n),
—~)\; = Hm,- (t, Tly ey Lim1y s Titly ey Ty, W, /\),
H(t,x,u,\) = minH (¢,x,v, ),
v(t)
(5.1) x(a) =y; A(b) =0.

Let us term as the i-th coordination function of x the function in [a, b], defined by

t
Y (t) := —Fyr (8, %(t), %' (t)) +/ Fy,(s,x(s),x'(s))ds.
a
Proving this theorem is very easy (and similar to theorem 1) with the PMP:

Theorem 2. If x* € C! is a solution of our problem, then 3K = (K;,...,K,) €
R™ such that

(5.2) Y. (¢) = K;.
We shall call this relation

(5.3) —Fy (t,x(t), x'(t)) + /

[#2

¢
Fy,(s,x(s),x'(s))ds = K;,Vt € [a, }],

the i-th coordination equation for x(t), and the constant K; will be termed the i-th
coordination constant of the extremal.

5.1. Algorithm for each i. For each ¢ (assuming the rest of the variables are
fixed), the problem counsists in finding the K; and the function z;(t) that satisfy
(5.2) and (5.1). The construction can be performed using the same procedure that
we presented in Section 3.

Step 1) Approximate construction of Z* (the adapted Euler method).

The problem will consist in finding for each K; the function 'aEZK that satisfies
ZXi(a) = y; and condition (5.2) of Theorem 2.

Step 2) Construction of a sequence {K7};cn (the adapted shooting method).

Varying the coordination constant, we construct a sequence {Kf }jen and search

for the extremal that fulfills the second boundary condition /\fff () =0.

5.2. Algorithm for ¢ = 1,...,n. To solve the variational problem (4.3) (with ¢ =
1,...,n), we propose an algorithm of its numerical resolution using a particular
strategy related to the cyclic coordinate descent (CCD) method [9]. The classic
CCD method minimizes a function of n variables cyclically with respect to the
coordinate variables. With our method, the problem could be solved like a sequence
of problems whose error functional converges to zero.
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The algorithm for the variational problem (4.3) (with ¢ = 1,...,n) carries out
several iterations and at each j-th iteration calculates n stages, one for each 7. At
each stage, it calculates the optimal of z;(t), assuming the rest of the variables are
fixed. For every x = (z1,...,%,), we consider the functional E? defined by

b
Ei(v;) = / FL(t, 1, oy Tim15 Vs, Tig 1, ooy T (£), Ty ooy Th 1, 0, Tig1s - Ly )dE.
Ja
We call the i-th minimizing mapping the mapping ¢; defined in the following way:
for every x
D1y Tiy ooy Tn) = (T1, -, ] oy Tn)s

where z} minimizes EX. We set & = (¢_o¢, _,0---0¢,0¢,) (i.e. the successive
applications of {¢;};.,) and the recurrent sequence

x) = o(xI71),

2% being an admissible element (i.e. z° € C! and z°(a) = y). We thus have the
descending sequence {z7} (i.e. E(z771) < E(z7)) whose limit lim z7 is the solution
j—o0

to the problem.
Given a certain tolerance ¢, it is simple to justify the convergence of the algorithm
in a finite number of steps simply by considering the following solution set:

(5.4) (x| E(x) - E(® (x))< €}.

As can be seen, we propose a new method that employs diverse mathematical
techniques which are well known for the case of functions. However, they are
adapted here to the case of functionals and are efficiently combined to provide a
novel contribution. A more detailed explanation of this algorithm can be consulted
in Baydn et al. ([3], [4]), where the algorithm is used within the framework of
hydrothermal optimization.

6. NUMERICAL EXAMPLES

The method presented in this paper allows us to solve a wide range of nth
order ordinary nonlinear differential equations with initial conditions. A computer
program was written (using the Mathematica package) to apply the results obtained
in this paper. This section presents four examples. In subsections 6.1, 6.2 and 6.3
we present a comparison with the IDP technique, considering three of the ODEs
that appears in [7]. Then, in subsection 6.4, we present one more sophisticated
example: a stiff ODE.

6.1. Example 1. First, let us consider the following IVP:
(6.1) i—xz—e"1=0; z(0)=0.

A very simple example is likewise presented in [7]. The solution of this equation
is x(t) = te!~!. Applying the above development, problem (6.1) changes to the
following form:

b
. t—112
min E(z,u) = /0 [u(t) — z(t) — et~ 1] " dt,

st.  z(t) =u,
z(0) =0,
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and we consider b = 1. In Table 1 we present the influence of the tolerance Tol
(see (14)) and the discretization N on CPU time. We see that the CPU time
increases linearly with increasing discretization, as was to be expected. However,
the influence of the tolerance on CPU time is almost negligible, since the number
of iterations needed in the previously developed algorithm barely increases.

Table 1. CPU time (sec) versus Tolerance Tol and discretization N.

Tol \ N |10 100 [ 1000 | 10000
10-18 0.015 | 0.109 | 0.998 | 9.922
1030 0.015 | 0.219 | 2.637 | 22.947
1040 0.031 | 0.249 | 2.917 | 29.678

On the other hand, the effect of the tolerance chosen to impose the condition that

the extremal satisfies the transversality condition /\iK’? (b) = 0 is also interesting. It
should be noted that numerous trials have shown that there is no need to resort to
very low tolerances, as the obtained solution and hence the error functional remain
practically constant for tolerances below 107!°, only managing to slow down the
algorithm unnecessarily. In Table 2 below we present the influence of discretization
on the functional error, considering the tolerance to be fixed at 10715,

Table 2. Error functional versus discretization N.

N |10 100 1000 10000
E | 1.747 10712 | 1.29119 10720 | 1.2365 10~28 | 5.7167 1033

In this table we see that very small discretizations (in the order of N = 10) are
sufficient to obtain similar functional errors to those of traditional methods, as we
shall see next in Table 3.

We now compare our solution, z(t) (with N = 100 and T'ol = 10~!%), with that
obtained using IDP in [4] and with that obtained using the NDSolve instruction in
the commercial software package, Mathematica [8]. Said software incorporates a
variety of classical methods which we have employed using their default parameters.
Instead of the classical global error, we consider the error functional E.

Table 3. Error functional E of IVP and CPU time.

E CPU time (sec)

Our solution 1.29119 1020 0.109
IDP 6.8757 10~ -

Explicit Euler 1.6610 1078 0.031
Explicit Midpoint 1.2118 1013 0.015
Explicit Runge-Kutta 2.8970 1076 0.062
Implicit Runge-Kutta, 1.6824 1014 0.046
Predictor-corrector Adams 6.1157 10~ 11 0.016
Backward differentiation formulae (BDF) | 1.6867 1012 0.016
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It can be seen from Table 3 that the error functional obtained by our method
is lower than that obtained by classical methods and very lower than that obtained
by the IDP method. This result follows from the fact that the aim of classical meth-
ods is to minimize the global error. Table 3 also shows the CPU time consumed by
our algorithm and by classical methods (the value relative to IDP is not available
in [4]). In conclusion, it may be stated that our method is not significantly more
complex than classical methods when suitable discretizations and tolerances are
employed.

Nonetheless, the global error obtained by means of our method (see Table 4) is
reasonably satisfactory (in the order of 1.2 1073), having obtained z(1) = 0.9987
versus (1) = 1.00037 using explicit Runge-Kutta, not to mention z(1) = 0.9918
obtained using IDP.

Table 4. Global error of IVP.

E
Our solution 0.001248
IDP 0.008200
Explicit Euler 0.000163
Explicit Midpoint 4.57 1077
Explicit Runge-Kutta 0.000366
Implicit Runge-Kutta 1.66 1077
Predictor-corrector Adams 5.19 108
Backward differentiation formulae (BDF) | 1.76 10~7

The secant method was used to calculate the approximate value of K for which
MX(b) = 0 (transversality condition) with Tol = 1073C, The algorithm shows a
rapid convergence to the optimal solution for a wide range of K5, and Kyax. For
example, for Ky, = —1 and K.y = 5, in 6 iterations (see Figure 1) our method
gives the approximate optimal solution presented in Figure 2.

6.2. Example 2. Next, let us consider the following IVP:
(6.2) y"' +t%y =0; y(0)=0;4'(0) =0.5;
other examples are likewise presented in [7]. Let

z1(t) =y(t); w2(t) =y (1)

Error

1.1018,
1.1022
1.10%6
1.10730

' . ' Iterlation
1 2 3 4 5 6

Ficure 1. Convergence of the algorithm.
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1.0} (9
0.8}
0.6]
0.4]

0.21

4
0.2 0.4 0.6 0.8 1.0

FIGURE 2. Optimal solution of IVP.

Then (6.2) transforms into a first-order system:

z1(t) = z2(t),
zh(t) = —t2z1 (1),
z1(0) = 0; z2(0) = 0.1.

Applying the above development, problem (6.2) changes to the following form:

b
ul(rtgl,iqg(t) E(z1,22,u1,u2) = /0 [(m (t) — z2(t))? + (ua(t) + t2$1(t))2] dt,

s.t. zi(t) = u1; x5(t) = ug,
z1(0) = 0; z2(0) =0.1.

We consider b = 1, a discretization of 100 subintervals, a tolerance for the transver-
sality condition Tol = 1071% (see (14)), and a tolerance ¢ = 1075 (see (22)) for
the cyclic coordinate descent. In 8 iterations of the cyclic coordinate descent, our
method gives the approximate optimal solution presented in Figure 3. We now com-
pare our solution, y(t), with that obtained using IDP in [7] and with that obtained
using the NDSolve instruction in the commercial software package, Mathematica [8].

)
0.08

0.06
0.04

0.02

02 0.4 0.6 0.8 1

FIGURE 3. Optimal solution.
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Yet again it can be observed (see Table 5) that the error functional obtained by our
method is lower than that obtained by IDP and that obtained by classical methods.
The global error obtained by means of our method is satisfactory (in the order of 2.3
10~%), having obtained y(1) = 0.09530 versus y(1) = 0.095069 using Runge-Kutta,
not to mention, y(1) = 0.0881 obtained using IDP.

Table 5. Error functional £ and CPU time.

E CPU time (sec)
Our solution 4.8 10713 | 1.46
1IDP 1.21078 |-
Euler 491073 | 0.016
Midpoint 6.4 10-° | 0.015
Runge-Kutta 8.1107' | 0.015
Predictor-corrector Adams | 1.5 10711 | 0.016

Unlike the previous example, in this example it is necessary to use the cyclic
coordinate descent. As we have seen in Table 5 the algorithm slows down somewhat,
but without abandoning the linear complexity with respect to the discretization.

6.3. Example 3. Next, we apply the same above development for the following
nonlinear IVP:

(6.3) y" — (sint)’y” + 2y = 0; y(0) = 0;3/(0) =0.1;

other examples are likewise presented in [7]. Once more we consider b = 1 and a
discretization of 1000 subintervals. In this case we obtain the approximate optimal
solution presented in Figure 4. If we compare the error functional of our solution
y(t) with that obtained using IDP and with that obtained using the NDSolve in-
struction of Mathematica, then yet again it can be observed (see Table 6) that the
error functional obtained by our method is lower than that obtained by IDP and
that obtained by the classical Euler and Midpoint methods.

0.07 Y (t)

0.05
0.03

0.01

0.2 0.4 0.6 0.8 1

Fi1GURE 4. Optimal solution.
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Table 6. Value of the error functional F.

E
Our solution 1.6 1078
IDP 6.1 1073
Euler 3.81072
Midpoint 1.8 1077
Runge-Kutta 5.2 10714
Predictor-corrector Adams | 4.1 107°

6.4. Stiff ODEs. Stiffness is a subtle, difficult and important concept in the nu-
merical solution of ordinary differential equations. In mathematics, a stiff equation
[11] is a differential equation for which certain numerical methods for solving the
equation are numerically unstable, unless the step size is taken to be extremely
small. Normally the equation includes some terms that can lead to rapid variation
in the solution. The numerical methods used to solve IVPs can be categorized
as implicit or explicit according to whether or not they require the solution of a
nonlinear system of equations at every integration step. Since the solution of a non-
linear system is computationally expensive, explicit methods are preferred whenever
they can be used with reasonable stepsizes. The computational cost of the implicit
methods, however, may be justifiable, since for certain IVPs (stiff IVPs) an implicit
method is much more efficient than comparable explicit ones. Let us see how our
method is capable of addressing problems of this nature.

The behaviour of numerical methods with respect to stiff problems can be ana-
lyzed by applying these methods to the Dalquist’s test equation:

t=kz; z(0)=1; t >0,

where k € C and |k| is large. The solution of this equation is z(t) = e** (see Fig-
ure 5). This solution approaches zero as t — oo when Re(k) < 0. If the numerical
method also exhibits this behaviour, then the method is said to be A-stable. We
consider three values of k, namely —1, —15 and —60. We consider b = 1 and a dis-
cretization of N = 1000 subintervals. Table 7 shows the error functional obtained
with our method and with the NDSolve instruction, using three methods: Ex-
plicit Runge-Kutta, Implicit Runge-Kutta and Backward Differentiation Formulae

1[0

FIGURE 5. Optimal solution.
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(BDF). Table 7 shows, once again, that our method is superior to the three classical
methods, the poor performance of the Implicit Runge-Kutta method being notably
surprising, above all, when considering the value of k = —60.

Table 7. Error functional of the stiff test equation.

k=-—1 k= —15 k= —60
Our solution 8.012 10736 | 6.5488 10732 | 9.31085 1013
Explicit Runge-Kutta | 1.429 10~ | 4.9975 10~% | 2.55882 10~
Implicit Runge-Kutta | 1.429 10~ | 0.00256469 18.5127
BDF 6.3618 10~13 | 8.05371 1011 | 3.44955 1010

It is well known that the MATLAB solver ode45 (used most of the time) [13] is
slow when the problem is stiff. In such cases, there are more appropriate solvers
such as, for example, odelds. Although the goal of our method is to minimize the
error functional, the global error committed is very satisfactory in numerous cases,
such as the one we are dealing with here. In Table 8 we compare our solution with
that obtained with these MATLAB solvers.

Table 8. Global error of the stiff test equation.

k=1 k=-15 k= —60
Our solution | 1.84016 10~* | 3.285966 10~° | 8.630544 10~2
oded5 1.20903 10~° | 1.609772 10~8 | 2.934628 10~7
odel5s 4.16291 10~* | 6.409395 108 | 8.525057 10~°

As can be seen, our method is better (from the point of view of the global error)
than odel5s when the problem is not stiff (k = —1,—15) and better than ode45
when the problem is stiff (k = —60). Hence, our method is robust, and it is not
necessary to test the nature of the problem when choosing the most suitable solver
(often we do not know if a particular ODE model is stiff).

The CPU time used was 0.7 sec on a personal computer (Pentium IV/2GHz).
To sum up, our method may be used to stiff problems, and there is no need to take
small steps to obtain satisfactory results.

7. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper we have presented a new optimal control technique for solving
ordinary differential equations. Our method substantially improves a previous ap-
proach that uses iterative dynamic programming to solve the associated optimal
control problem. We consider the error functional instead of the classical global
error, the error functional obtained by our method being lower than that obtained
by classical methods. The global error, which is the error normally considered, is
not always really important, especially in problems of variational origin.

It is true that the proposed algorithm cannot improve the running times of other
methods, e.g. that of Euler, as it is in fact an adaptation of said method (with a
similar number of operations) and requires several runs that are moderately small in
number and which depend on the tolerance. However, and precisely for this reason,
once a tolerance has been fixed, the computational complexity is the same as that of
Euler’s method: O(n), where n represents the number of intervals considered in the
discretization. In short, although our method is no faster than classical approaches,
it runs in linear time and thus does not entail any risk in this respect.
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Finally, it should be noted that our method may be applicable to initial value

problems of a very general nature, as well as to boundary value problems. It would
also be worth studying the application of this method to obtain the numerical so-
lution of differential equations with algebraic equality (DAE) and inequality (DAI)
constraints or even for nonsmooth differential equations.
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