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Abstract In this paper, we characterize the odd positive integers n satisfying the congruence
∑n−1

j=1 j
n−1

2 ≡ 0 (mod n). We show that the set of such positive integers has an asymptotic density

which turns out to be slightly larger than 3/8.
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1 Introduction

Given any property P satisfied by the primes, it is natural to consider the set CP := {n
composite : n satisfies P}. Elements of CP can be thought of as pseudoprimes with respect to
the property P. Such sets of pseudoprimes have been of interest to number theorists.

Putting aside practical primality tests such as Fermat, Euler, Euler–Jacobi, Miller–Rabin,
Solovay–Strassen, and others, let us have a look at some interesting, although not very efficient,
primality tests as summarized in the table below:
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Test Pseudoprimes Infinitely many

1 (n − 1)! ≡ −1 (mod n) None No

2 an ≡ a (mod n) for all a Carmichael numbers Yes

3
∑n−1

j=1 jφ(n) ≡ −1 (mod n) Giuga numbers Unknown

4 φ(n)|(n − 1) Lehmer numbers No example known

5
∑n−1

j=1 jn−1 ≡ −1 (mod n) No example known

In the above table, φ(n) is the Euler function of n.
The first test in the table, due to Wilson and published by Waring [1], is an interesting and

impractical characterization of a prime number. As a consequence, no pseudoprimes for this
test exist.

The pseudoprimes for the second test in the table are called Carmichael numbers. They
were characterized by Korselt [2]. In [3], it is proved that there are infinitely many of them.
The counting function for the Carmichael numbers was studied by Erdős [4] and by Harman [5].

The pseudoprimes for the third test are called Giuga numbers. The sequence of such num-
bers is sequence A007850 in OEIS. These numbers were introduced and characterized in [6].
For example, a Giuga number is a squarefree composite integer n such that p divides n/p − 1
for all prime factors p of n. All known Giuga numbers are even. If an odd Giuga number exists,
it must be the product of at least 14 primes. The Giuga numbers also satisfy the congruence
nBφ(n) ≡ −1 (mod n), where for a positive integer m the notation Bm stands for the m-th
Bernoulli number.

The fourth test in the table is due to Lehmer (see [7]) and it dates back to 1932. Although it
has recently drawn much attention, it is still not known whether any pseudoprimes at all exist
for this test or not. In a series of papers (see [8–10]), Pomerance has obtained upper bounds for
the counting function of the Lehmer numbers, which are the pseudoprimes for this test. In his
third paper [10], he succeeded in showing that the counting function of the Lehmer numbers
n ≤ x is O(x1/2(log x)3/4). Refinements of the underlying method of [10] led to subsequent
improvements in the exponent of the logarithm in the above bound by Shan [11], Banks and
Luca [12], Banks et al. [13], and Luca and Pomerance [14], respectively. The best exponent to
date is due to Luca and Pomerance [14] and it is −1/2 + ε for any ε > 0.

The last test in the table is based on a conjecture formulated in 1959 by Giuga [15], which
states that the set of pseudoprimes for this test is empty. In [6], it is shown that every coun-
terexample to Giuga’s conjecture is both a Carmichael number and a Giuga number. Luca et
al. [16] have shown that the counting function for these numbers n ≤ x is O(x1/2/(log x)2)
improving slightly on a previous result by Tipu [17].

In this paper, inspired by Giuga’s conjecture, we study the odd positive integers n satisfying
the congruence

n−1∑

j=1

j(n−1)/2 ≡ 0 (mod n). (1.1)

It is easy to see that if n is an odd prime, then n satisfies the above congruence. We characterize
such positive integers n and show that they have an asymptotic density which turns out to be
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slightly larger than 3/8.
For simplicity, we put

G(n) :=
n−1∑

j=1

j�(n−1)/2�,

although we study this function only for odd values of n.

2 On the Congruence G(n) ≡ 0 (mod n) for Odd n

We put

P := {n odd : G(n) ≡ 0 (mod n)}.

It is easy to observe that every odd prime lies in P. In fact, by Euler’s criterion, if p is an odd
prime, then j(p−1)/2 ≡ (

j
p

)
(mod p), where

(
j
p

)
denotes the Legendre symbol of j with respect

to p. Thus,

G(p) ≡
p−1∑

j=1

(
j

p

)

≡ 0 (mod p),

so that p ∈ P.
We start by showing that numbers which are congruent to 3 (mod 4) are in P.

Proposition 2.1 If n ≡ 3 (mod 4), then n ∈ P.

Proof Writing n = 4m + 3, we have that (n − 1)/2 = 2m + 1 is odd. Now,

2G(n) =
n−1∑

j=1

(
j2m+1 + (n − j)2m+1

)
= n

n−1∑

j=1

(
j2m + j2m−1(n − j) + · · · + (n − j)2m

)
,

so n | 2G(n). Since n is odd, we get that G(n) ≡ 0 (mod n), which is what we want. �
The next lemma is immediate.

Lemma 2.2 Let p be an odd prime and let k ≥ 1 be an integer. Then

gcd
(

pk − 1
2

, ϕ(pk)
)

= gcd
(

pk − 1
2

, p − 1
)

=

⎧
⎨

⎩

p − 1, if k is even,

(p − 1)/2, if k is odd.

With this lemma in mind we can prove the following result.

Proposition 2.3 Let p be an odd prime and let k ≥ 1 be any integer. Then, pk ∈ P if and
only if k is odd.

Proof Let α ∈ Z be an integer whose class modulo pk is a generator of the unit group of
Z/pk

Z. We put β := α(pk−1)/2. Suppose first that k is odd. We then claim that β − 1 is not
zero modulo p. In fact, if α(pk−1)/2 ≡ 1 (mod p), then since also αp−1 ≡ 1 (mod p), we get, by
Lemma 2.2, that α(p−1)/2 ≡ 1 (mod p), which is impossible.

Now, since β − 1 is coprime to p, it is invertible modulo pk. Moreover, since also k ≤
(pk − 1)/2, we have

G(n) =
n−1∑

j=1

j(pk−1)/2 ≡
∑

gcd(j,p)=1
1≤j≤n−1

j(pk−1)/2 (mod pk)
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≡
ϕ(pk)∑

j=1

(
α(pk−1)/2

)i (mod pk) ≡
φ(pk)∑

i=1

βi (mod pk)

=
βϕ(pk)+1 − β

β − 1
≡ 0 (mod pk).

Assume now that k is even. Observe that

pk − 1
2

= (p − 1)
1 + p + · · · + pk−1

2
:= (p − 1)m,

and m is an integer which is coprime to p. Thus, β = α(pk−1)/2 = (α(p−1))m has order pk−1

modulo pk, and so does αp−1. Moreover, again since k ≤ (pk − 1)/2, we may eliminate the
multiples of p from the sum defining G(n) modulo n and get

G(n) =
n−1∑

j=1

j(pk−1)/2 ≡
∑

gcd(j,p)=1
1≤j≤n−1

j(pk−1)/2 (mod pk)

≡
ϕ(pk)∑

i=1

(
α(pk−1)/2

)i ≡
pk−1(p−1)∑

i=1

(
α(p−1)

)im (mod pk)

≡ (p − 1)
pk−1
∑

i=1

(
αp−1

)i
(mod pk). (2.1)

Since αp−1 has order pk−1 modulo pk, it follows that αp−1 = 1 + pu for some integer u which
is coprime to p. Then

pk−1
∑

i=1

(
αp−1

)i
= αp−1

(
αpk−1 − 1

α − 1

)

. (2.2)

Since αpk−1 ≡ 1 + pku (mod pk+1), it follows that (αpk−1 − 1)/(α − 1) ≡ pk−1 (mod pk), so
that

αp−1

(
αpk−1 − 1

α − 1

)

≡ αp−1pk−1 (mod pk) ≡ pk−1 (mod pk). (2.3)

Calculations (2.2) and (2.3) together with congruences (2.1) give that G(n) ≡ (p − 1)pk−1

(mod pk). Thus, pk is not in P when k is even. �
Note that Proposition 2.3 does not extend to powers of positive integers having at least two

distinct prime factors. For example, n = 2021 = 43 × 47 has the property that both n and n2

belong to P.

3 A Characterization of P and Applications

Here, we take a look into the arithmetic structure of the elements lying in P. We start with an
easy but useful lemma.

Lemma 3.1 Let n =
∏

prp‖n prp be an odd integer, and let A be any positive integer. If
gcd(A, p − 1) < p − 1 for all p | n, then

∑

gcd(j,n)=1
1≤j≤n−1

jA ≡ 0 (mod n).
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Proof It suffices to prove that the above congruence holds for all prime powers prp‖n. So,
let pr be such a prime power and let α be an integer which is a generator of the unit group of
Z/pr

Z. Put β := αA. An argument similar to the one used in the proof of Proposition 2.3 (the
case where k is odd) shows that the condition gcd(A, p − 1) < p − 1 entails that β − 1 is not a
multiple of p. Thus, β − 1 is invertible modulo p. We now have

∑

gcd(j,n)=1
1≤j≤n−1

jA ≡
(

φ(n)
φ(pr)

) ∑

gcd(j,p)=1
1≤j≤p

jA (mod pr) ≡ φ(n/pr)
φ(pr)∑

i=1

αAi (mod pr)

≡ φ(n/pr)
φ(pr)∑

i=1

βi (mod pr) ≡ φ(n/pr)
βφ(pr)+1 − β

β − 1
(mod pr) ≡ 0 (mod pr),

which is what we want to prove. �

Theorem 3.2 A positive integer n is in P if and only if gcd((n− 1)/2, p− 1) < p− 1 for all
p | n.

Proof Assume that n is odd and gcd((n − 1)/2, p − 1) < p − 1. By Lemma 3.1,
∑

(j,n)=1
1≤j≤n−1

j(n−1)/2 ≡ 0 (mod n).

Now, let d be any divisor of n. Observe that
∑

(j,n)=d
1≤j≤n−1

j
n−1

2 = d
n−1

2

∑

(i,n/d)=1
1≤i≤n/d−1

i
n−1

2 . (3.1)

The last sum on the right-hand side of (3.1) above is, by Lemma 3.1, a multiple of n/d, so that
the sum on the left-hand side of (3.1) above is a multiple of n. Summing up these congruences
over all possible divisors d of n and noting that

G(n) =
∑

d|n

∑

gcd(j,n)=d
1≤j≤n−1

j(n−1)/2,

we get G(n) ≡ 0 (mod n), so n ∈ P.
Conversely, say that n ∈ P is some odd number and assume that there exists a prime factor

p of n such that p − 1 | (n − 1)/2. Write (n − 1)/2 = (p − 1)m. Observe that m is coprime to
p. Assume that pr‖n. Then, modulo pr, we have

G(n) =
n−1∑

j=1

j(n−1)/2 ≡ (n/pr)
∑

gcd(j,p)=1
1≤j≤pr−1

j(n−1)/2 (mod pr)

≡ (n/pr)
∑

gcd(j,p)=1
1≤j≤pr−1

j(p−1)m ≡ (n/pr)
∑

gcd(j,p)=1
1≤j≤pr−1

jp−1 (mod pr).

The argument used in Proposition 2.3 (the case where k is even) shows that the second sum is
not zero modulo pr, and since n/pr is also coprime to p, we get that pr does not divide G(n),
a contradiction.

This completes the proof of the theorem. �
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Here are a few immediate corollaries of Theorem 3.2.

Corollary 3.3 Let n be any integer. Assume that one of the following conditions holds :
i) gcd ((n − 1)/2, ϕ(n)) is odd ;
ii) gcd ((n − 1)/2, λ(n)) is odd, where λ(n) the Carmichael function.

Then n ∈ P.

Corollary 3.4 If nk ∈ P for some k ≥ 1, then n ∈ P.

Proof Observe that gcd ((n − 1)/2, p − 1) divides gcd
(
(nk − 1)/2, p − 1

)
for every k and every

prime number p. Now the corollary follows from Theorem 3.2. �
We add another sufficient condition which is somewhat reminiscent of the characterization

of the Giuga numbers.

Proposition 3.5 Let n =
∏

prp‖n prp be an odd integer. If p− 1 does not divide n/prp − 1 for
every prime factor p of n, then n ∈ P.

Proof By Theorem 3.2, if n �∈ P, then there exists a prime factor p of n such that p−1 divides
(n − 1)/2. In particular, p − 1 | n − 1. Since p − 1 also divides prp − 1, it follows that p − 1
divides n − prp = prp(n/prp − 1). Since p − 1 is obviously coprime to prp , we get that p − 1
divides n/prp − 1, which is a contradiction. �

It is also easy to determine whether numbers of the form 2m + 1 are in P. Indeed, assume
that 2m + 1 �∈ P for some positive integer m. Then, by Theorem 3.2, there is some prime
p | 2m + 1 such that p− 1 | ((2m + 1)− 1)/2 = 2m−1. Thus, p = 2a + 1 for some a ≤ m− 1, and
so p is a Fermat prime. In particular, a = 2α for some α ≥ 0. Since p = 22α

+ 1 is a proper
divisor of 2m + 1, it follows that 2α | m and m/2α is odd. This is possible only when 2α is the
exact power of 2 in m and m is not a power of 2. So, we have the following result.

Proposition 3.6 Let n = 2m + 1 and m = 2αm1 with α ≥ 0 and odd m1 > 1. Then n ∈ P

unless 22α

+ 1 is a Fermat prime.

4 Asymptotic Density of P

Let I be the set of odd positive integers. In order to compute the asymptotic density of P, or
to even prove that it exists, it suffices to understand the elements in its complement I\P. It
turns out that this is easy. For an odd prime p let

Fp := {p2 (mod 2p(p − 1))}.
Observe that Fp ⊆ I.

Theorem 4.1 We have
I\P =

⋃

p≥3

Fp. (4.1)

Proof By Theorem 3.2, we have that n �∈ P if and only if p − 1 divides (n − 1)/2 for some
prime factor p of n. This condition is equivalent to n ≡ 1 (mod 2(p − 1)). Write n = pm for
some positive integer m. Since p is invertible modulo 2(p − 1), it follows that m is uniquely
determined modulo 2(p − 1). It suffices to notice that the class of m modulo 2(p − 1) is in
fact p since then pm ≡ p2 ≡ 1 (mod 2(p − 1)) with the last congruence following because
p2 − 1 = (p − 1)(p + 1) is a multiple of 2(p − 1). This completes the proof. �



On a Variant of Giuga Numbers 659

Observe that Fp is an arithmetic progression of difference 1/(2p(p − 1)). Since the series
∑

p≥3
1

2p(p−1) is convergent, it follows immediately that I\P; hence, also P, has a density. This
also suggests a way to compute the density of P with arbitrary precision. Namely, say ε > 0 is
given. Let 3 = p1 < p2 < · · · be the increasing sequence of all the odd primes. Let k := k(ε) be
minimal such that

∑
j≥k

1
2pj(pj−1) < ε. It then follows that numbers n �∈ P which are divisible

by a prime pj with j ≥ k belong to
⋃

j≥k Fpj
, which is a set of density < ε. Thus, with an

error of at most ε, the density of the set I\P is the same as the density of
⋃

j<k Fpj
, which is,

by the Principle of Inclusion and Exclusion,
∑

s≥1

∑

1≤i1<i2<···<is≤k−1

εi1,i2,...,is

lcm[2pi1(pi1 − 1), . . . , 2pis
(pis

− 1)]
, (4.2)

with the coefficient εi1,i2,...,is
being zero if

⋂s
t=1 Fpit

= ∅, and being (−1)s−1 otherwise. Taking
ε := 0.00082, we get k = 29,

ρ

( ⋃

j<29

Fpj

)

=
274510632303283394907222287246970994037
2284268907516688397400621108446881752020

≈ 0.120174,

and consequently ρ(P) belongs to [0.379005, 0.379826]. So, we can say that ρ(P) = 0.379 · · · .

Here and in what follows, for a subset A of the set of positive integers we used ρ(A) for its
density when it exists.

These computations were carried out with Mathematica, for which it was necessary to have
a good criterion to determine when the intersection of Fp for various odd primes p is empty.
We devote a few words on this issue. Let us observe first that the condition n ∈ Fp, which
is equivalent to the fact that p | n and p − 1 divides (n − 1)/2, can be formulated as the pair
congruences

n ≡ 1 (mod 2(p − 1)), n ≡ 0 (mod p). (4.3)

Assume now that P is some finite set of primes. Let us look at
⋂

p∈P Fp. Put m :=
∏

p∈P p.
The first set of congruences (4.3) for all p ∈ P is equivalent to

n ≡ 1 (mod 2λ(m)), (4.4)

where λ(m) = lcm[p − 1 : p ∈ P] is the Carmichael λ-function of m. The second set of
congruences for p ∈ P is equivalent to

n ≡ 0 (mod m). (4.5)

Since 1 is not congruent to 0 modulo any prime q, it follows that a necessary condition for (4.4)
and (4.5) to hold simultaneously is that m and 2λ(m) are coprime. This is also sufficient by
the Chinese Remainder Lemma in order for the pair of congruences (4.4) and (4.5) to have a
solution n. Since m is also squarefree, the condition that m > 1 is odd and m and 2λ(m) are
coprime is equivalent to m > 2 and m and φ(m) are coprime. Put

M := {m > 2 : gcd(m, φ(m)) = 1}. (4.6)

Thus, we have proved the following result.

Proposition 4.2 Let P be a finite set of primes and put m :=
∏

p∈P p. Then
⋂

p∈P Fp is
nonempty if and only if m ∈ M, where this set is defined in (4.6) above. If this is the case,
then the set

⋂
p∈P Fp is an arithmetic progression of difference 1/(2mλ(m)).
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The condition that m ∈ M can also be formulated by saying that m is odd, squarefree
and p � q − 1 for all primes p and q dividing m. We recall that the set M has been studied
intensively in the literature. For example, putting M(x) = M∩ [1, x], Erdős [18] proved that

#M(x) = e−γ(1 + o(1))
x

log log log x
as x → ∞.

In particular, it follows that if P is a finite set of primes, then
⋂

p∈P Fp �= ∅ if and only if
Fp ∩ Fq �= ∅ for any two elements p and q of P.

Finally, let us observe that with this formalism and the Principle of Inclusion and Exclusion,
as in (4.2) for example, we can write

ρ(P) =
∑

m∈M∪{1}

(−1)ω(m)

2mλ(m)
.

Here, ω(m) is the number of distinct prime factors of m. The fact that the above series converges
absolutely follows easily from the inequality λ(m) > (log m)c log log log m which holds with some
positive constant c for all sufficiently large m (see [19]), as well the fact that the series

∑

m≥2

1
m(log m)2

converges. We give no further details.
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