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CULLEN NUMBERS WITH THE LEHMER PROPERTY
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Abstract. Here, we show that there is no positive integer n such that the
nth Cullen number Cn = n2n + 1 has the property that it is composite but
φ(Cn) | Cn − 1.

1. Introduction

A Cullen number is a number of the form Cn = n2n + 1 for some n ≥ 1.
They attracted the attention of researchers since it seems that it is hard to find
primes of this form. Indeed, Hooley [8] showed that for most n the number Cn is
composite. For more about testing Cn for primality, see [3] and [6]. For an integer
a > 1, a pseudoprime to base a is a composite positive integer m such that am ≡ a
(mod m). Pseudoprime Cullen numbers have also been studied. For example, in
[12], it is shown that for most n, Cn is not a base a pseudoprime. Some computer
searches up to several millions did not turn up any pseudoprime Cn to any base.
Thus, it would seem that Cullen numbers which are pseudoprimes are very scarce.
A Carmichael number is a positive integer m which is a base a pseudoprime for
any a. A composite integer m is called a Lehmer number if φ(m) | m − 1, where
φ(m) is the Euler function of m. Lehmer numbers are Carmichael numbers, hence,
pseudoprimes in every base. No Lehmer number is known, although it is known that
there are no Lehmer numbers in certain sequences, such as the Fibonacci sequence
(see [9]), or the sequence of repunits in base g for any g ∈ [2, 1000] (see [4]). For
other results on Lehmer numbers, see [1], [2], [11], [13], [14].

Our result here is that there is no Cullen number with the Lehmer property.
Hence, if φ(Cn) | Cn − 1, then Cn is prime.

Theorem 1. Let Cn be the nth Cullen number. If φ(Cn) | Cn − 1, then Cn is
prime.

2. Proof of Theorem 1

Assume that n ≥ 30, that φ(Cn) | Cn − 1, but that Cn is not prime. Then Cn is
square-free. Write

Cn =

k∏
i=1

pi.
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So,

k∏
i=1

(pi − 1) | n2n.

Write n = 2αn1, where n1 is odd. Then Cn = n12
n2 + 1, where n2 := α+ n. Let p

be any prime factor of Cn. Since p− 1 | Cn − 1, it follows that p = mp2
np + 1 for

some odd divisor mp of n and some np with

np ≤ n2 = n+ α ≤ n+
log n

log 2
.

Let us first show that in fact np ≤ n. Assume that np > n. Then,

(1) Cn = n2n + 1 = pλ,

for some positive integer λ, where p ≥ 2n+1 + 1. Observe that λ > 1 because Cn is
not prime. Now

λ =
Cn

p
≤ n2n + 1

2n+1 + 1
< n.

Reducing equation (1) modulo 2n, we get that 2n | λ− 1, so 2n ≤ λ− 1 < n, which
is false for any n > 1. Hence, np ≤ n.

Next we look at mp. If mp = 1, then p = 2np + 1 is a Fermat prime. Hence,
np = 2γp for some nonnegative integer γ. Since 2γp = np ≤ n, we get that γp <
(log n)/(log 2). Hence, the prime p can take at most 1+(log n)/(log 2) values. Next,
observe that since

(2)
∏
p|Cn

mp | n,

it follows that the number of prime factors p of Cn such that mp > 1 is ≤
(log n)/(log 3). Hence, we have arrived at the bound

(3) k < 1 +
log n

log 2
+

log n

log 3
< 1 + 2.4 log n.

We next bound np. Put N := �
√
n/ log n�, and consider pairs (a, b) of integers

in {0, 1, . . . , N}. There are (N + 1)2 > n/ log n such pairs. For each such pair,
consider the expression L(a, b) := an + bnp ∈ [0, 2n3/2/(log n)1/2]. Thus, there
exist two pairs (a, b) �= (a1, b1) such that

|(a− a1)n+ (b− b1)np| = |L(a, b)− L(a1, b1)| ≤
2n3/2/(log n)1/2

n/ logn− 1
< 3(n logn)1/2.

Put u := a− a1, v := b− b1. Then (u, v) �= (0, 0) and

|un+ vnp| < 3(n logn)1/2.

We may also assume that u and v are coprime, for if not, we replace the pair
(u, v) by the pair (u1, v1), where d := gcd(u, v), u1 := u/d, v1 := v/d, and the
properties that max{|u1|, |v1|} ≤ (n/ log n)1/2 and |u1n+ v1np| < 3(n logn)1/2 are
still fulfilled. Finally, up to replacing the pair (u, v) by the pair (−u,−v), we may
assume that u ≥ 0.
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Now consider the congruences n2n ≡ −1 (mod p) and mp2
np ≡ −1 (mod p).

Observe that 2, n, mp are all three coprime to p. Raise the first congruence to u
and the second to v and multiply them to get

numv
p2

nu+npv ≡ (−1)u+v (mod p).

Hence, p divides the numerator of the rational number

(4) A := numv
p2

nu+npv − (−1)u+v.

Let us show that A �= 0. Assume that A = 0. Recall that n = 2αn1. Thus,
expression (4) is

A = nu
1m

v
p2

(n+α)u+npv − (−1)u+v = 0.

Then nu
1m

v
p = 1, (n+α)u+ vnp = 0, and u+ v is even. Since u ≥ 0, it follows that

v ≤ 0. Put w := −v, so w ≥ 0. There exists an odd positive integer ρ such that
n1 = ρw and mp = ρu. Since u and v are coprime and u+ v is even, it follows that
u and v are both odd. Hence, w is also odd. Also, since mp divides n1, it follows
that u ≤ w. We now get

(2αρw + α)u− wnp = 0,

so
u

np
=

w

2αρw + α
.

The left-hand side is ≥ u/n = u/(2αρu), because np ≤ n = 2αρu. Hence, we get
that

u

2αρu
≤ u

np
=

w

2αρw + α
leading to

u

ρu
≤ w

ρw + (α/2α)
≤ w

ρw
.

For ρ ≥ 3, the function s 	→ s/ρs is decreasing for s ≥ 0, so the above inequality
together with the fact that u ≤ w implies that u = w (so both are 1 because they
are coprime), and that all the intermediary inequalities are also equalities. This
means that u = w = 1, α = 0 and n = np, but all this is possible only when Cn = p,
which is not allowed. If ρ = 1, we then get that n1 = 1, so every prime factor p of
Cn is a Fermat prime. Hence, we get

Cn = 2n2 + 1 =
k∏

i=1

(22
γpi + 1) =

∑
I⊆{1,...,k}

2
∑

i∈I 2γpi ,

and k ≥ 2, but this is impossible by the unicity of the binary expansion of Cn.
Thus, it is not possible for the expression A shown at (4) to be zero.
The size of the numerator of A is at most

21+|nu+npv|num|v|
p ≤ 21+3(n logn)1/2n2(n/ log n)1/2

< 21+3(n logn)1/2+(2/ log 2)(n log n)1/2 < 26(n logn)1/2 .

In the above chain of inequalities, we used the fact that 3+ 2/ log 2 < 5.9, together
with the fact that (n logn)1/2 > 10 for n ≥ 30. Thus, for n ≥ 30, we have that the
inequality

(5) p < 26(n logn)1/2

holds for all prime factors p of Cn.
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Thus, we get the inequality

2n < Cn =

k∏
i=1

pi <

k∏
i=1

26(n logn)1/2 = 26k(n logn)1/2 ,

leading to

(6) k >
n1/2

6(log n)1/2
.

Comparing estimates (3) and (6), we get

n1/2

6(log n)1/2
< 1 + 2.4 log n,

implying that n < 6× 105.
It remains to lower this bound. We first lower it to n < 93000. Indeed, first

note that since n < 6 × 105, it follows that if p = Fγ = 22
γ

+ 1 is a Fermat prime
dividing Cn, then γ ≤ 18. The only such Fermat primes are for γ ∈ {0, 1, 2, 3, 4}.
Furthermore, (logn)/(log 3) ≤ log(6 × 105)/(log 3) = 12.1104 . . . . Hence, k ≤ 5 +
12 = 17. It then follows, by equation (6), that

n1/2

6(log n)1/2
< 17,

so n < 122000. But then (log n)/(log 3) < log(122000)/(log 3) = 10.6605 . . . , giving
that in fact k ≤ 15. Inequality (6) shows that

n1/2

6(log n)1/2
< 15,

so n < 93000. Next let us observe that if n is not a multiple of 3, then relation (2)
leads easily to the conclusion that the number of prime factors p of Cn with mp > 1
is in fact ≤ (log n)/(log 5) = 7.15338 . . . . Hence, the number of such primes is ≤ 7,
giving that k ≤ 12, which contradicts a result of Cohen and Hagis [5] who showed
that every number with the Lehmer property must have at least 14 distinct prime
factors. Hence, 3 | n, which shows that Cn is not a multiple of 3. An argument
similar to one used before proves that n is not a multiple of any prime q > 3. Indeed,
if it were, then relation (2) would lead to the conclusion that the number of prime
factors p of Cn with mp > 1 is ≤ 1 + log(n/q)/(log 3) ≤ 1 + log(93000/5)/(log 3) =
9.94849 . . . , so there are at most 9 such primes. Also, Cn can be divisible with at
most 4 of the 5 Fermat primes Fγ with γ ∈ {0, 1, 2, 3, 4}, because 3 = F0 does not
divide Cn. Hence, k ≤ 9 + 4 = 13, which again contradicts the result from [5].
Thus, n = 2α3β and so all prime factors p of Cn are of the form 2α13β1 +1 for some
nonnegative integers α1 and β1. Now write

(7) a =
Cn − 1

φ(Cn)
=

k∏
i=1

(
1 +

1

pi − 1

)

for some integer a ≥ 2. Since

∏
α1≥0, β1≥0

2α13β1+1 prime

(
1 +

1

2α13β1

)
< 1.46,
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we get that a < 2, which is a contradiction. This shows that in fact there are no
numbers Cn with the claimed property.

We end with some challenges for the reader.

Research problem. Prove that Cn is not a Carmichael number for any n ≥ 1.

If this is too hard, can one at least give a sharp upper bound on the counting
function of the set C of positive integers n such that Cn is a Carmichael number?
We recall that Heppner [7] proved that if x is large, then the number of positive
integers n ≤ x such that Cn is prime is O(x/ log x), whereas in [12] it was shown
that if a > 1 is a fixed integer, then the number of positive integers n ≤ x such
that Cn is base a pseudoprime is O(x(log log x)/ log x). Clearly, imposing that Cn

is Carmichael (which is a stronger condition) should lead to sharper upper bounds
for the counting function of such indices n.

Finally, here is a problem suggested to us by the referee. Theorem 1 shows that
φ(Cn)/ gcd(Cn − 1, φ(Cn)) exceeds 1 for all n. Can one say something more about
this ratio? For example, it is possible that a minor modification of the arguments
in the paper would show that this function tends to infinity with n, but we have
not worked out the details of such a deduction. It would be interesting to find a
good (large) lower bound on this quantity which is valid for all n and which tends
to infinity with n. How about for most n? What about lower and upper bounds
on the average value of this function when n ranges in the interval [1, x] and x is a
large real number? We leave these questions for further research.
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