Corrigendum to "Cullen numbers with the Lehmer Property"

José María Grau Ribas
Departamento de Mátematicas
Universidad de Oviedo
Avda. Calvo Sotelo, s/n, 33007 Oviedo, Spain
grau@uniovi.es
Florian Luca
Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 58089, Morelia, Michoacán, México
fluca@matmor.unam.mx

December 15, 2011

Abstract

In this note, we correct an oversight from the paper 2 mentioned in the title.

There is an error on Page 131 of the paper [2] mentioned in the title in justifying that the expression A is nonzero. After the sentence "Also, since m_{p} divides n_{1}, it follows that $u \leq w$ " on Page 131 in [2], the argument continues in the following way. The case when $\rho=1$ implies $n_{1}=1$ and leads to the conclusion that all prime factors of C_{n} are Fermat primes, and this instance has been dealt with on Page 131 in [2]. Thus, we may assume that $\rho \geq 3$. The relation

$$
\left(2^{\alpha} \rho^{w}+\alpha\right) u=w n_{p}
$$

shows that $u \mid n_{p}$. Thus,

$$
p=m_{p} 2^{n_{p}}+1=\rho^{u} 2^{n_{p}}+1=X^{u}+1,
$$

where $X=\rho 2^{n_{p} / u}$ is an integer. If $u>1$, the above expression has $X+1$ as a proper divisor >1 (because u is odd), which is impossible since p is
prime. Thus, $u=1$. If $w=1$, we first get that $m_{p}=n_{1}=\rho$, and then that $n_{p}=\alpha+2^{\alpha} \rho=\alpha+n$, so $p=C_{n}$, which is not allowed. Otherwise, $w \geq 3$, $n_{1}=\rho^{w}$ and $p=\rho 2^{(\alpha+n) / w}+1=\left(n 2^{n}\right)^{1 / w}+1$. We now show that there is at most one prime p with the above property. Indeed, assume that there are two of them p_{1} and p_{2}, corresponding to $w_{1}<w_{2}$. Thus, $n_{1}=\rho_{1}^{w_{1}}=\rho_{2}^{w_{2}}$ and both w_{1} and w_{2} divide $n+\alpha$. Let $W=\operatorname{lcm}\left[w_{1}, w_{2}\right]$. Then $n_{1}=\rho_{0}^{W}$ for some positive integer ρ_{0}. Furthermore, writing $W=w_{1} \lambda$, we have that $\lambda>1$, and $\rho_{0}^{\lambda}=\rho_{1}$. Hence,

$$
p_{1}=\rho_{1} 2^{(\alpha+n) / w_{1}}+1=Y^{\lambda}+1
$$

where $Y=\rho_{0} 2^{(\alpha+n) / W}$ is an integer. This is false since $\lambda>1$ is odd, therefore the above expression $Y^{\lambda}+1$ has $Y+1$ as a proper divisor >1, contradicting the fact that p_{1} is prime. Hence, if A is zero for some p, then p is unique. Further, in this case $n_{1}=\rho^{w}$ and $p=\left(n 2^{n}\right)^{1 / w}+1 \leq\left(n 2^{n}\right)^{1 / 3}+1$.

The remaining of the argument from the paper [2] shows that the expression A is nonzero for all other primes q of C_{n}, so all prime factors q of C_{n} satisfy inequality (5) in the paper [2] with at most one exception, say p, which satisfies the inequality $p \leq\left(n 2^{n}\right)^{1 / 3}+1$. Hence, instead of the inequality from Line 2 of Page 132 in [2], we get that

$$
C_{n}<\left(\left(n 2^{n}\right)^{1 / 3}+1\right) 2^{6(k-1)(n \log n)^{1 / 2}}
$$

giving

$$
2^{6(k-1)(n \log n)^{1 / 2}}>\frac{n 2^{n}}{\left(n 2^{n}\right)^{1 / 3}+1}>2^{2 n / 3}
$$

where the right-most inequality above holds for all $n \geq 3$. This leads to a slightly worse inequality than the inequality (6) in the paper [2], namely

$$
\begin{equation*}
k>1+\frac{n^{1 / 2}}{9(\log n)^{1 / 2}} \tag{1}
\end{equation*}
$$

Note that inequality (6) from the paper [2] still holds whenever $A \neq 0$ for all primes p dividing n, and in particular for all n except maybe when $n_{1}=\rho^{w}$ for some $\rho \geq 3$ and $w \geq 3$. So, from now on, we shall treat only the case when $n_{1}=\rho^{w}$. Comparing estimate (3) in the paper [2] with (1) leads to

$$
\begin{equation*}
\frac{n^{1 / 2}}{9(\log n)^{1 / 2}}<2.4 \log n \tag{2}
\end{equation*}
$$

which implies that $n<1.4 \times 10^{6}$. We now lower the bound in a way similar to the calculation on Page 132 in [2]. Namely, first if $2^{2^{\gamma}}+1$ is a

Fermat prime factor of C_{n}, then $\gamma \leq 20$, so $\gamma \in\{0,1,2,3,4\}$. Furthermore, $\log n / \log 3 \leq 12.9$, therefore $k \leq 5+12=17$. Now inequality (1) shows that

$$
\frac{n^{1 / 2}}{9(\log n)^{1 / 2}}<16,
$$

giving $n<260,000$. But then $\log n / \log 3 \leq 11.4$, giving $k \leq 16$. Also, if n is not a multiple of 3 , then the number of prime factors p of C_{n} with $m_{p}>1$ is at most $\log 260,000 / \log 5<7.8$. Thus, C_{n} can have at most $5+7=12$ distinct prime factors, contradicting the result of Cohen and Hagis [1]. Hence, $3 \mid n$ showing that 3 does not divide C_{n}. Thus, $k \leq 15$, so

$$
\frac{n^{1 / 2}}{9(\log n)^{1 / 2}}<14
$$

giving $n<200,000$. Also, n cannot be divisible by a prime $q \geq 5$, for otherwise, since $n_{1}=\rho^{w}$ for some $w \geq 3$, we would get that the number of prime factors p of C_{n} with $m_{p}>1$ is at most $3+\log \left(200,000 / q^{3}\right) / \log 3<9.8$, so $k \leq 9+4=13$, contradicting again the result of Cohen and Harris. Hence, $n=2^{\alpha} \cdot 3^{\beta}$ and the proof finishes as in the paper [2] after formula (7).

Acknowledgements. We thank Dae Jun Kim for pointing out the oversight.

References

[1] G. L. Cohen and P. Hagis, 'On the number of prime factors of n if $\phi(n) \mid n-1$ ', Nieuw Arch. Wisk. 28 (1980), 177-185.
[2] J. M. Grau Ribas and F. Luca, "Cullen numbers with the Lehmer property", Proc. Amer. Math. Soc. 140 (2012), 129-134.

