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A PRIMALITY TEST FOR Kpn + 1 NUMBERS

JOSÉ MARÍA GRAU, ANTONIO M. OLLER-MARCÉN, AND DANIEL SADORNIL

Abstract. In this paper we generalize the classical Proth’s theorem and the
Miller-Rabin test for integers of the form N = Kpn +1. For these families, we
present variations on the classical Pocklington’s results and, in particular, a

primality test whose computational complexity is ˜O(log2 N) and, what is more
important, that requires only one modular exponentiation modulo N similar
to that of Fermat’s test.

1. Introduction

In 1877 P. Pepin [13] presented the following result about the primality of Fermat
numbers:

Theorem 1.1. Let Fn be the n-th Fermat number, i.e., Fn = 22
n+1 with n > 1.

Then, Fn is prime if and only if 3
Fn−1

2 ≡ −1 (mod Fn).

Although this theorem has not certified the primality of any new Fermat prime
(by 1877 the 5 Fermat primes were already known), it is the first result which
leads to a deterministic primality test requiring only one modular exponentiation

similar to that of Fermat’s test modulo N , thus of Õ(log2 N) complexity. One year
after, using the same underlying ideas, Proth [15] proved the following primality
criterion for numbers of the form N = K2n+1, where K is odd and K < 2n (Proth
numbers).

Theorem 1.2. Let N = K2n + 1, where K is odd and K < 2n. If a
N−1

2 ≡ −1
(mod N) for some a ∈ Z, then N is prime.

The next important step was made in 1914 by Pocklington [14]; his result is
the first generalization of Proth’s theorem suitable for numbers of the form N =
Kpn + 1.

Theorem 1.3. Let N = Kpn + 1 with K < pn. If, for some a ∈ Z

i) aN−1 ≡ 1 (mod N),

ii) gcd(a
N−1

p − 1, N) = 1.

Then, N is prime.

Proth and Pocklington results are still useful. In fact they are the base of the
popular software created by Yves Gallot (Proth.exe) for the search of Proth and
generalized Proth (N = Kpn + 1) primes. Other software based on a variation
of Pocklington’s Theorem presented by Brillhart, Lehmer and Selfridge [7, 8] is

Received by the editor June 12, 2012 and, in revised form, May 13, 2013.
2010 Mathematics Subject Classification. Primary 11Y11, 11Y16, 11A51, 11B99.
Daniel Sadornil was partially supported by the Spanish Government under projects MTM2010-

21580-C02-02 and MTM2010-16051.

c©2014 American Mathematical Society

1

Licensed to Harvard Univ. Prepared on Tue Jun 17 06:58:11 EDT 2014 for download from IP 128.103.149.52.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mcom/
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-2014-02849-4


2 J. M. GRAU, A. M. OLLER-MARCÉN, AND D. SADORNIL

OpenPFGW with which some records have been broken in different families of
integers. A drawback of this software is that it usually requires the use of several
bases and, consequently, the computation of several exponentiations modulo N .

In recent times the most active researcher looking for primality criteria for num-
bers of the form N = Kpn + 1 has been P. Berrizbeitia. Berrizbeitia and his
collaborators have found very efficient criteria for this kind of number for a variety
of primes p [2–4]. Even though similar criteria had been previously presented by
H.C. Williams and his collaborators [17,18], the methodology used by Berrizbeitia
et al. is clearer and more efficient. For these generalizations an analogue of the
Legendre symbol, the m-th power residue symbol, has been used. It assumes values
over the m-th roots of unity and it satisfies a higher order law of reciprocity. How-
ever, the use of them-th power residue symbol presents technical difficulties, mainly
because the ring Z[e2πi/m] is not a UFD in general. Other authors, A. Guthmann
[10] and W. Bosma [6], have also given generalizations of Proth’s theorem using
similar techniques but limited to the case p = 3.

In this paper we present a primality criterion for integers of the form N =
Kpn+1, p prime and K < pn, using techniques similar to those in [9] for generalized
Cullen Numbers (N = npn + 1), which do not require the use of any m-th power
residue symbol.

2. A generalization of Proth’s theorem

The primality test which follows from Proth’s theorem is very useful since, if
N = K2n +1 is a prime, then half of the possible values for a satisfy the condition
of the theorem. In particular it is satisfied by those a which are a quadratic non-
residue modulo N ; i.e., such that the Jacobi symbol ( a

N ) = −1.

Theorem 2.1. Let N = K2n+1, where K is odd and K < 2n. Assume that a ∈ Z

is such that
(

a
N

)
= −1, then:

N is a prime if and only if a
N−1

2 ≡ −1 (mod N).

In spite of the various generalizations presented in the introduction, the most
natural generalization of this theorem had not yet been exhibited. We do so in the
following result. In what follows, Φp(X) will denote the p-th cyclotomic polynomial.

Theorem 2.2. Let N = Kpn + 1, where p is a prime and K < pn. Assume that
a ∈ Z is a p-th power non-residue modulo N , then

N is a prime if and only if Φp(a
N−1

p ) ≡ 0 (mod N).

Proof. If N is a prime, then aN−1 ≡ 1 (mod N). Now, 0 ≡ aN−1 − 1 = (a
N−1

p −
1)Φp(a

N−1
p ) (mod N). Since a is a p-th power non-residue, then a

N−1
p − 1 �≡ 0

(mod N) and this implies, N being prime, that Φp(a
N−1

p ) ≡ 0 (mod N).

Conversely, assume that Φp(a
Kpn−1

) ≡ 0 (mod N). Put X = aK , then

Φp(X
pn−1

) ≡ 0 (mod N).

It follows that Xpn ≡ 1 (mod N). Now, let q ≤
√
N be a prime divisor of N ,

then it also holds that Φp(X
pn−1

) ≡ 0 (mod q) and Xpn ≡ 1 (mod q). Thus, the

order of X in Z
∗
q is a divisor of pn, but if Xpj ≡ 1 (mod q) with j < n would

imply that p = Φp(1) ≡ 0 (mod q) which is clearly a contradiction. Consequently,
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the order of X in Z
∗
q is pn. It follows that pn|q − 1 and pn < q ≤

√
N and then

p2n ≤ N = Kpn + 1, so pn ≤ K is a contradiction. �

This theorem can be restated in the following way.

Theorem 2.3. Let N = Kpn + 1, where p is a prime. If pn > K, then

Φp(a
N−1

p ) ≡ 0 (mod N) ⇔ N is prime and a

is a p-th power non-residue modulo N.

Proof. It is enough to observe that if Φp(a
N−1

p ) ≡ 0 (mod N), then N is prime
(as in the previous proof) and a �≡ xp (mod N) for, if it was the case, then 0 ≡
Φp(a

N−1
p ) ≡ Φp(x

N−1) ≡ Φp(1) = p (mod N); a contradiction. �

This result, like Proth’s theorem, is really useful since if Kpn+1 is prime, a is a p-
th power residue moduloN only for 1

p of the possible choices of such a. Nevertheless,

the interest of this result is mainly theoretical as a genuine generalization of Proth’s
theorem. An even more useful generalization, not requiring an adequate choice for
a, will be presented in forthcoming sections.

3. A generalization of Miller-Rabin primality test

The so-called Miller-Rabin probabilistic primality test applies to integers in the
form N = K2n + 1 (K odd) and it is based on Fermat’s little theorem and on the
fact that, the only solutions of x2 ≡ 1 (mod p) (p prime) are x ≡ ±1 (mod p).

Theorem 3.1 ([8, Theorem 3.5.1.]). Let N = K2n +1 be prime. If a is an integer
such that gcd(a,N) = 1, then one of the following holds:

i) aK ≡ 1 (mod N).

ii) There exists 0 ≤ j < n such that aK2j ≡ −1 (mod N).

The probabilistic version states that conditions i) and ii) are satisfied for a com-
posite number only for at most 1/4 of possible values for a. This probabilistic test,
in spite of being more demanding than Fermat’s test, presents many pseudoprimes
and is specially unreliable if n is small. Nevertheless, for big values of n, as in
the case of Proth numbers, the test is very reliable and, as we will see in the next
section, it allows us to certify the primality of the numbers that pass it.

We must point out that a generalization for the Miller-Rabin test is really sim-
ple, even though more than two decades passed until the first publication in this
direction was made [1, 5]. A natural generalization for the Miller-Rabin test (that
we shall call the p-Miller-Rabin test) is based in the following result:

Theorem 3.2. Let N = Kpn + 1 with p a prime number. If N is prime, then for
every integer a such that gcd(a,N) = 1 one of the following holds:

i) aK ≡ 1 (mod N).

ii) There exists 0 ≤ j ≤ n− 1 such that Φp(a
Kpj

) ≡ 0 (mod N).

Proof. If N is a prime, then aKpn ≡ 1 (mod N). If aK �≡ 1 (mod N), let 1 ≤ r ≤ n

be the smallest integer such that aKpr ≡ 1 (mod N). Then aKpr−1 �≡ 1 (mod N)

and the primality of N implies that Φp(a
Kpr−1

) ≡ 0 (mod N) as in Theorem 6. It
is enough to put j = r − 1 to complete the proof. �

Licensed to Harvard Univ. Prepared on Tue Jun 17 06:58:11 EDT 2014 for download from IP 128.103.149.52.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4 J. M. GRAU, A. M. OLLER-MARCÉN, AND D. SADORNIL

Definition 3.3. A p-strong probable prime to base a is a number satisfying condi-
tions i) and ii) of Theorem 3.2 for some p, prime divisor of N − 1. If it is in fact
composite, we will say that it is a p-strong pseudoprime to base a.

This generalization allows us to choose the most appropriate prime factor ofN−1
in which the test is used. In the case of generalized Proth numbers N = Kpn + 1
it seems that the prime p should be the most suitable choice, nevertheless, compu-
tational experiments reveal that the proportion of q-strong pseudoprimes does not
depend significantly on the chosen divisor of N − 1. Moreover, the classic Miller-
Rabin test presents in general less pseudoprimes than the proposed generalization.
Nonetheless, this new test can be modified to become a deterministic primality
test for numbers Kpn + 1, p prime with K < pn. This modification (presented in
practical form in Corollary 4.4) is the main contribution of this paper and will be
developed in the following section. Also, since N − 1 will have in general several
prime divisors, it can be natural to combine the new test not only using different
bases, but also using different prime divisors of N − 1. However, computational
evidence suggest that it is more convenient to use the test combining different bases
rather than different prime divisors of N − 1. For example, the smallest 2-strong
pseudoprime to bases 2 and 3 is 1373653, while there are eight numbers N that are
p-strong pseudoprimes to base 2 for any p | N − 1 smaller than 100000; namely:
2047, 3277, 4033, 8321, 65281, 80581, 85489, and 88357.

4. Variations on Pocklington’s results

The following result is based on a more general work by Lenstra [12] and can
be seen as a generalization of Pocklington’s result presented in Theorem 1.3 above.
See [11, Proposition 3.15] for details.

Proposition 4.1. Let N > 3 be an integer, and let s be a divisor of N − 1 which
is larger than

√
N and whose prime factorization is known. If there is an integer a

satisfying:

i) as ≡ 1 (mod N),
ii) gcd(as/q − 1, N) = 1 for each prime divisor q of s,

then N is prime.

As a direct consequence of this proposition we have the next result.

Theorem 4.2. Let N = Kpn + 1 where p is a prime. If there exists 1 ≤ j ≤ n
such that

i) Φp(2
Kpj−1

) ≡ 0 (mod N),
ii) 2j > logp(K) + n,

then N is prime.

Proof. Since Φp(2
Kpj−1

) ≡ 0 (mod N) if and only if 2Kpj ≡ 1 (mod N) and

gcd(aKpj−1 − 1, N) = 1, we can put s = pj and a = 2K , so the result follows from
Proposition 4.1. �

This theorem can be restated in a more useful form, from the computational
point of view, in the following ways.

Corollary 4.3. Let N = Kpn + 1 where p is a prime number. Let us consider the
sequence S0 = 2K , Si = Sp

i−1 for all i ≥ 1. If for some j > 1
2 (logp(K) + n) it holds

that Φp(Sj) ≡ 0 (mod N), then N is prime.
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Corollary 4.4. Let N = Kpn + 1 where p is a prime number. Let us consider the
sequence S0 = 2K , Si = Sp

i−1 for all i ≥ 1. If for some j > 1
2 (logp(K) + n) it holds

that gcd(Sj−1 − 1, N) = 1 and Sj ≡ 1 (mod N), then N is prime.

Remark 4.5. Note that both results are still true if we replace 2 by any other base
a.

5. Algorithm and computational complexity

Using Corollary 4.4, we can describe an algorithm to test the primality of N :=
Kpn + 1 which requires just one modular exponentiation. Namely:

Algorithm.
INPUT: K, p, n, a.; N := Kpn + 1. S0 := aK .
STEP 1: If S0 ≡ 1 (mod N)

then RETURN: “N is a p-strong-probable prime to base a”. STOP.
STEP 2: For i = 1 to n

Si ≡ Sp
i−1 (mod N)

If Si ≡ 1 (mod N) and gcd(Si−1 − 1, N) = 1
then Let j:=i. GOTO STEP 3
If Si ≡ 1 (mod N) and gcd(Si−1 − 1, N) �= 1
then RETURN: “N is COMPOSITE” . STOP.
End
RETURN: “N is COMPOSITE”. STOP.

STEP 3: If 2j ≤ logp K + n
then RETURN: “N is a p-strong-probable prime to base a”. STOP.
If 2j > logp K + n RETURN: “N is PRIME”. STOP.

Now, we analyze the complexity of the algorithm above.

Proposition 5.1. For N = Kpn + 1 with fixed K and p, the complexity of the
algorithm above is Õ(log2 N).

Proof. Only steps 1 and 2 cause complexity, since step 3 is obviously irrelevant.
Complexity of step 1 is that of the modular exponentiation aK (mod N). Taking

into account that products modulo N can be performed by the Schoenhage-Strassen
algorithm [16] with complexity O(log(N) log(log(N)) log(log(log(N)))), this is the
complexity of step 1. In step 2, n modular exponentiations with the same com-
plexity as in step 1 are carried out. Thus, since n = logp(

N−1
K ), the complexity

of this step is O(log2(N) log(log(N)) log(log(log(N)))). Summarizing, the whole

complexity is Õ(log2(N). �

For generalized Proth numbers, K < pn, let SJ := aKpJ

where

J :=

⌊
logp K + n

2

⌋
.

It is easy to see that if SJ �≡ 1 (mod N), then the algorithm always certifies the
primality or compositeness of Kpn + 1.

Steps 1 and 2 in the algorithm perform the computation of the power aN−1

(mod N) in a controlled way in the sense that if for some 0 ≤ i < n, we have

aKpi ≡ 1 (modN) the computation stops. Thus, we can say that the computational
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cost of the algorithm is that of one modular exponentiation of the kind aN−1 carried
out by n modular exponentiations of order p taking into account that, recursively:

akp
n

= ((ak)p
n−1

)p.

For values of p with “many” 1’s or “many” 0’s in its binary expansion (like
Mersenne or Fermat primes), the presented algorithm can use this fact to perform
the p-th power in a faster way that with the standard repeat squaring technique;
achieving an execution in half the time than the standard modular exponentiation.
In fact, consider for instance the search for primes of the form K · 127n + 1; our
algorithm requires us to perform n modular exponentiations of the kind b127. For
each of them, performed by the standard repeated squaring algorithm 12 modular
products are required, but considering that b127 = b128/b only 7 products and a
division would be required; a 33% save. More generally, for p = 2s − 1 (a Mersenne
prime) only s products and a division will be required, while the standard method
requires 2(s − 1) products. Thus, asymptotically, one gets a 50% save. Moreover,
even though p is not a Mersenne or Fermat prime, if there are many 1’s or 0’s in
the binary expansion of p, ad hoc strategies can be developed in order to optimize
the computation.

We will now see that, for moderately big values of n, the probability that the
algorithm does not certify the primality of a prime N = Kpn +1 without choosing
more than one base is extremely small and that it decreases with p. This is not the
case for the test based in Pocklington’s theorem since the use of several bases to
certify the primality of N is quite frequent. For this purpose we need the following
well-known lemma.

Lemma 5.2. let N = Kpn + 1 be a prime number, the number of ps-th powers
modulo N (different from 0 and 1) is:

N − 1

ps
− 1 = Kpn−s − 1.

Using this result, we can prove the following proposition.

Proposition 5.3. Given a prime number N = Kpn + 1 (K < pn) and a random
base 0 < a < n, the probability that the algorithm returns “p-strong probable prime”
is:

Kp

⌊
logp(K)+n

2

⌋
− 1

Kpn − 1
.

Proof. The algorithm returns “N is p-strong probable prime” when J :=
⌊
logp(K)+n

2

⌋
satisfies that aKpJ ≡ 1 (mod N). This will happen if a is a residual power of order
pn−J modulo N . But, by the previous lemma, the probability that this happens is:

KpJ − 1

N − 2
=

Kp

⌊
logp(K)+n

2

⌋
− 1

Kpn − 1
. �

Remark 5.4. Note that if N = Kpn + 1 is prime and K is “much smaller” than
pn, then a random choice of a will most likely determine the primality of N . In
particular, this is the case when K is fixed and n increases (which is usually the
case when one searches for primes of this form) and the proposition above implies
that for big values of n the probability that a prime of the form N = Kpn + 1 is
certified as a p-strong probable prime is about p−n/2.
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Nevertheless, if pn−1 ≤ K < pn and N is prime, then the test will give a “p-
strong probable prime” with probability approximately equal to 1/p, which is not
very good.

Taking into account that our algorithm requires a number of computations sim-
ilar to that of Fermat’s test, it could be preferable to any algorithm based on
Pocklington’s test or on its variations. On the other hand, the proposed algorithm
certifies primality using, is some cases, less bases than OpenPFGW. For example,
for N = 2 · 31175232 + 1, the algorithm requires two bases with probability about
8.25× 10−280365 and OpenPFGW uses the bases 2, 3 and 5 to certify its primality.
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Departamento de Matemáticas, Universidad de Oviedo, Avda. Calvo Sotelo, s/n,

33007 Oviedo, Spain

E-mail address: grau@uniovi.es

Centro Universitario de la Defensa de Zaragoza, Ctra. de Huesca, s/n, 50090

Zaragoza, Spain

E-mail address: oller@unizar.es
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