Counting invertible sums of squares modulo n and a new generalization of Euler's totient function

Catalina Calderón, José María Grau, Antonio M. Oller-Marcén, and László Tóth

June 24, 2014

Abstract

In this paper we introduce and study a family Φ_{k} of arithmetic functions generalizing Euler's totient function. These functions are given by the number of solutions to the equation $\operatorname{gcd}\left(x_{1}^{2}+\ldots+x_{k}^{2}, n\right)=1$ with $x_{1}, \ldots, x_{k} \in \mathbb{Z} / n \mathbb{Z}$ which, for $k=2,4$ and 8 coincide, respectively, with the number of units in the rings of Gaussian integers, quaternions and octonions over $\mathbb{Z} / n \mathbb{Z}$. We prove that Φ_{k} is multiplicative for every k, we obtain an explicit formula for $\Phi_{k}(n)$ in terms of the prime-power decomposition of n and derive an asymptotic formula for $\sum_{n \leq x} \Phi_{k}(n)$. As a tool we investigate the multiplicative arithmetic function that counts the number of solutions to $x_{1}^{2}+\ldots+x_{k}^{2} \equiv \lambda(\bmod n)$ for λ coprime to n, thus extending an old result that dealt only with the prime n case.

2010 Mathematics Subject Classification: 11A25, 11N37
Key Words and Phrases: quadratic congruence, multiplicative function, Euler's totient function, asymptotic formula

1 Introduction

Euler's totient function φ is one of the most famous arithmetic functions used in number theory. Recall that $\varphi(n)$ is defined as the number of positive integers less than or equal to n that are coprime to n. Many generalizations and analogs of Euler's function are known. See, for instance $[5,6,8,9,13,16]$ or the special chapter on this topic in [15]. Among the generalizations, the most significant is probably the Jordan's totient function \mathbf{J}_{k} given by $\mathbf{J}_{k}(n)=n^{k} \prod_{p \mid n}(1-$ $\left.p^{-k}\right)(n \in \mathbb{N}:=\{1,2, \ldots\})$. See [1], [3, pp. 147-155], [18].

In this paper we introduce and study a new generalization of φ. In particular, given $k \in \mathbb{N}$ we define

$$
\begin{equation*}
\Phi_{k}(n):=\operatorname{card}\left\{\left(x_{1}, \ldots, x_{k}\right) \in(\mathbb{Z} / n \mathbb{Z})^{k}: \operatorname{gcd}\left(x_{1}^{2}+\ldots+x_{k}^{2}, n\right)=1\right\} \tag{1}
\end{equation*}
$$

Clearly, $\Phi_{1}(n)=\varphi(n)$ and it is the order of the group of units of the ring $\mathbb{Z} / n \mathbb{Z}$. On the other hand, $\Phi_{2}(n)$ is the restriction to the set of positive integers of the Euler function defined on the Gaussian integers $\mathbb{Z}[i]$. Thus $\Phi_{2}(n)$, denoted also by GIphi (n) in the literature, computes the number of Gaussian integers in a reduced residue system modulo n. See [2]. In the same way, $\Phi_{4}(n)$ and $\Phi_{8}(n)$ compute, respectively, the number of invertible quaternions and octonions over $\mathbb{Z} / n \mathbb{Z}$.

In order to study the function Φ_{k} we need to focus on the functions

$$
\begin{equation*}
\rho_{k, \lambda}(n):=\operatorname{card}\left\{\left(x_{1}, \ldots, x_{k}\right) \in(\mathbb{Z} / n \mathbb{Z})^{k}: x_{1}^{2}+\ldots+x_{k}^{2} \equiv \lambda \quad(\bmod n)\right\} \tag{2}
\end{equation*}
$$

which count the number of points on hyperspheres in $(\mathbb{Z} / n \mathbb{Z})^{k}$ and, in particular, in the case $\operatorname{gcd}(\lambda, n)=1$. These functions were already studied in the case when n is an odd prime by V. H. Lebesgue in 1837. In particular he proved the following result ([4, Chapter X]).

Proposition 1. Let p be an odd prime and let k, λ be positive integers with $p \nmid \lambda$. Put $t=$ $(-1)^{(p-1)(k-1) / 4} p^{(k-1) / 2}$ and $\ell=(-1)^{k(p-1) / 4} p^{(k-2) / 2}$. Then

$$
\rho_{k, \lambda}(p)= \begin{cases}p^{k-1}+t, & \text { if } k \text { is odd and } \lambda \text { is a quadratic residue modulo } p ; \\ p^{k-1}-t, & \text { if } k \text { is odd and } \lambda \text { is a not quadratic residue modulo } p ; \\ p^{k-1}-\ell, & \text { if } k \text { is even. }\end{cases}
$$

The paper is organized as follows. First of all, in Section 2 we study the values of $\rho_{k, \lambda}(n)$ in the case $\operatorname{gcd}(\lambda, n)=1$, thus generalizing Lebesgue's work. In Section 3 we study the functions Φ_{k}, in particular we prove that they are multiplicative and we give a closed formula for $\Phi_{k}(n)$ in terms of the prime-power decomposition of n. Section 4 is devoted to deduce an asymptotic formula for $\sum_{n \leq x} \Phi_{k}(n)$. Finally, we close our work suggesting some ideas that leave the door open for future work.

2 Counting points on hyperspheres $(\bmod n)$

Due to the Chinese Remainder Theorem, the function $\rho_{k, \lambda}$, defined by (2) is multiplicative; i.e., if $n=p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}$, then $\rho_{k, \lambda}(n)=\rho_{k, \lambda}\left(p_{1}^{r_{1}}\right) \cdots \rho_{k, \lambda}\left(p_{m}^{r_{m}}\right)$. Hence, we can restrict ourselves to the case when $n=p^{s}$ is a prime-power. Moreover, since in this paper we focus on the case $\operatorname{gcd}(\lambda, n)=1$, we will always assume that $p \nmid \lambda$. The following result will allow us to extend Lebesgue's work to the odd prime-power case.

Lemma 1. Let p be an odd prime and let $s \in \mathbb{N}$. If $p \nmid \lambda$, then

$$
\rho_{k, \lambda}\left(p^{s}\right)=p^{(s-1)(k-1)} \rho_{k, \lambda}(p) .
$$

Proof. It is easily seen that any solution to the congruence $x_{1}^{2}+\ldots+x_{k}^{2} \equiv \lambda\left(\bmod p^{s+1}\right)$ must be of the form $\left(a_{1}+t_{1} p^{s}, \ldots, a_{k}+t_{k} p^{s}\right)$, where $0 \leq t_{1}, \ldots, t_{k} \leq p-1$, for some $\left(a_{1}, \ldots, a_{k}\right)$ such that $a_{1}^{2}+\ldots+a_{k}^{2} \equiv \lambda\left(\bmod p^{s}\right)$. Now, $\left(a_{1}+t_{1} p^{s}\right)^{2}+\ldots+\left(a_{k}+t_{k} p^{s}\right)^{2} \equiv \lambda\left(\bmod p^{s+1}\right)$ if and only if $2 a_{1} t_{1}+\ldots+2 a_{k} t_{k} \equiv-K(\bmod p)$, where K is such that $a_{1}^{2}+\ldots+a_{k}^{2}=K p^{s}+\lambda$. Since $a_{i} \not \equiv 0(\bmod p)$ for some $i \in\{1, \ldots, k\}$, it follows that there are exactly p^{k-1} possibilities for $\left(t_{1}, \ldots, t_{k}\right)$. We obtain that $\rho_{k, \lambda}\left(p^{s+1}\right)=p^{k-1} \rho_{k, \lambda}\left(p^{s}\right)$, and the result follows inductively.

If $p=2$ we have a similar result.
Lemma 2. Let $s \geq 3$ and let $\lambda \in \mathbb{N}$ be odd. Then,

$$
\rho_{k, \lambda}\left(2^{s}\right)=2^{(s-3)(k-1)} \rho_{k, \lambda}(8) .
$$

Proof. In the case $p=2$ the proof of Lemma 1 does not work since $2 a_{1} t_{1}+\ldots+2 a_{k} t_{k} \equiv-K$ $(\bmod 2)$ holds only if K is even. Therefore, we use that every solution of the congruence $x_{1}^{2}+\ldots+x_{k}^{2} \equiv \lambda\left(\bmod 2^{s+1}\right)$ is of the form $\left(a_{1}+t_{1} 2^{s-1}, \ldots, a_{k}+t_{k} 2^{s-1}\right)$, where $0 \leq t_{1}, \ldots, t_{k} \leq 3$, for some $\left(a_{1}, \ldots, a_{k}\right)$ satisfying $a_{1}^{2}+\ldots+a_{k}^{2} \equiv \lambda\left(\bmod 2^{s-1}\right)$, that is $a_{1}^{2}+\ldots+a_{k}^{2}=L 2^{s-1}+\lambda$ with an integer L. Now, taking into account that $s \geq 3,\left(a_{1}+t_{1} 2^{s-1}\right)^{2}+\ldots+\left(a_{k}+t_{k} 2^{s-1}\right)^{2} \equiv \lambda$ $\left(\bmod 2^{s+1}\right)$ if and only if

$$
\begin{equation*}
2\left(a_{1} t_{1}+\ldots+a_{k} t_{k}\right) \equiv-L \quad(\bmod 4) \tag{3}
\end{equation*}
$$

Here the condition (3) holds true if and only if L is even, i.e., $a_{1}^{2}+\ldots+a_{k}^{2} \equiv \lambda\left(\bmod 2^{s}\right)$. Hence we need the solutions $\left(a_{1}, \ldots, a_{k}\right)$ of the congruence $\left(\bmod 2^{s}\right)$, but only those satisfying

$$
\begin{equation*}
0 \leq a_{1}, \ldots, a_{k}<2^{s-1} \tag{4}
\end{equation*}
$$

It is easy to see that their number is $\rho_{k, \lambda}\left(2^{s}\right) / 2^{k}$, since all solutions of the congruence (mod $\left.2^{s}\right)$ are $\left(a_{1}+u_{1} 2^{s-1}, \ldots, a_{k}+u_{k} 2^{s-1}\right)$ with $\left(a_{1}, \ldots, a_{k}\right)$ verifying (4) and $0 \leq u_{1}, \ldots, u_{k} \leq 1$. Since a_{i} must be odd for some $i \in\{1, \ldots, k\}$, for a fixed even L, (3) has $2 \cdot 4^{k-1}$ solutions $\left(t_{1}, \ldots, t_{k}\right)$. We deduce that $\rho_{k, \lambda}\left(2^{s+1}\right)=2 \cdot 4^{k-1} \rho_{k, \lambda}\left(2^{s}\right) / 2^{k}=2^{k-1} \rho_{k, \lambda}\left(2^{s}\right)$. Now the result follows inductively on s.

As we have just seen, unlike when p is an odd prime, the recurrence is now based on $\rho_{k, \lambda}\left(2^{3}\right)$. Hence, the cases $s=1,2,3$; i.e., $n=2,4,8$, must be studied separately. In order to do so, the following general result will be useful.

Lemma 3. Let k, λ and n be positive integers. Then

$$
\rho_{k, \lambda}(n)=\sum_{\ell=0}^{n-1} \rho_{1, \ell}(n) \rho_{k-1, \lambda-\ell}(n)
$$

Proof. Let $\left(x_{1}, \ldots, x_{k}\right) \in(\mathbb{Z} / n \mathbb{Z})^{k}$ be such that $x_{1}^{2}+\cdots+x_{k}^{2} \equiv \lambda(\bmod n)$. Then, for some $\ell \in\{0, \ldots, n-1\}$ we have that $x_{1}^{2} \equiv \ell(\bmod n)$ and $x_{2}^{2}+\ldots+x_{k}^{2} \equiv \lambda-\ell(\bmod n)$ and hence the result.

Now, given $k, n \in \mathbb{N}$ let us define the matrix $M(n)=\left(\rho_{1, i-j}(n)\right)_{0 \leq i, j \leq n-1}$. If we consider the column vector $R_{k}(n)=\left(\rho_{k, i}(n)\right)_{0 \leq i \leq n-1}$, then Lemma 3 leads to the following recurrence relation:

$$
R_{k}(n)=M(n) \cdot R_{k-1}(n)
$$

In the following proposition we use this recurrence relation to compute $\rho_{k, \lambda}\left(2^{s}\right)$ for $s=1,2,3$ and odd λ.

Lemma 4. Let k be a positive integer. Then
i) $\rho_{k, 1}(2)=2^{k-1}$,
ii) $\rho_{k, 1}(4)=4^{k-1}+2^{\frac{3 k}{2}-1} \sin \left(\frac{\pi k}{4}\right)$,
iii) $\rho_{k, 3}(4)=4^{k-1}-2^{\frac{3 k}{2}-1} \sin \left(\frac{\pi k}{4}\right)$,

> iv) $\rho_{k, 1}(8)=2^{2 k-3}\left(2^{k}+2^{\frac{k}{2}+1} \sin \left(\frac{\pi k}{4}\right)+2 \sin \left(\frac{1}{4} \pi(k+1)\right)-2 \cos \left(\frac{1}{4} \pi(3 k+1)\right)\right)$,
> v) $\rho_{k, 3}(8)=2^{2 k-3}\left(2^{k}-2^{\frac{k}{2}+1} \sin \left(\frac{\pi k}{4}\right)-2\left(\cos \left(\frac{1}{4} \pi(k+1)\right)+\cos \left(\frac{3}{4} \pi(k+1)\right)\right)\right)$,
> vi) $\rho_{k, 5}(8)=2^{2 k-3}\left(2^{k}+2^{\frac{k}{2}+1} \sin \left(\frac{\pi k}{4}\right)-2 \sin \left(\frac{1}{4} \pi(k+1)\right)+2 \cos \left(\frac{1}{4} \pi(3 k+1)\right)\right)$,
> vii) $\rho_{k, 7}(8)=2^{2 k-3}\left(2^{k}-2^{\frac{k}{2}+1} \sin \left(\frac{\pi k}{4}\right)-2 \sin \left(\frac{1}{4}(3 \pi k+\pi)\right)+2 \cos \left(\frac{1}{4} \pi(k+1)\right)\right)$.

Proof. First of all, observe that

$$
M(2)=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), M(4)=\left(\begin{array}{llll}
2 & 0 & 0 & 2 \\
2 & 2 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 2 & 2
\end{array}\right), M(8)=\left(\begin{array}{llllllll}
2 & 0 & 0 & 0 & 2 & 0 & 0 & 4 \\
4 & 2 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 4 & 2 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 4 & 2 & 0 & 0 & 0 & 2 \\
2 & 0 & 0 & 4 & 2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 4 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 4 & 2 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 4 & 2
\end{array}\right) .
$$

Let us compute ii). We know that $R_{k}(4)=M(4) \cdot R_{k-1}(4)$. Hence, since the eigenvalues of $M(4)$ are $\{4,2+2 i, 2-2 i, 0\}$, we know that

$$
\rho_{k, 1}(4)=C_{1} 4^{k}+C_{2}(2+2 i)^{k}+C_{3}(2-2 i)^{k} .
$$

In order to compute C_{1}, C_{2} and C_{3} it is enough to observe that $\rho_{1,1}(4)=2, \rho_{2,1}(4)=8$ and $\rho_{3,1}(4)=24$. Hence

$$
\begin{aligned}
& 4 C_{1}+(2+2 i) C_{2}+(2-2 i) C_{3}=2 \\
& 16 C_{1}+8 i C_{2}-8 i C_{3}=8 \\
& 64 C_{1}-(16-16 i) C_{2}-(16+16 i) C_{3}=24
\end{aligned}
$$

We deduce

$$
\rho_{k, 1}(4)=\frac{1}{4}\left(4^{k}-i(2+2 i)^{k}+i(2-2 i)^{k}\right)=2^{2 k-2}+2^{\frac{3 k}{2}-1} \sin \left(\frac{\pi k}{4}\right)
$$

as claimed.
To compute the other cases note that the eigenvalues of $M(2)$ are $\{0,2\}$ while the eigenvalues of $M(8)$ are

$$
\{8,4+4 i, 4-4 i, \sqrt{2}(-2-2 i), \sqrt{2}(2+2 i), \sqrt{2}(-2+2 i), \sqrt{2}(2-2 i), 0\} .
$$

Thus, in each case we only need to compute the corresponding initial conditions and constants. The final results have been obtained with the help of Mathematica "ComplexExpand" command.

Note that a different approach to compute the values $\rho_{k, \lambda}(n)$, using the Gauss quadratic sum was given in [20].

3 Counting invertible sums of squares $(\bmod n)$

Given positive integers k, n, this section is devoted to computing $\Phi_{k}(n)$, defined by (1). Let $A(k, \lambda, n)$ denote the set of solutions $\left(x_{1}, \ldots, x_{k}\right) \in(\mathbb{Z} / n \mathbb{Z})^{k}$ of the congruence $x_{1}^{2}+\ldots+x_{k}^{2} \equiv \lambda$ $(\bmod n)$. First of all, let us define the set

$$
\mathcal{A}_{k}(n):=\bigcup_{\substack{1 \leq \lambda \leq n \\ \operatorname{gcd}(\lambda, n)=1}} A(k, \lambda, n) .
$$

Hence, $\Phi_{k}(n)=\operatorname{card} \mathcal{A}_{k}(n)$ and, since the union is clearly disjoint, it follows that

$$
\Phi_{k}(n)=\sum_{\substack{1 \leq \lambda \leq n \\ \operatorname{gcd}(\lambda, n)=1}} \rho_{k, \lambda}(n) .
$$

The following result shows the multiplicativity of Φ_{k} for every positive k.
Proposition 2. Let k be a positive integer. Then Φ_{k} is multiplicative; i.e., $\Phi_{k}(m n)=\Phi_{k}(m) \Phi_{k}(n)$ for every $m, n \in \mathbb{N}$ such that $\operatorname{gcd}(m, n)=1$.

Proof. Let us define a map $F: \mathcal{A}_{k}(m) \times \mathcal{A}_{k}(n) \longrightarrow \mathcal{A}_{k}(m n)$ by

$$
F\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{k}\right)\right)=\left(n a_{1}+m b_{1}, \ldots, n a_{k}+m b_{k}\right) .
$$

Note that if $\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{A}_{k}(m)$, then $a_{1}^{2}+\ldots+a_{k}^{2} \equiv \lambda_{1}(\bmod m)$ for some λ_{1} with $\operatorname{gcd}\left(\lambda_{1}, m\right)=1$. In the same way, if $\left(b_{1}, \ldots, b_{k}\right) \in \mathcal{A}_{k}(n)$, then $b_{1}^{2}+\ldots+b_{k}^{2} \equiv \lambda_{2}(\bmod n)$ for some λ_{2} with $\operatorname{gcd}\left(\lambda_{2}, n\right)=1$. Consequently,

$$
\begin{aligned}
\left(n a_{1}+m b_{1}\right)^{2}+\ldots+\left(n a_{k}+m b_{k}\right)^{2} & =n^{2}\left(a_{1}^{2}+\ldots+a_{k}^{2}\right)+m^{2}\left(b_{1}^{2}+\ldots+b_{k}^{2}\right) \\
& +2 m n\left(b_{1} a_{1}+\ldots+b_{k} a_{k}\right) \equiv \\
& \equiv n^{2} \lambda_{1}+m^{2} \lambda_{2} \quad(\bmod m n) .
\end{aligned}
$$

Since it is clear that $\operatorname{gcd}\left(n^{2} \lambda_{1}+m^{2} \lambda_{2}, m n\right)=1$, it follows that $\left(n a_{1}+m b_{1}, \ldots, n a_{k}+m b_{k}\right) \in$ $\mathcal{A}_{k}(m n)$ and thus F is well-defined.

Now, let $\left(c_{1}, \ldots, c_{k}\right) \in \mathcal{A}_{k}(m n)$. Then $c_{1}^{2}+\ldots+c_{k}^{2} \equiv \lambda(\bmod m n)$ for some λ such that $\operatorname{gcd}(\lambda, m n)=1$. Let us define $a_{i} \equiv c_{i}(\bmod m)$ and $b_{i} \equiv c_{i}(\bmod n)$ for every $i=1, \ldots, k$. It follows that $\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{A}_{k}(m),\left(b_{1}, \ldots, b_{k}\right) \in \mathcal{A}_{k}(n)$ and, moreover, $F\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{k}\right)\right)=$ $\left(c_{1}, \ldots, c_{k}\right)$. Hence, F is surjective.

Finally, assume that

$$
\left(n a_{1}+m b_{1}, \ldots, n a_{k}+m b_{k}\right) \equiv\left(n \alpha_{1}+m \beta_{1}, \ldots, n \alpha_{k}+m \beta_{k}\right) \quad(\bmod m n)
$$

for some $\left(a_{1}, \ldots, a_{k}\right),\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathcal{A}_{k}(m)$ and for some $\left(b_{1}, \ldots, b_{k}\right),\left(\beta_{1}, \ldots, \beta_{k}\right) \in \mathcal{A}_{k}(n)$. Then, for every $i=1, \ldots, k$ we have that $n a_{i}+m b_{i} \equiv n \alpha_{i}+m \beta_{i}(\bmod m n)$. From this, it follows that $a_{i} \equiv \alpha_{i}(\bmod m)$ and that $b_{i} \equiv \beta_{i}(\bmod n)$ for every i and hence F is injective.

Thus, we have proved that F is bijective and the result follows.

Since we know that Φ_{k} is multiplicative, we just need to compute its values over primepowers. We do so in the following result.

Proposition 3. Let k, r be positive integers. Then
i) $\Phi_{k}\left(2^{r}\right)=\varphi\left(2^{k r}\right)=2^{k r-1}$.
ii) If p is an odd prime,

$$
\Phi_{k}\left(p^{r}\right)=\varphi\left(p^{k r}\right)-(-1)^{k(p-1) / 4} \varphi\left(p^{k r-k / 2}\right)=p^{k r-\frac{k}{2}-1}(p-1)\left(p^{k / 2}-(-1)^{k(p-1) / 4}\right)
$$

Proof.
i) If $r=1,2,3$ the result readily follows from Lemma 4 by a simple computation. Now, if $r>3$ we can apply Lemma 2 to obtain that

$$
\begin{aligned}
\Phi_{k}\left(2^{r}\right) & =\sum_{\substack{1 \leq i \leq 2^{r} \\
2 \nmid i}} \rho_{k, i}\left(2^{r}\right)=2^{(r-3)(k-1)} \sum_{\substack{1 \leq i \leq 2^{r} \\
2 \nmid i}} \rho_{k, i}(8) \\
& =2^{(r-3)(k-1)} \sum_{j=0}^{2^{r-3}-1} \sum_{8 j+1 \leq i \leq 8(j+1)-1}^{2 \nmid i} \\
& \rho_{k, i}(8)= \\
& =2^{(r-3)(k-1)} 2^{r-3} \sum_{1 \leq i \leq 7} \rho_{k, i}(8)= \\
& =2^{(r-3)(k-1)} 2^{r-3} 2^{3 k-1}=2^{r k-1}=\varphi\left(2^{k r}\right) .
\end{aligned}
$$

ii) Due to Lemma 1 it can be seen, as is the previous case, that

$$
\Phi_{k}\left(p^{r}\right)=p^{k(r-1)} \sum_{i=1}^{p-1} \rho_{k, i}(p) .
$$

Thus, it is enough to apply Proposition 1.

Finally, we summarize the previous work in the following result.
Theorem 1. Let k be a positive integer. Then the function Φ_{k} is multiplicative and for every $n \in \mathbb{N}$,

$$
\Phi_{k}(n)= \begin{cases}n^{k-1} \varphi(n), & \text { if } k \text { is odd } \\ n^{k-1} \varphi(n) \prod_{\substack{p \mid n \\ p>2}}\left(1-\frac{(-1)^{k(p-1) / 4}}{p^{k / 2}}\right), & \text { if } k \text { is even } .\end{cases}
$$

Written more explicitly, we deduce that

$$
\Phi_{k}(n)= \begin{cases}n^{k-1} \varphi(n), & \text { if } k \text { is odd; } \\ n^{k-1} \varphi(n) \prod_{\substack{p \mid n \\ p>2}}\left(1-\frac{1}{p^{k / 2}}\right), & \text { if } k \equiv 0 \quad(\bmod 4) ; \\ n^{k-1} \varphi(n) \prod_{\substack{p \mid n \\ p \equiv 1(\bmod 4)}}\left(1-\frac{1}{p^{k / 2}}\right) \prod_{\substack{p \mid n \\ p \equiv-1(\bmod 4)}}\left(1+\frac{1}{p^{k / 2}}\right), & \text { if } k \equiv 2(\bmod 4)\end{cases}
$$

When k is a multiple of $4, \Phi_{k}$ is closely related to $\mathbf{J}_{k / 2}$. The following result, which follows from Theorem 1 and the definition of Jordan's totient function \mathbf{J}_{k} makes this relation explicit.

Corollary 1. Let $k \in \mathbb{N}$ be a multiple of 4 and let $n \in \mathbb{N}$. Then,

$$
\Phi_{k}(n)=n^{k / 2-1} \mathbf{J}_{k / 2}(n) \varphi(n) \frac{2^{k / 2}}{2^{k / 2}-1+n(\bmod 2)} .
$$

Moreover, if $k / 4$ is odd, then we have

$$
\frac{\Phi_{k}(n)}{\Phi_{k / 4}(n)}=n^{k / 4} \mathbf{J}_{k / 2}(n) \frac{2^{k / 2}}{2^{k / 2}-1+n(\bmod 2)}
$$

Recall that in the case $k=4, \Phi_{4}(n)$ is the number of units in the ring $\mathbb{H}(\mathbb{Z} / n \mathbb{Z})$. If, in addition, n is odd then $\Phi_{4}(n)=n \mathbf{J}_{2}(n) \varphi(n)$ which is the well-known formula for the number of regular matrices in the ring $\mathrm{M}_{2}(\mathbb{Z} / n \mathbb{Z})$. Of course, this is not a surprise since it is known that for an odd n the rings $\mathbb{H}(\mathbb{Z} / n \mathbb{Z})$ and $\mathrm{M}_{2}(\mathbb{Z} / n \mathbb{Z})$ are isomorphic ([7]).

Some elementary properties of Φ_{k}, well known for Euler's function (the case $k=1$) follow at once by Theorem 1. For example, we have

Corollary 2. Let $k \in \mathbb{N}$ be fixed.
i) If $m, n \in \mathbb{N}$ such that $n \mid m$, then $\Phi_{k}(n) \mid \Phi_{k}(m)$.
ii) Let $m, n \in \mathbb{N}$ and let $d=\operatorname{gcd}(m, n)$. Then $\Phi_{k}(m n) \Phi_{k}(d)=d^{k} \Phi_{k}(m) \Phi_{k}(m)$.
iii) If $n, m \in \mathbb{N}$, then $\Phi_{k}\left(n^{m}\right)=n^{k m-k} \Phi_{k}(n)$.

4 The average order of $\Phi_{k}(n)$

The average order of $\varphi(n)$ is well-known. Namely,

$$
\frac{1}{x} \sum_{n \leq x} \varphi(n) \sim \frac{3}{\pi^{2}} x \quad(x \rightarrow \infty)
$$

see, for example, [10, Th. 330]. In fact, the best known asymptotic formula is due to Walfisz [22]:

$$
\begin{equation*}
\sum_{n \leq x} \varphi(n)=\frac{3}{\pi^{2}} x^{2}+O\left(x(\log x)^{2 / 3}(\log \log x)^{4 / 3}\right) \tag{5}
\end{equation*}
$$

We now generalize this result.

Theorem 2. Let $k \in \mathbb{N}$ be any fixed integer. Then

$$
\sum_{n \leq x} \Phi_{k}(n)=\frac{C_{k}}{k+1} x^{k+1}+O\left(x^{k} R_{k}(x)\right)
$$

where

$$
\begin{gathered}
C_{k}=\frac{6}{\pi^{2}}, \quad R_{k}=(\log x)^{2 / 3}(\log \log x)^{4 / 3}, \quad \text { if } k \text { is odd; } \\
C_{k}=\frac{3}{4} \prod_{p>2}\left(1-\frac{1}{p^{2}}-\frac{(-1)^{k(p-1) / 4}(p-1)}{p^{k / 2+2}}\right), \quad R_{k}(x)=\log x, \quad \text { if } k \text { is even. }
\end{gathered}
$$

Proof. If k is odd, then this result follows easily by partial summation from the fact that $\Phi_{k}(n)=$ $n^{k-1} \varphi(n)$ using Walfisz' formula (5).

Assume now that $k \in \mathbb{N}$ is even. Since the function ϕ_{k} is multiplicative, we deduce by the Euler product formula that

$$
\sum_{n=1}^{\infty} \frac{\Phi_{k}(n)}{n^{s}}=\zeta(s-k) G_{k}(s)
$$

where

$$
G_{k}(s)=\left(1-\frac{1}{2^{s-k+1}}\right) \prod_{p>2}\left(1-\frac{1}{p^{s-k+1}}-\frac{(-1)^{k(p-1) / 4}(p-1)}{p^{s-k / 2+1}}\right)
$$

is absolutely convergent for $\Re s>k$. This shows that $\Phi_{k}=\operatorname{id}_{k} * g_{k}$ in terms of the Dirichlet convolution, where $\operatorname{id}_{k}(n)=n^{k}(n \in \mathbb{N})$ and the multiplicative function g_{k} is defined by

$$
g_{k}\left(p^{r}\right)= \begin{cases}-2^{k-1}, & \text { if } p=2, r=1 ; \\ -p^{k-1}-(-1)^{k(p-1) / 4} p^{k / 2-1}(p-1), & \text { if } p>2, r=1 ; \\ 0, & \text { otherwise }\end{cases}
$$

We obtain

$$
\begin{gather*}
\sum_{n \leq x} \Phi_{k}(n)=\sum_{d e \leq x} g_{k}(d) e^{k}=\sum_{d \leq x} g_{k}(d) \sum_{e \leq x} e^{k}=\sum_{d \leq x} g_{k}(d)\left(\frac{(x / d)^{k+1}}{k+1}+O\left((x / d)^{k}\right)\right) \\
=\frac{x^{k+1}}{k+1} G_{k}(k+1)+O\left(x^{k+1} \sum_{d>x} \frac{\left|g_{k}(d)\right|}{d^{k+1}}\right)+O\left(x^{k} \sum_{d \leq x} \frac{\left|g_{k}(d)\right|}{d^{k}}\right) . \tag{6}
\end{gather*}
$$

Here for every $k \geq 4$ we have

$$
\begin{gathered}
\sum_{d \leq x} \frac{\left|g_{k}(d)\right|}{d^{k}} \leq \prod_{p \leq x} \sum_{r=0}^{\infty} \frac{\left|g_{k}\left(p^{r}\right)\right|}{p^{k r}}=\prod_{p \leq x}\left(1+\frac{\left|g_{k}(p)\right|}{p^{k}}\right) \ll \prod_{p \leq x}\left(1+\frac{p^{k-1}+p^{k / 2-1}+p^{k / 2}}{p^{k}}\right) \\
<\prod_{p \leq x} \sum_{r=0}^{\infty} \frac{1}{p^{r}}=\prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1} \ll \log x
\end{gathered}
$$

by Mertens's theorem. In the case $k=2$ this gives

$$
\begin{aligned}
& \sum_{d \leq x} \frac{\left|g_{2}(d)\right|}{d^{2}} \ll \prod_{\substack{p \leq x \\
p \equiv 1(\bmod 4)}}\left(1+\frac{2}{p}-\frac{1}{p^{2}}\right) \prod_{\substack{p \leq x \\
p \equiv-1(\bmod 4)}}\left(1+\frac{1}{p^{2}}\right) \\
& \ll \prod_{\substack{p \leq x \\
p \equiv 1(\bmod 4)}}\left(1+\frac{1}{p}\right)^{2} \ll \log x,
\end{aligned}
$$

using that

$$
\prod_{\substack{p \leq x \\ p \equiv 1(\bmod 4)}}\left(1-\frac{1}{p}\right) \sim c(\log x)^{-1 / 2}
$$

with a certain constant c, cf. [21]. Hence the last last error term of (6) is $O\left(x^{k} \log x\right)$ for every $k \geq 2$ even.

Furthermore, note that for every $k \geq 2,\left|g_{k}(n)\right| \leq n^{k / 2} \sigma_{k / 2-1}(n)(n \in \mathbb{N})$, where $\sigma_{t}(n)=$ $\sum_{d \mid n} d^{t}$. Using that $\sigma_{t}(n)<\zeta(t) n^{t}$ for $t>1$ we conclude that $\left|h_{k}(n)\right| \ll n^{k-1}$ for $k \geq 4$. Therefore,

$$
\sum_{d>x} \frac{\left|g_{k}(d)\right|}{d^{k+1}} \ll \sum_{d>x} \frac{1}{d^{2}} \ll \frac{1}{x}
$$

In the case $k=2$, using that $\sigma_{1}(n) \ll n \log n$ (this suffices) we have $h_{2}(n) \ll n^{3} \log n$ and

$$
\sum_{d>x} \frac{\left|g_{2}(d)\right|}{d^{3}} \ll \sum_{d>x} \frac{\log d}{d^{2}} \ll \frac{\log x}{x}
$$

Hence the first error term of (6) is $O\left(x^{k}\right)$ for $k \geq 4$ and it is $O\left(x^{2} \log x\right)$ for $k=2$. This completes the proof.

Corollary 3. $(k=2,4)$

$$
\begin{aligned}
\sum_{n \leq x} \Phi_{2}(n)= & \frac{x^{3}}{4} \prod_{p \equiv 1(\bmod 4)}\left(1-\frac{2}{p^{2}}+\frac{1}{p^{3}}\right) \prod_{p \equiv-1(\bmod 4)}\left(1-\frac{1}{p^{3}}\right)+O\left(x^{2} \log x\right) \\
& \sum_{n \leq x} \Phi_{4}(n)=\frac{3 x^{5}}{20} \prod_{p>2}\left(1-\frac{1}{p^{2}}-\frac{1}{p^{3}}+\frac{1}{p^{4}}\right)+O\left(x^{4}\right)
\end{aligned}
$$

5 Conclusions and further work

The generalization of φ that we have presented in this paper is possibly one of the closest to the original idea which consists of counting units in a ring. In addition, both the elementary and asymptotic properties of Φ_{k} extend those of φ in a very natural way. There are many other
results regarding φ that have not been considered here but that, nevertheless, may have their extension to Φ_{k}. For instance, in 1965 P. Kesava Menon [14] proved the following identity:

$$
\sum_{\substack{1 \leq j \leq n \\ \operatorname{gcd}(j, n)=1}} \operatorname{gcd}(j-1, n)=\varphi(n) d(n)
$$

valid for every $n \in \mathbb{N}$, where $d(n)$ denotes the number of divisors of n. This identity has been generalized in several ways. See, for example [11, 12, 17, 19]. Also,

$$
\sum_{\substack{1 \leq j \leq n \\ \operatorname{gcd}(j, n)=1}} \operatorname{gcd}\left(j^{2}-1, n\right)=\varphi(n) h(n),
$$

where h is a multiplicative function given explicitly in [19, Cor. 15]. Our work suggests the following generalization:

$$
\sum_{\substack{1 \leq x_{1}, \ldots, x_{k} \leq n \\ \operatorname{gcd}\left(x_{1}^{2}+\ldots+x_{k}^{2}, n\right)=1}} \operatorname{gcd}\left(x_{1}^{2}+\ldots+x_{k}^{2}-1, n\right)=\Phi_{k}(n) \Psi_{k}(n)
$$

where Ψ_{k} is a multiplicative function to be found.
Another question is on minimal order. As well known ([10, Th. 328]), the minimal order of $\varphi(n)$ is $e^{-\gamma} n(\log \log n)^{-1}$, where γ is Euler's constant, that is

$$
\liminf _{n \rightarrow \infty} \frac{\varphi(n) \log \log n}{n}=e^{-\gamma} .
$$

It turns out by Theorem 1 that for every $k \in \mathbb{N}$ odd,

$$
\liminf _{n \rightarrow \infty} \frac{\Phi_{k}(n) \log \log n}{n^{k}}=e^{-\gamma}
$$

Find the minimal order of $\Phi_{k}(n)$ in the case when k is even.

References

[1] D. Andrica and M. Piticari. On some extensions of Jordan's arithmetic functions. Acta Univ. Apulensis Math. Inform., (7):13-22, 2004.
[2] J. T. Cross. The Euler φ-function in the Gaussian integers. Amer. Math. Monthly, 90(8): 518-528, 1983.
[3] L. E. Dickson. History of the theory of numbers. Vol. I: Divisibility and primality. Chelsea Publishing Co., New York, 1966.
[4] L. E. Dickson. History of the theory of numbers. Vol. II: Diophantine analysis. Chelsea Publishing Co., New York, 1966.
[5] J. Freed-Brown, M. Holden, M. E. Orrison, and M. Vrable. Cyclotomic polynomials, symmetric polynomials, and a generalization of Euler's totient function. Math. Mag., 85(1):4450, 2012.
[6] P. G. Garcia and S. Ligh. A generalization of Euler's φ-function. Fibonacci Quart., 21(1):2628, 1983.
[7] J. M. Grau, C. Miguel, and A. M. Oller-Marcén. On the structure of quaternion rings over $\mathbb{Z} / n \mathbb{Z}$. Preprint, 2014, arXiv:1402.0956 [math.RA].
[8] J. M. Grau, A. M. Oller-Marcén, M. Rodríguez, and D. Sadornil. Fermat test with Gaussian base and Gaussian pseudoprimes. Preprint, 2014, arXiv:1401.4708 [math.NT].
[9] P. Hall. The Eulerian functions of a group. Quart. J. Math., 7(1):134-151, 1936.
[10] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University Press, Oxford, Sixth edition, 2008. Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles.
[11] P. Haukkanen and J. Wang. A generalization of Menon's identity with respect to a set of polynomials. Portugal. Math., 53(3):331-337, 1996.
[12] P. Haukkanen. Menon's identity with respect to a generalized divisibility relation. Aequationes Math., 70(3):240-246, 2005.
[13] J. Kaczorowski. On a generalization of the Euler totient function. Monatsh. Math., 170(1):27-48, 2013.
[14] P. Kesava Menon. On the sum $\sum(a-1, n),[(a, n)=1]$. J. Indian Math. Soc. (N.S.), 29:155-163, 1965.
[15] J. Sándor and B. Crstici. Handbook of number theory. II. Kluwer Academic Publishers, Dordrecht, 2004.
[16] R. Sivaramakrishnan. The many facets of Euler's totient. II. Generalizations and analogues. Nieuw Arch. Wisk. (4), 8(2):169-187, 1990.
[17] M. Tărnăuceanu. A generalization of Menon's identity. J. Number Theory, 132(11):25682573, 2012.
[18] S. Thajoddin and S. Vangipuram. A note on Jordan's totient function. Indian J. Pure Appl. Math., 19(12):1156-1161, 1988.
[19] L. Tóth. Menon's identity and arithmetical sums representing functions of several variables. Rend. Sem. Mat. Univ. Politec. Torino, 69:97-110, 2011.
[20] L. Tóth. Counting solutions of quadratic congruences in several variables revisited. Preprint, 2014, arXiv:1404.4214 [math.NT].
[21] S. Uchiyama. On some products involving primes. Proc. Amer. Math. Soc., 28:629-630, 1971.
[22] A. Walfisz. Weylsche Exponentialsummen in der neueren Zahlentheorie. Mathematische Forschungsberichte, XV. VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.
C. Calderón

Departamento de Matemáticas, Universidad del País Vasco
Facultad de Ciencia y Tecnología
Barrio Sarriena, s/n, 48940 Leioa, Spain
mtpcagac@lg.ehu.es
J. M. Grau

Departamento de Matemáticas, Universidad de Oviedo
Avda. Calvo Sotelo, s/n, 33007 Oviedo, Spain
grau@uniovi.es
A. M. Oller-Marcén

Centro Universitario de la Defensa
Ctra. de Huesca, s/n, 50090 Zaragoza, Spain
oller@unizar.es
L. Tóth

Department of Mathematics, University of Pécs
Ifjúság u. 6, H-7624 Pécs, Hungary
ltoth@gamma.ttk.pte.hu

