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A General Algorithm for Control Problems with Variable
Parameters and Quasi-linear Models
L. Bayón, J.M. Grau, M.M. Ruiz and P.M. Suárez

University of Oviedo, Department of Mathematics, E.P.I. Campus of Viesques, Gijón, 33203, Spain.

Abstract. This paper presents an algorithm that is able to solve optimal control problems in which the modelling of the
system contains variable parameters, with the added complication that, in certain cases, these parameters can lead to control
problems governed by quasi-linear equations. Combining the techniques of Pontryagin’s Maximum Principle and the shooting
method, an algorithm has been developed that is not affected by the values of the parameters, being able to solve conventional
problems as well as cases in which the optimal solution is shown to be bang-bang with singular arcs.
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INTRODUCTION

When an optimal control problem arises, the first step is to obtain a suitable model of the problem. Simplifications are
frequently used to make the problem mathematically tractable and problems can often be found that are considered
always quadratic, or always linear. In fact, what usually happens is that the model parameters present a range of
variation (to say nothing of the uncertainty associated with them) and this variation can lead to problems of a very
different nature. This is the case of a great many examples, which can in turn be found in a great variety of fields such
as biology, chemistry, economics, etc. In this abstract, we shall use the classic problem of the economic study of the
extraction of non-renewable resources [1], due to the simplicity of this approach.

Faced with the complication of having to use different techniques when the functional is linear or nonlinear in the
control variable, our method presents the contribution of being valid in cases that range between quasi-linearity to
singular arcs. It is also valid, of course, in conventional solutions that can be solved using Pontryagin’s Maximum
Principle (PMP) [2], [3]. We have used the combined techniques of PMP and the shooting method to build this
optimization algorithm.

STATEMENT OF THE PROBLEM

In the classic problem introduced in Gray in 1914 [1], the problem for the resource owner is to choose an extraction
path R(t) for the resource stock S(t) that maximizes total discounted profits:

max
R(t)

∫ t f

0
[pR(t)−b(R(t),S(t))]e−rtdt (1)

where the exogenously given price, p, is given, t f is the final instant, which we assume is given, the rate of depletion
is R(t), the cost of extracting the resource is given by b = b(R(t),S(t)), the discount rate is r, and the initial stock of
the resource is also known S(0). It is then straightforward to verify that:

Ṡ(t) =−R(t) (2)

We see that the cost of extraction, b, depends not only on the depletion rate, R(t), but also on the stock S(t). This
is a realistic description of the extraction technology for many exhaustible natural resources, and implies increasing
extraction costs as the stock is depleted. A common model for b is to consider it inversely proportional to the stock,
S(t) and directly proportional to the square of the depletion rate R(t), where k is the proportionality constant. However,
we shall use a more general model of the form:

b(R(t),S(t)) = k
Rα(t)
S(t)

; with 1 ≃ α < 2 (3)
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The presence of the parameter α is responsible for the variability of the model, for the reason that, if α ≃ 1, the model
becomes quasi-linear.

OPTIMIZATION ALGORITHM

A optimal control problem (OCP) in Lagrange form can be formulated as:

max
u(t)

J =
∫ t f

0
F (t,x(t),u(t))dt (4)

subject to satisfying:

·
x(t) = f (t,x(t),u(t)) , 0 ≤ t ≤ t f (5)
x(0) = x0 (6)
u(t) ∈ [umin,umax] =U(t), 0 ≤ t ≤ t f (7)

where J is the functional, F is the objective function, x is the state variable, with initial conditions x0, u is the control
variable bounded by umin and umax, U denotes the set of admissible control values, and t is the operation time that
starts from 0 and ends at t f . The state variable must satisfy the state equation (5) with given initial conditions (6). In
this statement, for the sake of simplicity, we consider the final instant to be fixed and the final state to be free.

Let H be the Hamiltonian function associated with the problem

H(t,x,u,λ ) = F (t,x,u)+λ · f (t,x,u) (8)

where λ is called the costate variable. The classical approach involves the use of PMP [2], which results in a two-point
boundary value problem (TPBVP). In order for u∗ ∈ U to be optimal, a nontrivial function λ must necessarily exist,
such that for almost every t ∈ [0, t f ] :

·
x = Hλ = f ; x(0) = x0 (9)
·
λ =−Hx; λ (t f ) = 0 (10)

H(t,x,u∗,λ ) = max
u(t)∈U

H(t,x,u,λ ) (11)

In virtue of PMP and Equation (10), there exists a piecewise C1 function λ that satisfies:

·
λ (t) =−Hx =−Fx −λ (t) · fx (12)

and hence:

λ (t) =
[

K −
∫ t

0
Fxe

∫ s
0 fxdzds

]
e−

∫ t
0 fxds (13)

denoting K = λ (0). From (11), it follows that for each t, u(t) maximizes H. Hence, in accordance with the Kuhn-
Tucker Theorem, for each t, there exists two real non negative numbers, β1 and β2, such that u(t) is a critical point
of:

H(u) = F +λ (t) · f +β1 · (umin −u)+β2 · (u−umax) (14)

it being verified that if u∗ > umin, then β1 = 0 and if u∗ < umax, then β2 = 0. We thus have
·
H = 0 and the following

cases:
Case 1) umin < u∗ < umax. In this case, β1 = β2 = 0 and hence

Fu +λ (t) · fu = 0 (15)

From (13) and (15), we have:

K =−Fu

fu
· e

∫ t
0 fxds +

∫ t

0
Fx · e

∫ s
0 fxdzds (16)
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If we denote by Y(t) (the coordination function) the second member of the above equation (the coordination equation),
the following relation is fulfilled:

Y(t) = K (17)

Case 2) u∗ = umax, then β2 ≥ 0 and β1 = 0. By analogous reasoning, we have:

Y(t)≥ K (18)

Case 3) u∗ = umin, then β1 ≥ 0 and β2 = 0. By analogous reasoning, we have:

Y(t)≤ K (19)

Thus, the problem consists in finding for each K the function that satisfies (6), the condition (17), and from among
these functions, the one that satisfies:

λ (t f ) =0 (20)

From the computational point of view, the construction can be performed with the same procedure as the simple
shooting method, with the use of a discretized version of the coordination equation (16). When the values obtained do
not obey the constraints (7), we force the solution to belong to the boundary until the moment established by conditions
(18) and (19).

We now consider the particular case of scalar control appearing linearly:

max
∫ T

0
[ f1(t,x)+u f2(t,x)]dt

·
x(t) = g1(t,x)+ug2(t,x); x(0) = x0

u(t) ∈ [umin,umax] =U(t), 0 ≤ t ≤ t f

(21)

The Hamiltonian is linear in u and can be written as:

H(t,x,u, t) := f1(t,x)+λg1(t,x)+ [ f2(t,x)+λg2(t,x)]u (22)

The optimality condition (maximize H w.r.t. u) leads to:

u∗(t) =

 umax if Hu > 0
using if Hu = 0
umin if Hu < 0

(23)

and u∗ is undetermined if:
Φ(x,λ )≡ Hu = f2(t,x)+λg2(t,x) = 0 (24)

The function Φ is called the switching function. If Φ = 0 only at isolated points in time, then the optimal control
switches between its upper and lower bounds, which is known as a bang-bang type control (i.e. the problem is not
singular). The times when the OC switches from umax to umin or vice-versa are called switching times. If Φ = 0 for
every t in some subinterval, then the original problem is called a singular control problem and the corresponding
trajectory, a singular arc.

EXAMPLE

In this section, we shall see the excellent behaviour of our approach by means of various examples. For the sake of
brevity, we now present only the case posed in Section 2: the extraction of a non-renewable resource. The data can be
seen in Table 1:

TABLE 1. Parameters of the model
p k r S(0) T umin umax

1. 1. 0.1 10. 1 0 10

The optimal results obtained for the depletion profile, R(t), can be seen in Fig. 1 for different values of the parameter
α , with 1 ≃ α < 2.
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FIGURE 1. Optimal Solution

TABLE 2. Results
α 2 1.75 1.5 1.25 1.0001

maxJ 1.91903 2.59944 3.7513 5.18001 6.46151

Iteration 5 11 11 11 101

CPU t(s) 0.98 3.57 3.4 3.71 77.2

The profits obtained are shown in Table 2. In the extreme case of α ≃ 1, we obtain a final value of the stock S(T )= 1.
As the Hamiltonian is linear in the control variable in this case, the problem presents a solution of the bang-bang type,
jumping from umax umin for switching time t = 0.9. We used a discretization of 200 subintervals and the algorithm
ran very quickly. In the worst example, with α = 1.0001 we achieve the prescribed tolerance in (20): tol = 1 ·10−5 in
only 101 iterations and the CPU time required by the program was 77.2 sec on a personal computer (Intel Core 2/2.66
GHz).

CONCLUSIONS

In this paper, we have presented a completely general algorithm for solving optimal control problems. The scope of
the paper comprises all those problems in which mathematical modelling leads to models with variable parameters.
Moreover, this variability often makes the type of solution to the optimal control problem vary. This means that many
conventional algorithms become invalid, as they are not able to address conventional solutions, bang-bang solutions
or solutions containing singular arcs simultaneously.
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