VARIATIONS ON GIUGA NUMBERS AND GIUGA'S CONGRUENCE

J.-M. Grau ${ }^{1}$ and A. M. Oller-Marcén ${ }^{2}$

A k-strong Giuga number is a composite integer such that $\sum_{j=1}^{n-1} j^{n-1} \equiv-1(\bmod n)$. We consider the congruence $\sum_{j=1}^{n-1} j^{k(n-1)} \equiv-1(\bmod n)$ for each $k \in \mathbb{N}$ (thus extending Giuga's ideas for $k=1$). In particular, it is proved that a pair (n, k) with composite n satisfies this congruence if and only if n is a Giuga number and $\lambda(n) \mid k(n-1)$. In passing, we establish some new characterizations of Giuga numbers and study some properties of the numbers n satisfying $\lambda(n) \mid k(n-1)$.

1. Preliminaries

As the starting point of the present paper, we use the following definition:

Definition 1.

(i) A Giuga number is a composite integer n such that $p \mid(n / p-1)$ for every p, prime divisor of n.
(ii) A strong Giuga number is a composite integer n such that $p(p-1) \mid(n / p-1)$ for every p, prime divisor of n.

Strong Giuga numbers are counterexamples to Giuga's conjecture [8], i.e., they are composite integers such that

$$
\begin{equation*}
\sum_{j=1}^{n-1} j^{n-1} \equiv-1 \quad(\bmod n) \tag{1}
\end{equation*}
$$

There are several equivalent ways to define Giuga numbers [1,5,8, 10]. In particular, we focus on the following characterization of Giuga numbers [5, p. 41], which, in a certain sense, is an analog of the characterization given in (1) for strong Giuga numbers.

Proposition 1. Let n be an integer. Then n is a Giuga number if and only if

$$
\sum_{j=1}^{n-1} j^{\phi(n)} \equiv-1 \quad(\bmod n)
$$

where ϕ is Euler's totient function.
Clearly, strong Giuga numbers are also Giuga numbers and, in fact, by using the so-called Korselt's criterion [14], we can show that the following assertion is true:

[^0]Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 67, No. 11, pp. 1573-1578, November, 2015. Original article submitted November 20, 2013.

Proposition 2. An integer n is a strong Giuga number if and only if it is both a Giuga number and a Carmichael number.

Much work has been done regarding these numbers [1,3,10,13,16,17] and several generalizations and/or variations are possible [6, 9]. In the present paper, some new characterizations of Giuga numbers are established. These characterizations lead to a generalization of both strong Giuga numbers and Carmichael numbers.

2. New Characterizations of Giuga Numbers

This section is devoted to the description of a family of characterizations of Giuga numbers that includes Proposition 1. The following lemma is our main tool:

Lemma 1. For any natural numbers A, B and N,

$$
\sum_{j=1}^{N-1} j^{A \lambda(N)} \equiv \sum_{j=1}^{N-1} j^{B \phi(N)} \quad(\bmod N)
$$

Proof. We set

$$
N=2^{a} p_{1}^{r_{1}} \ldots p_{s}^{r_{s}}
$$

with p_{i} distinct odd primes and choose $i \in\{1, \ldots, s\}$. Thus, we get

$$
\begin{aligned}
& \sum_{j=1}^{N-1} j^{A \lambda(N)} \equiv \frac{N}{p_{i}^{r_{i}}} \sum_{j=1}^{p_{i}^{r_{i}}-1} j^{A \lambda(N)} \quad\left(\bmod p_{i}^{r_{i}}\right), \\
& \sum_{j=1}^{N-1} j^{B \phi(N)} \equiv \frac{N}{p_{i}^{r_{i}}} \sum_{j=1}^{p_{i}^{r_{i}}-1} j^{B \phi(N)} \quad\left(\bmod p_{i}^{r_{i}}\right) .
\end{aligned}
$$

Further, since both $A \lambda(N), B \phi(N) \geq r_{i}$, we find

$$
\begin{aligned}
\sum_{j=1}^{p_{i}^{r_{i}}-1} j^{A \lambda(N)} & =\sum_{\substack{1 \leq j \leq p_{i}^{r_{i}}-1 \\
\left(p_{i}, j\right)=1}} j^{A \lambda(N)}+\sum_{\substack{1 \leq j \leq p_{i}^{r_{i}}-1 \\
p_{i} \mid j}} j^{A \lambda(N)} \equiv \phi\left(p_{i}^{r_{i}}\right)+0 \quad\left(\bmod p_{i}^{r_{i}}\right), \\
\sum_{j=1}^{p_{i}^{r_{i}}-1} j^{B \phi(N)} & =\sum_{\substack{1 \leq j \leq p_{i}^{r_{i}}-1 \\
\left(p_{i}, j\right)=1}} j^{B \phi(N)}+\sum_{\substack{1 \leq j \leq p_{i}^{r_{i}}-1 \\
p_{i} \mid j}} j^{A \lambda(N)} \equiv \phi\left(p_{i}^{r_{i}}\right)+0 \quad\left(\bmod p_{i}^{r_{i}}\right) .
\end{aligned}
$$

Consequently,

$$
\sum_{j=1}^{N-1} j^{A \lambda(N)} \equiv \sum_{j=1}^{N-1} j^{B \phi(N)} \quad\left(\bmod p_{i}^{r_{i}}\right) \quad \text { for every } \quad i=1, \ldots, s
$$

[^0]: ${ }^{1}$ Universidad de Oviedo, Oviedo, Spain.
 ${ }^{2}$ Centro Universitario de la Defensa, Zaragoza, Spain.

