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In this paper we characterize, in terms of the prime divisors of n, the pairs (k, n) for which n divides
∑n

j=1 j k .
As an application, we derive some results on the sets

M f :=
⎧⎨
⎩n ≥ 1 : f (n) > 1 and

n∑
j=1

j f (n) ≡ 0 (mod n)

⎫⎬
⎭

for some choices of f .
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1 Introduction

In the literature on power sums Sk(n) :=∑n
j=1 j k the following congruence is well known

Proposition 1.1 (von Staudt [19], 1840) Let k, n ≥ 1 be integers with k even. We have

Sk(n) ≡ −
∑

p|n, p−1|k

n

p
(mod n) .

This result motivates us to study Sk(n) (mod n) and, more generally, to study S f (n)(n) (mod n) for different
arithmetic functions f (see [11] for some results in this spirit). Thus, if p − 1 | f (p), for every prime p, we
have that the congruence S f (n)(n) ≡ −1 (mod n) holds for every n = p prime and it is interesting to find the
composite numbers which also satisfy it. In this direction we have the Giuga numbers (see [1]), which are
composite numbers such that Sφ(n)(n) ≡ −1 (mod n), the strong Giuga numbers, which are composite numbers
such that Sn−1(n) ≡ −1 (mod n) (Giuga’s conjecture [3] states that there are no strong Giuga numbers. Tipu [20]
estimates the number of strong Giuga numbers up to x to be O(x1/2 log x) while Luca, Pomerance and Shparlinski
[9] improve this to O(x1/2/ log2 x)), or the K -strong Giuga numbers, which are composite numbers such that
SK (n−1)(n) ≡ −1 (mod n) (see [5]).

In this paper we characterize, in terms of the prime divisors of n, the pairs (k, n) for which n divides Sk(n).
This characterization is given in the following theorem.

Theorem 1.2 Let k, n ≥ 1 be integers. Then, n | Sk(n) if and only if one of the following holds:

i) n is odd and p − 1 � k for every prime divisor p of n.
ii) n is a multiple of 4 and k > 1 is odd.
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Moreover, inspired by Giuga’s ideas we investigate the congruence S f (n)(n) ≡ 0 (mod n) for some functions
f . This work started in [4], where the case f (n) = (n − 1)/2 was considered. The case of arithmetic functions
f such that p − 1 � f (p) for every prime p is of special interest.

In what follows we will consider the natural numbers

M f :=
⎧⎨
⎩n ≥ 1 : f (n) > 1 and S f (n)(n) =

n∑
j=1

j f (n) ≡ 0 (mod n)

⎫⎬
⎭ (1.1)

associated to an arbitrary function f : N → N. The reader might wonder why the definition involves f (n) > 1,
rather than f (n) ≥ 1. The reason for this is that by Theorem 1.2 the case f (n) = 1 is somewhat exceptional.

Here we study the setsM f in the case f (n) = an + b, the affine case, and in some cases such thatM f contains
all prime numbers. We have characterized the elements of these sets and, in some cases, we have computed their
asymptotic density.

In [6] the related problem of studying the sets {n : SQn(n) ≡ n (mod Qn)} for certain very special Q (“weak
primary pseudoperfect numbers”) is studied

2 A proof of Theorem 1.2

In this section we will establish Theorem 1.2. It will be convenient to work with

Sk(n) :=
n∑

j=1

j k and S∗
k (n) :=

n−1∑
j=1

j k .

In particular we will characterize the pairs (k, n) such that n divides Sk(n). If k = 0, clearly Sk(n) = n and there
is no problem to study. Thus, in what follows we will assume k > 0.

We will start this section with three simple lemmas.

Lemma 2.1 Let p be a prime and let k > 0 be an integer. Then, we have

Sk(p) ≡
{−1 (mod p) i f p − 1 | k;

0 (mod p) i f p − 1 � k.

P r o o f . See [7] for the standard proof using primitive roots, or [10] for a recent elementary proof. �
The next lemma extends Lemma 2 in Moree [17], where it is proved that (2.1) holds if p is odd or p = 2 and

r is even.

Lemma 2.2 Let λ and r be positive integers and p be a prime. We have

Sr
(

pλ+1) ≡ pSr
(

pλ
) (

mod pλ+1) , (2.1)

unless λ = 1, p = 2, r is odd and r ≥ 3 in which case we have 0 ≡ Sr (4) �≡ 2Sr (2) ≡ 2 (mod 4).

P r o o f . Note that it is equivalent to prove the statement with Sr (·) replaced by S∗
r (·). Since the statement

clearly holds for r = 1 we may assume that r ≥ 2. Every 0 ≤ j < pλ+1 can be uniquely written as j = αpλ + β

with 0 ≤ α < p and 0 ≤ β < pλ. Hence we obtain by invoking the binomial theorem

S∗
r

(
pλ+1
) = p−1∑

α=0

pλ−1∑
β=0

(
αpλ + β

)r ≡ p
pλ−1∑
β=0

βr + r pλ

p−1∑
α=0

α

pλ−1∑
β=0

βr−1
(
mod p2λ

)
.

Since the first single sum equals S∗
r

(
pλ
)
, we see that (2.1) holds if and only if r

2 p(p − 1)S∗
r−1

(
pλ
) ≡ 0 (mod p).

Now suppose that the latter congruence does not hold. Then we must have p = 2, 2 � r and r ≥ 3. Since
2 | S∗

r−1

(
2λ
)

for λ ≥ 2 we must have λ = 1. The proof is easily completed on noting that for r ≥ 3 and odd we
have Sr (4) ≡ 1r + 3r ≡ 0 (mod 4). �

As so often in number theory, “two is the oddest of primes” and needs special treatment

Lemma 2.3 Let e, k ≥ 1. We have 2e | Sk(2e) if and only if k ≥ 3 is odd and e ≥ 2.
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P r o o f . Follows on combining the previous two lemmas. �

In fact, using Lemma 2.2 it is easy to evaluate Sk(2e) modulo 2e (where we ignore the trivial case e = 1). We
give the result for completeness’ sake.

Lemma 2.4 Let e > 1. Then

Sk(2e) ≡
{

0 (mod 2e) i f k is odd;

2e−1 (mod 2e) i f k > 1 is even.

P r o o f o f T h e o r e m 1 . 2 If b | n, then clearly Sk(n) ≡ n
b Sk(b) (mod b). Now let n =∏s

i=1 pei
i be the

canonical prime factorisation of n. Noting that pi � np−ei
i we infer from Sk(n) ≡ n

p
ei
i

Sk
(

pei
i

)(
mod pei

i

)
that

n | Sk(n) if and only if pei
i | Sk
(

pei
i

)
, for i = 1, 2, . . . , s. (2.2)

If pi is odd, then it follows by combining Lemma 2.1 and Lemma 2.2 that

pei
i | Sk(pei

i ) if and only if pi − 1 � k. (2.3)

Using this and Lemma 2.3 we see that n | Sk(n) if and only if

i) n is odd and p − 1 � k for every odd prime divisor p of n;
or

ii) n is a multiple of 4, k > 1 is odd and p − 1 � k for every odd prime divisor p of n.

Note that in i) the second “odd” is a consequence of the first “odd”. Likewise in ii) the condition that k is odd
implies that p − 1 � k for every odd prime divisor p of n. On leaving out the redundant parts of i) and ii) the proof
is completed. �

3 Some remarks concerning Theorem 1.2

3.1 The Erdős-Moser equation

Erdős conjectured around 1950 that the Diophantine equation

Sk(n − 1) = nk (3.1)

has only the solution 1 + 2 = 3 corresponding to (k, n) = (1, 3). Note that if (k, n) satisfies Sk(n − 1) = nk ,
then n | Sk(n). The first results on this problem were obtained by original but entirely elementary methods by
Leo Moser [18], cf. [17]. He showed that if (3.1) has a further solution with k > 1, then k is even and n > 10106

.
He showed that either n ≡ 0 (mod 8) or n ≡ 3 (mod 8). Note that by Theorem 1.2 we can actually deduce that
n ≡ 3 (mod 8) and p | n implies p − 1 � k. A slightly improved and extended version of Moser’s results was
given by the second author as Theorem 4 in [16]. This also incorporates that n ≡ 3 (mod 8) (explicitly) and p | n
implies p − 1 � k (implicitly). The implicit fact follows from [16, (8)] which states that

∑
( p−1)|k,p|n

1

p
∈ Z (3.2)

and the remark that a sum of reciprocals of distinct primes can never be a positive integer. Moser’s proof rests
on deriving four equations similar to (3.2) (these are the four mathemagical rabbits in the title of [16]). The baby
mathemagical rabbit (3.2) he apparently overlooked.

Theorem 1.2 can also be used to get some information on the generalized Erdős-Moser equation Sk(n − 1) =
ank , with a a fixed positive integer. Here it is not difficult to show that if there is a solution with k > 1, then
k must be even. By Theorem 1.2 we then infer that if (a, n, k) is a solution with k > 1, then n is odd and p | n
implies p − 1 | k. These are known results, see Moree [13].
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3.2 The Carlitz-von Staudt theorem

Proposition 1.1 deals only with the case k even. Carlitz [2] considered the case k is odd and claimed that n | Sk(n)
in that case. The second author [12] pointed out that this is false. It is true, however, that Sk(n) = rn/2 with r an
integer. The following lemma from a preprint of Kellner [8] gives the parity of r .

Lemma 3.1 Let k ≥ 3 be odd. We have Sk(n) = rn/2 with r an integer. Here r is odd if n ≡ 2 (mod 4) and
r is even otherwise.

P r o o f . Since k is odd, we have j k ≡ −(n − j)k (mod n) for every integer j .
Case n is even: All terms of the sum cancel each other modulo n except for the middle term (n/2)k . We infer

that Sk(n) = rn/2 with r ≡ (n/2)k−1 (mod n). It follows that r is even if 4 | n and r is odd if n ≡ 2 (mod 4).
Case n is odd: The sum Sk(n), having no middle term, vanishes modulo n and hence r is even. �

Using this lemma we can give a general version of Proposition 1.1.

Proposition 3.2 Let k, n ≥ 1 be integers, then

Sk(n) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∑ p | n
] p − 1 | k

n
p (mod n) , if k is even;

n/2 (mod n) , if k = 1 and n is even;

n/2 (mod n) , if k > 1 is odd and n ≡ 2 (mod 4) ;

0 (mod n) , otherwise.

P r o o f . If k is even this is the classical result given in Proposition 1.1. If k = 1 it is clear that Sk(n) =
n(n + 1)/2 so, Sk(n) ≡ n/2 (mod n) if n is even and Sk(n) ≡ 0 (mod n) if n is odd. The remaining cases follow
immediately from Lemma 3.1. �

Lemma 3.1 can be sharpened. In [16] the second author showed that in fact Sk(n) = tn(n + 1)/2. We now
determine the parity of t .

Proposition 3.3 Let k ≥ 3 be odd. We have Sk(n) = tn(n + 1)/2 with t an integer. Here t is odd if
n ≡ 1, 2 (mod 4) and t is even otherwise.

P r o o f . Since k is odd, we have j k ≡ −(n − j)k (mod n) and j k ≡ −(n − j + 1)k (mod n + 1) for every
integer j .

Case n is even: In this case we have Sk(n) ≡ (n/2)k (mod n) and Sk(n) ≡ 0 (mod n + 1). Since
gcd(n, n + 1) = 1, we infer that Sk(n) = tn(n + 1)/2 with t ≡ (n/2)k−1 (mod 2). It follows that t is even if
4 | n and t is odd if n ≡ 2 (mod 4).

Case n is odd: In this case we have that Sk(n) ≡ 0 (mod n) and Sk(n) ≡ ((n + 1)/2)k (mod n + 1). Since
gcd(n, n + 1) = 1, we infer that Sk(n) = tn(n + 1)/2 with t ≡ ((n + 1)/2)k−1 (mod 2). It follows that t is even
if 4 | n + 1 and t is odd if n ≡ 1 (mod 4). �

4 The affine case

In this section we will focus on the case where f is an affine function; i.e., a linear function. In what follows we
will denote an + b by fa,b(n). Recall the definition (1.1) of M f . In what follows it will be easier to characterize
N f \ M f instead of M f itself, where

N f = {n ∈ N : f (n) > 1}.
Let us introduce some further notation. Given (a, b) ∈ N × Z, we will consider the set

Pa,b := {p odd prime : b ≡ 0 (mod gcd(a, p − 1))
}
,

and if (a, b, p) ∈ N × Z × Pa,b we define

μa,b(p) := min{x ∈ N : xpa ≡ −b (mod p − 1)}.
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Note that in case p is an odd prime the equation xpa ≡ −b (mod p − 1) has a solution if and only if p is in Pa,b.
For notational convenience we shorten {n ∈ N : n ≡ c (mod d)} to {c (mod d)}. The intersection of a set S with
N f will be denoted by S f . With this notation in mind we can prove the following result.

Theorem 4.1 Let (a, b) ∈ N × Z. Put pa := (p − 1)/gcd(a, p − 1) and f (n) := a + bn. Then:

i) If a and b are even,

N f \ M f = {2N} f ∪
⋃

p∈Pa,b

{pμa,b(p) (mod p · pa)} f .

ii) If a and b are odd,

N f \ M f = {2 (mod 4)} f ∪
⋃

p∈Pa,b

{pμa,b(p) (mod p · pa)} f .

iii) If a is even and b is odd, then

N f \ M f = {2 (mod 4)} f .

iv) If a is odd and b is even, then

N f \ M f = {2N} f .

P r o o f . Suppose that n ∈ N f . Then f (n) > 1. By Theorem 1.2 we have n � S f (n) if and only if

a) n is odd and p − 1 | f (n) for some odd prime divisor p of n;
b) n ≡ 2 (mod 4);

or
c) n is a multiple of 4, f (n) is even.

We will give a complete proof of i), the other cases being similar.
Since by assumption a and b are even, f (n) is even and hence, by b) and c), we have that {2N} f ⊆ N f \ M f .

Now, assume that n �∈ M f is odd. Then by a) there must exist an odd prime p | n such that p − 1 | an + b. Since
an ≡ 0 (mod ap) and an ≡ −b (mod p − 1) it follows that p is inPa,b and an ∈ {A + s · lcm(ap, p − 1) : s ≥ 0}
with

A = min{x ∈ N : x ≡ 0 (mod ap) , x ≡ −b (mod p − 1)}.
Using that A = apμa,b(p) we find that

n ∈
{

A

a
+ s

a
lcm(ap, p − 1) : s ≥ 0

}
= {pμa,b(p) (mod p · pa)}.

On taking the requirement f (n) > 1 into account we obtain that n ∈ {pμa,b(p) (mod p · pa)} f for some p ∈ Pa,b

is necessary and sufficient for an odd n to be in N f \ M f . �

Here and throughout, we denote by δ(A) (resp. δ(A), δ(A)) the asymptotic (resp. lower, upper asymptotic)
density of an integer sequence A. Recall that

δ(A) = lim
N→∞

card([0, N ] ∩ A)
N

,

while δ(A) and δ(A) are obtained using the lower or upper limit in the previous expression.
We will be interested in computing the asymptotic density of the sets M fa,b , at least for some particular values

of a and b. To do so we must first show that this density exists and the following lemma will be our main tool.

Lemma 4.2 Let A := {ak}k∈N and {ck}k∈N be two sequences of positive integers and

Bk := {ak + (s − 1)ck : s ∈ N}.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 289, No. 7 (2016) / www.mn-journal.com 825

If
∑∞

k=1 c−1
k is convergent and A has zero asymptotic density, then

⋃∞
k=1 Bk has an asymptotic density with

δ
(⋃∞

k=1 Bk
) = limn→∞ δ

(⋃n
k=1 Bk

)
and

δ

( ∞⋃
k=1

Bk

)
− δ

(
n⋃

k=1

Bk

)
≤

∞∑
i=n+1

1

ci
.

P r o o f . Let us denote Bn :=⋃∞
k=n+1 Bk and ϑ(n, N) := card([0, N ] ∩ Bn). Then

ϑ(n, N) ≤ card([0, N ] ∩ A) + N
∞∑

k=n+1

1

ck
.

From this, we get

δ̄(Bn) = lim sup
ϑ(n, N)

N
≤ lim sup

card([0, N ] ∩ A)
N

+
∞∑

k=n+1

1

ck
=

∞∑
k=n+1

1

ck
.

Now, for every n,
⋃n

k=1 Bk has an asymptotic density and the sequence δn := δ
(⋃n

k=1 Bk
)

is non-decreasing and
bounded (by 1), thus convergent. Consequently

δn ≤ δ

( ∞⋃
k=1

Bk

)
≤ δ

( ∞⋃
k=1

Bk

)
= δ

(
n⋃

k=1

Bk ∪ Bn

)
≤ δn + δ̄(Bn) ≤ δn +

∞∑
k=n+1

c−1
k ,

and taking into account that
∑∞

k=n+1 c−1
j converges to zero, it is enough to take limits in order to finish the

proof. �
With the help of this lemma the following proposition is easy to be proved.

Proposition 4.3 If (a, b) ∈ N × Z, then the set M fa,b has an asymptotic density δ
(
M fa,b

)
.

P r o o f . As δ
(
N fa,b

) = 1 it is enough to see that N fa,b \ M fa,b has an asymptotic density.
Cases iii) and iv) above are obvious. In cases i) and ii) it is enough to apply the previous lemma since

N fa,b \ M fa,b is a countable union of arithmetic progressions modulo p · pa whose initial terms, p · μa,b(p), form
a set of zero asymptotic density, and the associated series of reciprocal moduli∑

p prime

1

p · pa
=
∑

p prime

gcd(a, p − 1)
p(p − 1)

is convergent. �
The rest of this section will be devoted to the study of δ

(
M f1,b

)
. If b is even, M f1,b

is exactly the set of odd

positive integers > 1 − b and its asymptotic density is 1
2 . The case when b is odd is much more interesting. In

particular we will see that, in this case, the asymptotic density of M f1,b is slightly greater than 1
2 . Our density

computation will be based on the following corollary of Theorem 4.1.

Corollary 4.4 Put

Gb
p := {−bp (mod p(p − 1))}. (4.1)

If b ∈ Z is odd, then N f1,b
\ M f1,b

=⋃p≥3

{
Gb

p

}
f1,b

∪ {2 (mod 4)} f1,b .

We note that δ
(⋃

p≥3 G0
p

)
is the density of the set of integers such that p(p − 1) | m for some p | m with

p ≥ 3. Note that, for b odd,

δ
(
M f1,b

)
= 1 − δ

(
N f1,b \ M f1,b

) = 1 − δ

⎛
⎝⋃

p≥3

Gb
p ∪ {2 (mod 4)

}⎞⎠ = 3

4
− δ

⎛
⎝⋃

p≥3

Gb
p

⎞
⎠ , (4.2)

where we used the observation that Gb
p consists of odd integers only. The final density in (4.2) can be computed

using the inclusion-exclusion principle. For this it will be necessary to have a good criterion to determine when
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the intersection of Gb
p for various odd primes p is empty. For m square-free we have lcm[p − 1 : p | m] = λ(m),

with λ the Carmichael function.

Proposition 4.5 Let P be a finite set of odd primes and put m :=∏p∈P p. Then
⋂

p∈P Gb
p is non-empty if

and only if gcd(m, φ(m)) | b. If the intersection is non-empty, then the set
⋂

p∈P Gb
p is an arithmetic progression

having modulus lcm(m, λ(m)).

P r o o f . It is clear that
⋂

p∈P Gb
b is non-empty if and only if there exists n such that n/p ≡ n ≡

−b (mod p − 1) and p | n for every p ∈ P . This happens if and only if there exists n such that n ≡ −b (mod λ(m))
and n ≡ 0 (mod m). Note that the latter congruences have a solution if and only if gcd(m, λ(m)) divides b. To
finish the proof it is enough to observe that, m being square-free, gcd(m, λ(m)) = gcd(m, φ(m)) and to apply the
Chinese remainder theorem. �

To compute the density of the set N \ M f1,b we define, given ε > 0, k := k(ε) to be the smallest integer such
that ∑

j≥k

1

p j (p j − 1)
< ε.

Thus, with an error of at most ε, the density of the set N \ M f1,b is the same as the density of
⋃

j<k Gb
p j

:

δ

⎛
⎝⋃

j<k

Gb
p j

⎞
⎠ < δ(N \ M f1,b) < δ

⎛
⎝⋃

j<k

Gb
p j

⎞
⎠+ ε

and, by the inclusion-exclusion principle, we find

δ

⎛
⎝⋃

j<k

Gb
p j

⎞
⎠ =
∑
s≥1

∑
1≤i1<i2<···<is≤k−1

αi1,i2,...,is

lcm[pi1(pi1 − 1), . . . , pis (pis − 1)]
,

with the coefficient αi1,i2,...,is being zero if
⋂s

t=1 Gb
pit

= ∅, and being (−1)s−1 otherwise. Alternatively we can
write this as

δ

⎛
⎝⋃

j<k

Gb
p j

⎞
⎠ = −

∑
m > 1, m | p2 p3 · · · pk−1

gcd(m, ϕ(m) | b

μ(m)
lcm(m, λ(m))

. (4.3)

It is not difficult to see, cf. [4], that the series∑
gcd(m,ϕ(m))|b

μ(m)
lcm(m, λ(m))

converges absolutely. Using this, (4.2) and (4.3), we then obtain the following result.

Theorem 4.6 If b ∈ Z is odd, then

δ(M f1,b
) = 3

4
+
∑

m>1,2�m
gcd( m,ϕ( m) ) |b

μ(m)
lcm(m, λ(m))

.

Corollary 4.7 We have

δ
(
M f1,±1

)
= 3

4
+
∑
m>2

gcd( m,ϕ( m) )=1

(−1)ω(m)

mλ(m)
,

where ω(m) is the number of distinct prime factors of m.

P r o o f . Note that m > 1, 2 � m and gcd(m, ϕ(m)) ∈ {−1, 1} if and only if m > 2 and gcd(m, ϕ(m)) = 1.
The m satisfying these conditions are odd and square-free and thus we have gcd(m, ϕ(m)) = gcd(m, λ(m)) = 1
and hence lcm(m, λ(m)) = mλ(m) and μ(m) = (−1)ω(m) . �
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The asymptotic density of M f1,±1
is closely related to that of the set

P :=
{

n ≥ 1 : 2 � n, S n−1
2

≡ 0 (mod n)
}

,

which was defined and studied in [4] and where it is shown that

δ(P) = 1

2
+
∑
m>2

gcd( m,ϕ( m)=1

(−1)ω(m)

2mλ(m)
∈ [0.379005, 0.379826].

By combining this with Corollary 4.7 we reach the following conclusion.

Proposition 4.8 We have δ
(
M f1,±1

) = 2δ(P) − 1/4 ∈ [0.50801, 0.50966].

Recall that a Carmichael number n is a positive composite integer that satisfies Fermat’s Little Theorem:
an−1 ≡ 1 (mod n) for every a coprime to n. It follows that a Carmichael number n meets Korselt’s criterion: it
must be square-free with p − 1 dividing n − 1 for each prime factor p of n. We will say that a positive integer
n is an anti-Korselt number if for every p prime divisor of n, p − 1 does not divide n − 1.

Lemma 4.9

i) An integer n is an anti-Korselt number if and only if 2 � n and n | Sn−1(n).
ii) The set of anti-Korselt numbers K has an asymptotic density δ(K) satisfying

δ(K) = δ
(
M f1,−1

)
− 1

4
= 2δ(P) − 1

2
∈ [0.25801, 0.259652].

P r o o f .

i) This follows from Theorem 1.2 and the observation that anti-Korselt numbers are odd.
ii) The density δ(K) equals that of the odd integers in M f1,−1 , and hence, keeping in mind that the sets

G−1
p , p ≥ 3, consist of odd numbers only, we infer from Corollary 4.4 that

δ(K) = δ({n : 2 � n}) − δ

⎛
⎝⋃

p≥3

G−1
p

⎞
⎠ = 1

2
− δ

⎛
⎝⋃

p≥3

G−1
p

⎞
⎠ .

By (4.2) we see that δ(K) = δ(M f1,−1
) − 1/4. Now invoke Proposition 4.8. �

Lemma 4.10 Let {Ai }n
i=1 and {Bi }n

i=1 be two families of sets such that:

i) δ(Ai ) = δ(Bi ).
ii) δ
(

Ai
⋂

A j
) ≥ δ
(
Bi
⋂

B j
)
.

Then

δ

(
n⋃

i=1

Ai

)
≤ δ

(
n⋃

i=1

Bi

)
,

with the inequality being strict if any of the inequalities in ii) is strict.

P r o o f . We proceed by induction on n. The result for n = 2 is trivial. Now, assume that

δ

(
n⋃

i=1

Ai

)
≤ δ

(
n⋃

i=1

Bi

)
.

Note that, from condition ii) it follows that

δ

(
An+1

⋂( n⋃
i=1

Ai

))
≥ δ

(
Bn+1

⋂( n⋃
i=1

Bi

))
.
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Hence, we have that

δ

(
n+1⋃
i=1

Ai

)
= δ

(
n⋃

i=1

Ai

)
+ δ (An+1) − δ

(
An+1

⋂( n⋃
i=1

Ai

))

≤ δ

(
n⋃

i=1

Bi

)
+ δ (Bn+1) − δ

(
Bn+1

⋂( n⋃
i=1

Bi

))
= δ

(
n+1⋃
i=1

Bi

)
,

and the result follows. �
Lemma 4.11 Let b | b′ and suppose that m is an odd integer. We have

δ

⎛
⎝⋃

p|m
Gb

p

⎞
⎠ ≥ δ

⎛
⎝⋃

p|m
Gb

p

⎞
⎠ ≥ δ

⎛
⎝⋃

p|m
G0

p

⎞
⎠ = −

∑
d|m,d>1

μ(d)
lcm(d, λ(d))

.

P r o o f . We consider the families
{
Gb′

p

}
,
{
Gb

p

}
and
{
Gb

p

}
(recall Corollary 4.4). Since Gb′

p , Gb
p and Gb

p are
arithmetic progressions of the same modulus p(p − 1), it follows that δ

(
Gb′

p

) = δ
(
Gb′

p

) = δ
(
G0

p

)
. Also observe

that, if p �= q are primes and Gb′
p ∩ Gb′

q = ∅, then also Gb
p ∩ Gb

q = ∅. On the other hand, if Gb′
p ∩ Gb′

q �= ∅, then
Gb

p ∩ Gb
q is either empty or has the same density as Gb′

p ∩ Gb′
q . Note that the intersection G0

p ∩ G0
q is never empty.

On applying Lemma 4.10 the two inequalities are established. The final identity holds by an argument similar to
the one used to establish Equation (4.3), where we use again that the intersection G0

p ∩ G0
q is never empty. �

Corollary 4.12 If b | b′ and m is odd, then

δ
(
M f1,b

) ≤ δ
(
M f1,b′

) ≤∑
d|m

μ(d)
lcm(d, λ(d))

− 1

4
.

By applying Proposition 4.8 and Corollary 4.12 with m the product of the first 22 odd primes, we obtain

0.508 < δ
(
M f1,1

)
< δ
(
M f1,b

)
< 0.647.

It is easy to observe using Lemma 4.10 that if b is odd and |b| > 1, then δ
(
M f1,b

)
> δ
(
M f1,1

)
. Let κ(n) =∏

p|n p denote the squarefree kernel of n. By Theorem 4.6 it follows that if κ(b) = κ(b′), then δ
(
M f

1,b′

) =
δ
(
M f1,b

)
. Moreover, if κ(b) | κ(b′) and κ(b) < κ(b′), then δ

(
M f

1,b′

)
> δ
(
M f1,b

)
.

5 M f containing the prime numbers

In this section we will characterize the set M f for some functions f such that f (p) = p−1
2 for every odd prime.

Note that in this case M f contains all odd primes p > 3. In particular, we will focus on f = ϕ

2 and f = λ
2 , where

ϕ and λ denote the Euler and Carmichael function, respectively.

Proposition 5.1 We have M ϕ

2
= {pk : p odd prime

} \ {3}.
P r o o f . Note that ϕ( pk)

2 > 1 if and only if pk �= 3. Hence, 3 �∈ M ϕ

2
and in what follows we assume that

pk �= 3.

If p is an odd prime and k ∈ N, ϕ( pk)
2 = pk−1( p−1)

2 and gcd
(

pk−1( p−1)
2 , p − 1

)
< p − 1. Consequently we can

apply Theorem 1.2 to get pk ∈ M ϕ

2
.

Now, if n is odd and there exist distinct odd primes p, q dividing n, it readily follows that p − 1 divides ϕ(n)
2

so Theorem 1.2 i) applies and it follows that n �∈ M ϕ

2
. Thus, if there is an odd n ∈ M ϕ

2
it must be a prime power

exceeding 3.
Finally, if n ∈ M ϕ

2
is even, Theorem 1.2 ii) implies that 4 divides n and also that ϕ(n)

2 is odd and exceeding 1.
Since these statements are contradictory the result follows. �

In what follows we will use the notation ν2(m) := max
{
k ∈ N : 2k divides m

}
.
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Proposition 5.2 Let n = 2m pr1
1 · · · prs

s with s > 0. Then 3 �= n ∈ M λ
2

if and only if one of these conditions
holds:

i) m = 0 and ν2(pi − 1) = ν2(p j − 1) for every i, j .
ii) m = 2 or 3, ν2(pi − 1) = 1 for every i and n

2m �= 3.

P r o o f . Note that λ(n)
2 > 1 if and only if n �= 3. Hence, 3 �∈ M λ

2
and in what follows we assume that n �= 3.

If condition i) holds, n = pr1
1 · · · prs

s and pi = 2t qi + 1 with qi even and t not depending on i . In this case

λ(n) = lcm
(
ϕ
(

pr1
1

)
, . . . , ϕ

(
prs

s

)) = 2t lcm(pr1−1
1 q1, . . . , prs−1

s qs) = 2t L with L odd. Consequently λ(n)
2 = 2t−1L

and since L is odd it follows that pi − 1 does not divide λ(n)
2 and Theorem 1.2 i) implies that n ∈ M λ

2
.

If condition ii) holds, it follows that λ(n) = 2L with L > 1 odd. Consequently λ(n)/2 = L > 1 is odd and by
Theorem 1.2 ii) we conclude that n ∈ M λ

2
.

Finally, assume that n = 2m pr1
1 · · · prs

s with s > 0 and pi = 2mi qi + 1 with qi odd is such that n ∈ M λ
2
. First

of all, Theorem 1.2 implies that m = 0 or m > 1.
If m > 1, Theorem 1.2 ii) implies that n

2m �= 3 and also that λ(n)
2 is odd so m = 2 or 3 and pri −1

i (pi − 1) =
ϕ(pri

i ) = 2Li with Li odd; i.e., pi − 1 = 2qi with qi odd as claimed.

If, on the other hand, m = 0, Theorem 1.2 i) implies that pi − 1 does not divide λ(n)
2 for any i . But if mi > m j

for some i �= j we have that 2mi −1q j divides λ(n)
2 and, consequently, p j − 1 divides λ(n)

2 . A contradiction. �
Now, given a positive integer k we define the set

ϒk := {n odd : ν2(p − 1) = k for every p | n
}
.

Note that if k �= j , then ϒk and ϒ j are disjoint. With this notation, Proposition 5.2 can be stated as

M λ
2

=
( ∞⋃

k=1

ϒk ∪ 4ϒ1 ∪ 8ϒ1

)
\ {3, 12, 24}. (5.1)

Let M λ
2
(x) denote the number of integers ≤ x in the set M λ

2
and ϒ j (x) the number of integers ≤ x in the set ϒ j .

Proposition 5.3 Let k ≥ 1 be an arbitrary integer. We have

M λ
2
(x) = x

log x

(
c1 log1/2 x +

k∑
j=2

c j log2−k
x + Ok

(
log2−k−1

x
))

,

with

c1 = 11

16

∏
p≡1 (mod 4)

(
1 − 1

p2

)1/2
= 0.66896484 · · ·

and all constants c2, . . . , ck positive. The implied constant in the error term depends at most on k.

P r o o f . For positive coprime integers a and d, let Na,d(x) denote the number of integers n ≤ x that are
composed only of primes p ≡ a (mod d). It is a standard result, cf. [15], that

Na,d(x) = ca,d x

log1−1/ϕ(d) x

(
1 + Od

(
1

log x

))
, (5.2)

with ca,d a positive constant. For j ≥ 1 we have, by (5.2),

ϒ j (x) = N1+2 j ,2 j+1(x) = d j x

log1−2− j
x

(
1 + O j

(
1

log x

))
, (5.3)

with d j a positive constant. One has, cf. [15, p. 235],

d1 = 1

2

∏
p≡1 (mod 4)

(
1 − 1

p2

)1/2

= 0.4865198883 · · · (5.4)
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Note that
∞∑

j=k+1

ϒ j (x) ≤ N1,2k+1(x) = O
(
x log2−k−1−1 x

)
. (5.5)

Since the infinite sets in the decomposition (5.1) are pairwise disjoint we see from (5.1) that

M λ
2
(x) = ϒ1(x) + ϒ1

( x

4

)
+ ϒ1

( x

8

)
+

k∑
j=2

ϒ j (x) +
∞∑

j=k+1

ϒ j (x) + O(1).

The result now follows from (5.3) and (5.5) with c1 = 11d1/8 and c j = d j for j ≥ 2. �
Remark 5.4 By Satz 1 of Wirsing [22] we have

N3,4(x) ∼ e−γ /2

√
π

x

log x

∏
p≤x

p≡3 ( mod 4)

(1 − 1/p)−1.

On inserting Uchiyama’s asymptotic for the latter product (see [21]) and using
∏

p(1 − 1/p2) = 1/ζ (2) = 6/π2,
one finds that N3,4(x) ∼ d1x(log x)−1/2 with d1 as in (5.4).

Acknowledgements The authors would like to thank Bernd Kellner and Jonathan Sondow for comments on an earlier
version and further one of the referees for suggesting to use the methods from Moree [14] to derive a precise estimate for
M λ

2
(x). Indeed, in [14] the set of divisors of integers n that divide ak + bk for some k is partitioned into sets similar, but more

complicated, than the ϒ j appearing in the partition (5.1).

References

[1] D. Borwein, J. M. Borwein, P. B. Borwein, and R. Girgensohn, Giuga’s conjecture on primality, Amer. Math. Monthly
103(1), 40–50 (1996).

[2] L. Carlitz, The Staudt-Clausen theorem, Math. Mag. 34, 131–146 (1960/1961).
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