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1. Introduction

The idea of studying the interplay between ring-theoretic properties of a ring
R and graph-theoretic properties of a graph defined after it, is quite recent.
It was first introduced for commutative rings by Beck in 1988 [7]. In Beck’s
definition the vertices of the graph are the elements of the ring and two dis-
tinct vertices x and y are adjacent if and only if xy = 0. Later, Anderson
and Livingston [5] slightly modified this idea, considering only the non-zero
zero divisors of R as vertices of the graph with the same adjacency condition.
Redmond [24] extended this notion of zero-divisor graph to noncommutative
rings.

Given a ring R with identity we denote the set of zero divisors of R by
Z(R), and the set of non-zero zero divisors by Z∗(R). The set of units in R,
that is, the set of invertible elements, is denoted by U(R). As is well known
in a finite ring every element is either a unit or a zero divisor. As usual we
use |S| to denote the cardinality of the set S.

For a noncommutative ring R with identity, we define two different
graphs associated to R. The directed zero divisor graph, Γ(R), and the undi-
rected zero divisor graph, Γ(R). Both graphs share the same vertex set,
namely, the set Z∗(R) of non-zero zero divisors of R. In Γ(R), given two
distinct vertices x and y, there is a directed edge of the form x → y if and
only if xy = 0. On the other hand, two distinct vertices x and y of Γ(R) are
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connected by an edge if and only if either xy = 0 or yx = 0. Note that, by
definition, both Γ(R) and Γ(R) are simple graphs, so there are no loops, thus
the existence of self-annihilating elements of R is not encoded in the graph.
Several properties of zero divisor graphs of different general classes of rings
are studied in [3,4,16,24,26].

Recall that, if n > 1 is a rational integer and 〈n〉 is the ideal in the
Gaussian integers generated by n, then the factor ring Z[i]/〈n〉 is isomorphic
to the Gaussian integers modulo n

Zn[i] := {a + bi : a, b ∈ Zn}.

The zero divisor graph of the ring of Gaussian integers modulo n has recently
received great attention [1,2,23].

The algebraic construction defined above for the Gaussian integers can
be easily extended to the ring Z[i, j, k] of Lipschitz integer quaternions. In-
deed, let again be n > 1 a rational integer and denote by 〈n〉 the principal
ideal in Z[i, j, k] generated by n. Then, the factor ring Z[i, j, k]/〈n〉 is iso-
morphic to

Zn[i, j, k] := {a + ib + cj + dk : a, b, c, d ∈ Zn},

which is called the ring of Lipschitz quaternions modulo n.
The aim of this paper is to study the zero divisor graphs of the ring

of Lipschitz quaternions modulo n, both the directed Γ(Zn[i, j, k]) and the
undirected Γ(Zn[i, j, k]).

If n = pr1
1 . . . prk

k , is the prime power factorization of n, the Chinese
remainder theorem induces a natural isomorphism

Zn[i, j, k] ∼= Zp
r1
1

[i, j, k] ⊕ · · · ⊕ Zp
rk
k

[i, j, k]. (1)

Therefore, in order to study the structure of the rings Zn[i, j, k] we can restrict
ourselves to the prime power case.

If p is an odd prime and l is a positive integer, then Zpl [i, j, k] is isomor-
phic to the full matrix ring M2(Zpl) [13,25]. Consequently, for an odd positive
integer n the ring Zn[i, j, k] is isomorphic to the matrix ring M2(Zn). Hence,
in this case we can use known results about the zero divisor graph of matrix
rings over commutative rings.

Unfortunately, if n is even it is no longer true that Zn[i, j, k] is isomor-
phic to the matrix ring M2(Zn). In fact, note that an element z = z0 + z1i +
z2j + z3k ∈ Zn[i, j, k] is a unit if and only if its norm ‖z‖ = z20 + z21 + z22 + z23
is a unit in Zn. Since

‖z + w‖ = ‖z‖ + ‖w‖ + 2Re(zw),

the sum of two units of Zn[i, j, k] is never a unit. This fact is clearly false in
M2(Zn) and the claim holds.
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2. The Number of Vertices

Recall that both graphs Γ(Zn[i, j, k]) and Γ(Zn[i, j, k]) share the same set of
vertices. Namely, the non-zero zero divisors of Zn[i, j, k]. Due to the isomor-
phism (1) we can focus on the case when n is a prime power.

Proposition 1. Let p be an odd prime number and t ≥ 1. Then, the number
of vertices of the graph Γ(Zpt [i, j, k]) is

p4t−1 + p4t−2 − p4t−3 − 1.

Proof. We have the isomorphism Zpt [i, j, k] ∼= M2(Zpt). Thus, it is enough to
determine the number of non-zero zero divisors in the matrix ring M2(Zpt).

Following [15] there are p4(t−1)(p2−1)(p2−p) units in M2(Zpt). Since in
a finite ring every element is either a unit or a zero divisor it follows that there
are p4t−1 + p4t−2 − p4t−3 − 1 non-zero divisors in M2(Zpt), as claimed. �

If p = 2 the isomorphism Z2t [i, j, k] ∼= M2(Z2t) is no longer true. Con-
sequently, we must use a different approach in order to compute the number
of non-zero zero divisors of Z2t [i, j, k].

Proposition 2. The number of vertices of the graph Γ(Z2t [i, j, k]) is 24t−1 −1.

Proof. Note that an element z = x0 +x1i+x2j +x3k ∈ Z2t [i, j, k] is a unit if
and only if and only if its norm ‖x‖ = x2

0 + x2
1 + x2

2 + x2
3 is a unit in Z2t . On

the other hand, an element is a unit in Z2t if its reduction modulo 2 is a unit.
Since x2

0 +x2
1 +x2

2 +x2
3 ≡ 0 (mod 2) if and only if x2

0 +x2
1 +x2

2 +(x3 +1)2 ≡ 1
(mod 2), it follows that

x0 + x1i + x2j + x3k �→ x0 + x1i + x2j + (x3 + 1)k

defines a one-to-one correspondence between the set of all zero divisors and
the set of all units in Z2t [i, j, k]. Again, by the fact that every element is either
a unit or a zero divisor we obtain |U(Z2t [i, j, k])| = |Z(Z2t [i, j, k])| = 24t−1.
Hence, there are exactly 24t−1 − 1 non-zero zero divisors in Z2t [i, j, k], which
is the number of vertices of the graph Γ(Z2t [i, j, k]) as claimed. �
Remark 1. Observe that, if x = x0+x1i+x2j+x3k and y = y0+y1i+y2j+y3k
are two zero divisors, then x2

0 +x2
1 +x2

2 +x2
3 ≡ y2

0 +y2
1 +y2

2 +y2
3 ≡ 0 (mod 2).

It is clear that

(x0 + y0)2 + (x1 + y1)2 + (x2 + y2)2 + (x3 + y3)2 ≡ 0 (mod 2)

and hence the sum of two zero divisors is a zero divisor. Therefore, the set of
all zero divisors forms an ideal. This ideal is necessarily the unique maximal
ideal of Z2t [i, j, k], since a proper ideal can not contain a unit.

Recall that, given a direct sum of rings R = R1 ⊕ . . . ⊕ Rk, an element
r ∈ R is a unit if and only if every projection of r in Ri is a unit in Ri. Hence,
if n = 2tpα1

1 · · · pαk

k is the prime power decomposition of n, the isomorphism
(1) together with the fact that an element in a finite ring is either a unit or
a zero divisor leads to:

|U(Zn[i, j, k])| =

{∏k
i=1

(
p4αi

i − p4αi−1
i − p4αi−2

i + p4αi−3
i

)
, if t = 0;

24t−1
∏k

i=1(p
4αi
i − p4αi−1

i − p4αi−2
i + p4αi−3

i ), if t > 0.
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As a consequence of the previous work we have the main result of this
section.

Theorem 1. Let n = 2tpα1
1 · · · pαk

k be the prime power decomposition of n.
Then, the number of vertices in the graph Γ(Zn[i, j, k]) or Γ(Zn[i, j, k]) is:

|V (Γ(Zn[i, j, k]))|

=

{
n4 − ∏k

i=1

(
p4αi

i − p4αi−1
i − p4αi−2

i + p4αi−3
i

) − 1, if t = 0;
n4 − 24t−1

∏k
i=1(p

4αi
i − p4αi−1

i − p4αi−2
i + p4αi−3

i ) − 1, if t > 0.

Proof. Just apply the previous observation recalling that the non-zero ele-
ments of a finite ring are either units or zero-divisors. �

3. The Diameter

We recall that the distance between two distinct vertices a and b of a graph,
denoted by d(a, b), is the length of the shortest path connecting them (the
distance being infinity if no such path exists). The diameter of a graph G,
denoted by diam(G), is given by

diam(G) = sup{d(a, b) : a, b distinct vertices of G},

if G has at least two distinct vertices and diam(G) = 0 otherwise.
Our objective in this section is to find the diameter of the directed

zero divisor graph Γ(Zn[i, j, k]) and of the undirected zero divisor graph
Γ(Zn[i, j, k]).

Recall that ZL(R) and ZR(R) denote, respectively, the set of left and
right zero divisors of R. The following result was proved in [24].

Theorem 2. Let R be a noncommutative ring, with Z∗(R) �= ∅. Then Γ(R)
is connected if and only if ZL(R) = ZR(R). If Γ(R) is connected, then
diam(Γ(R)) ≤ 3.

Note that in any finite ring R we have ZL(R) = ZR(R). Hence, the
previous theorem implies that the directed zero divisor graph Γ(Zn[i, j, k])
is connected and diam(Γ(Zn[i, j, k])) ≤ 3. We will now see that, in many
cases, the equality holds. To do so, we first need a technical result involving
the direct sum of finite unital noncommutative rings. A commutative version
was established in [6].

Lemma 3. Let R = R1 ⊕ R2, where R1 and R2 are finite unital noncommu-
tative rings. Then. diam(Γ(R)) = 3.

Proof. First note that, since R1 and R2 are finite and noncommutative if
follows by the Wedderburn’s little theorem that both R1 and R2 have nonzero
zero divisors.

On the other hand, since R1 and R2 are rings with identity we can choose
a unit u1 from R1 and a unit u2 from R2. Let x ∈ Z∗(R1) and y ∈ Z∗(R2)
and consider the elements (x, u2), (u1, y) ∈ Z∗(R). We will prove that the
distance between the vertices (x, u2) and (u1, y) is 3. Indeed (x, u2)(u1, y) =
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(xu1, u2y) �= (0, 0). Hence d((x, u2), (u1, y)) > 1. On the other hand if (a, b) ∈
Z∗(R) satisfies

(x, u2)(a, b) = (a, b)(u1, y) = (0, 0),

then we have u2b = 0 and au1 = 0 implying a = b = 0, a contradiction.
Therefore, d((x, u2), (u1, y)) > 2. Finally, using Theorem 2 we get the result.

�

As a consequence, we have the following result.

Proposition 3. Let n be an integer divisible by at least two primes. Then,

diam(Γ(Zn[i, j, k])) = 3.

Proof. It is enough to apply the isomorphism (1) together with Lemma 3. �

Remark 2. It is clear that diam(Γ(Zn[i, j, k])) ≤ diam(Γ(Zn[i, j, k])). Now, if
n is divisible by at least two primes, there exist vertices in Γ(Zn[i, j, k]) that
are not at distance 2. Hence, we obtain the equality diam(Γ(Zn[i, j, k])) =
diam(Γ(Zn[i, j, k])) in this case.

Now, we must focus on the prime power case. We first look at the odd
case, where the following technical lemma is useful [9, Lem. 4.2; Cor. 4.1].

Lemma 4. Let R be a commutative ring and n ≥ 2. If every finite set of zero
divisors from R has a non-zero annihilator, then diam(Γ(Mn(R)) = 2. In
particular, if F is a field, then diam(Γ(Mn(F )) = 2.

Proposition 4. Let t ≥ 1 and let p be an odd prime. Then,

diam(Γ(Zpt [i, j, k])) = 2.

Proof. If t = 1, Zp is a field and the result follows from the second part of
Lemma 4. Now assume that t > 1. In this case the maximal ideal of the
local ring Zpt is the principal ideal generated by p. This maximal ideal is
nilpotent with index of nilpotence t. Therefore, the element pt−1 belongs to
the annihilator of every zero divisor in Zpl and Lemma 4 applies again. �

Remark 3. Again, diam(Γ(Zpt [i, j, k])) ≤ diam(Γ(Zpt [i, j, k])). Now, if p is
an odd prime, there exist vertices in Γ(Zpt [i, j, k]) that are not at distance 1.
Hence, we obtain the equality diam(Γ(Zpt [i, j, k])) = diam(Γ(Zpt [i, j, k])) in
this case.

Finally, we turn to the p = 2 case. The following result computes the
diameter of the undirected zero divisor graph.

Proposition 5. Let t ≥ 1. Then diam(Γ(Z2t [i, j, k])) = 2.

Proof. The graph (Γ(Z2t [i, j, k]) is not complete since the vertices 1 + i and
1 + j are not adjacent. On the other hand, the vertex 2t−1(1 + i + j + k) is
adjacent to all other vertices; i.e., every zero divisor of the ring R = Z2t [i, j, k]
is annihilated on both sides by 2t−1(1 + i + j + k).

To see this, first of all note that the result is clearly true for t = 1,
because there are only eight zero divisors in R′ = Z2[i, j, k]. Now, if t > 1,
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let y be a zero divisor in R and let us prove that 2t−1(1 + i + j + k)y =
2t−1y(1 + i + j + k) = 0. Indeed, if we consider the projection π : R → R′

it is clear that y′ = π(y) is also a zero divisor; therefore y′ is annihilated on
both sides by 1+ i+ j + k. Hence, (1+ i+ j + k)y and y(1+ i+ j + k) belong
to the kernel of π, which is the ideal generated by 2. Thus, there are z1 and
z2 in R such that (1 + i + j + k)y = 2z1 and y(1 + i + j + k) = 2z2, and the
conclusion follows. �

Recall that a directed graph G is called symmetric if, for every di-
rected edge x → y that belongs to G, the corresponding reversed edge
y → x also belongs to G. We are going to prove that the directed zero di-
visor graph Γ(Z2t [i, j, k]) is symmetric. As a consequence, it will follow that
diam(Γ(Z2t [i, j, k])) = diam(Γ(Z2t [i, j, k])).

A ring R is called reversible [10] if, for every a, b ∈ R, ab = 0 implies that
ba = 0. Clearly, a ring R is reversible if and only if its directed zero divisor
graph Γ(R) is symmetric. Thus, to prove that Γ(Z2t [i, j, k]) is symmetric we
will prove that Z2t [i, j, k] is reversible. To do so, we need a series of technical
lemmata.

Lemma 5. Let w ∈ Z[i, j, k]. If ‖w‖ ≡ 0 (mod 4), then either all the compo-
nents of w are even or all of them are odd.

Proof. Put w = a1+a2i+a3j+a4k and denote by nw := card{i : ai is even}.
Since a2

i ≡ 0, 1 (mod 4), it follows that 0 ≡ ||w|| ≡ nw (mod 4) and hence
the result. �

Lemma 6. Let w ∈ Z[i, j, k]. If ‖w‖ ≡ 0 (mod 8), then all the components of
w are even.

Proof. Put w = a1+a2i+a3j+a4k. Since ‖w‖ = a2
1+a2

2+a2
3+a2

4 ≡ 0 (mod 4)
the previous lemma implies that either all the components of w are even or
all of them are odd. Assume that all of them are odd and put ai = 2a′

i +1 for
every i. Then, ‖w‖ = a2

1+a2
2+a2

3+a2
4 = 4((a′

1)
2+a′

1+(a′
2)

2+a′
2+(a′

3)
2+a′

3+
(a′

4)
2+a4)+4. Hence, ((a′

1)
2+a′

1+(a′
2)

2+a′
2+(a′

3)
2+a′

3+(a′
4)

2+a′
4)+1 ≡ 0

(mod 2). This is clearly a contradiction and the result follows. �

Proposition 6. Let w, z∈Z[i, j, k]. If wz ≡ 0 (mod 2t), then zw ≡ 0 (mod 2t).
In other words, the ring Z2t [i, j, k] is reversible.

Proof. We will proceed by induction on t.
The case t = 1 is obvious since Z[i, j, k]/2Z2[i, j, k] is trivially commu-

tative.
Let us consider t = 2 and assume that wz ≡ 0 (mod 4). Hence, ‖w‖‖z‖ =

‖wz‖ ≡ 0 (mod 16). If ‖w‖ ≡ 0 mod 8 we can apply Lemma 6 to conclude
that w = 2w′ for some w′ ∈ L. Hence (using the case t = 1) we have,

wz ≡ 0 (mod 4) ⇔ w′z ≡ 0 (mod 2) ⇔ zw′ ≡ 0 (mod 2) ⇔ zw ≡ 0
(mod 4).

the same holds if ‖z‖ ≡ 0 (mod 8). Finally, if both ‖w‖, ‖z‖ ≡ 0 (mod 4)
we apply Lemma 5 to conclude that all the components of w and z are odd.
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But in this case it can be easily seen that zw −wz ∈ 4Z[i, j, k] and the result
follows.

Now, assume that t > 2 and that wz ≡ 0 (mod 2t). In this case
‖w‖‖z‖ = ‖wz‖ ≡ 0 (mod 22t) and, since t > 2 it follows that either ‖w‖ ≡ 0
(mod 8) or ‖z‖ ≡ 0 (mod 8). If, for instance, ‖w‖ ≡ 0 (mod 8) we apply
Lemma 6 again to conclude that w = 2w′ for some w′ ∈ Z[i, j, k] and we can
proceed like in the previous paragraph. The same holds if ‖z‖ ≡ 0 (mod 8)
and the proof is complete. �
Remark 4. The concept of symmetric ring was defined by Lambek in [19]:
a ring R is symmetric if, for every a, b, c ∈ R, abc = 0 implies that also
acb = 0. It has sometimes been erroneously asserted (and even “proved”)
that reversible and symmetric are equivalent conditions. If a unital ring is
symmetric, then it is also reversible. But this is no longer true for non-unital
rings, as illustrated by an example of Birkenmeier [8]. In the case of unital
rings, the smallest known reversible non-symmetric ring was given in [21].
Namely, it is the group algebra F2Q8 where Q8is the quaternion group. In
[14] it was proved that this is in fact the smallest reversible group algebra
over a field which is not symmetric. In [20] it was also confirmed that F2Q8

is indeed the smallest reversible group ring which is not symmetric. Note
that Z4[i, j, k] is a reversible ring due to Proposition 6 which is trivially non-
symmetric. In fact, it is the smallest known ring with characteristic different
from 2 with this property, having the same number of elements (256) as the
aforementioned example F2Q8.

Since Z2t [i, j, k] is reversible, diam(Γ(Z2t [i, j, k])) = diam(Γ(Z2t [i, j, k])),
so from all the previous work we obtain the following result.

Theorem 7. Let n ≥ 2 be any integer. Then

diam(Γ(Zn[i, j, k])) = diam(Γ(Zn[i, j, k])) =
{

2, if n is a prime power;
3, otherwise.

Recall that a graph G is complete provided every pair of distinct vertices
is connected by a unique edge. In [2, Theorem15] it was proved that the
undirected zero divisor graph for the ring of Gaussian integers modulo n,
Γ(Zn[i]), is complete if and only if n = q2, where q is a rational prime such
q ≡ 3 (mod 4). In our case we have the following.

Corollary 1. For an integer n ≥ 2 the graph Γ(Zn[i, j, k]) is never complete.

Proof. The diameter of a complete graph is 1. Since this is not possible due
to Theorem 7, the result follows. �

4. The Girth

A cycle in a graph is a path starting and ending at the same vertex. The
girth of G, denoted by g(G), is the length of the shortest cycle contained in
G. If the graph does not contain any cycle, its girth is defined to be infinity.
All the previous concepts can be defined for directed graphs just considering
directed paths.
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Let us consider the directed zero divisor graph Γ(Zn[i, j, k]). If n ≥ 2 is
odd then g(Γ(Zn[i, j, k])) = 2, since[

1 0
0 0

] [
0 0
0 1

]
=

[
0 0
0 1

] [
1 0
0 0

]
=

[
0 0
0 0

]
.

For n = 2t the ring Z2t [i, j, k] is reversible and consequently g(Γ(Zn[i, j, k]))
= 2.

Now, we turn to the undirected case. It is clear that Γ(Zn[i, j, k]) is a
simple graph; i.e., it does not contain loops and two vertices are not connected
by more that one edge. Thus, it follows that g(Γ(Z2t [i, j, k])) ≥ 3. We will
now see that the equality holds.

To compute the girth of Γ(Zn[i, j, k]) for odd n, we recall the following
result [9, Prop.3.2]

Proposition 7. Let R be a commutative ring and n ≥ 2. Then g(Γ(Mn(R))) =
3.

This proposition clearly implies that g(Γ(Zn[i, j, k]) = 3 because, for
odd n, we have that Zn[i, j, k] ∼= M2(Zn).

The case n = 2t is analyzed in the following result.

Proposition 8. Let t ≥ 1. Then g(Γ(Z2t [i, j, k])) = 3.

Proof. If t = 1, we have the cycle (see the previous remark) (1+ i)—(j +k)—
(1+i+j+k)—(1+i), for instance. If t = 2, we have the cycle 2—2i—(2+2i)—
2, for instance. Finally, if t > 2 we can consider the cycle 2t−1—2—2t−1i—
2t−1. This proves the result. �

Finally, if we recall the isomorphism (1), the previous discussion leads
to the following.

Theorem 8. For every integer n ≥ 2, g(Γ(Zn[i, j, k])) = 3.

A graph G is complete bipartite if its vertices can be partitioned into two
subsets such that no edge has both endpoints in the same subset, and every
possible edge that could connect vertices in different subsets is part of the
graph. In [2, Theorem17] it was proved that the undirected zero divisor graph
for the ring of Gaussian integers modulo n, Γ(Zn[i]), is complete bipartite
if and only if n = p2, where p is a rational prime such p ≡ 1 (mod 4) or
n = q1q2, with q1, q2 rational primes such that q1 ≡ q2 ≡ 3 (mod 4). In our
case we have the following.

Corollary 2. For an integer n > 2, the graph Γ(Zn[i, j, k]) is never complete
bipartite.

Proof. The girth of a complete bipartite graph is 4. Since this is not possible
due to Theorem 8, the result follows. �
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5. The Domination Number

A dominating set for a graph G is a subset of vertices D, such that every
vertex not in D is adjacent to at least one member of D. The domination
number, denoted by γ(G), is the number of vertices in a minimal dominating
set.

The problem of determining the domination number of an arbitrary
graph is NP-complete [11]. Nevertheless, particular cases have been recently
studied. In [2], for instance, the domination number of the zero divisor graph
of the ring of Gaussian integers modulo n was studied. In particular, the
authors characterized the values of n for which the domination number of
Γ(Zn[i]) is 1 or 2.

This section is devoted to study the domination number of the undi-
rected zero divisor graph Γ(Zn[i, j, k]). The easiest case arises when n is a
power of 2.

Theorem 9. The domination number of the undirected graph Γ(Z2t [i, j, k]) is
1 for every t ≥ 1.

Proof. We have seen in the proof of Proposition 5 that 2t−1(1 + i + j + k)
is adjacent to all other vertices. This proves that {2t−1(1 + i + j + k)} is a
dominating set of the graph Γ(Z2t [i, j, k]). �

The rest of the section will be devoted to study de case when n is an
odd prime. In particular we will prove that, for an odd prime number p, the
domination number of Γ(Zp[i, j, k]) is p + 1.

Theorem 10. The domination number of the zero divisor graph Γ(Zp[i, j, k]),
where p is an odd prime number, is p + 1.

Proof. Again we use the fact that Zp[i, j, k] ∼= M2(Zp). Note that left ideals
and right ideals of M2(Zp) are in bijection with subspaces of the vector space
Z
2
p. In fact, if S is a subspace of Z2

p, then

I = {A ∈ M2(Zp) : Ker(A) ⊇ S},

is a left ideal of M2(Zp). On the other hand,

J = {A ∈ M2(Zp) : Im(A) ⊆ S},

is a right ideal of M2(Zp).
Now, since the order of a subspace divides the order of the space, it

follows that the subspaces of Z2
p are of order 1, p or p2. The proper subspaces

are the subspaces of order p. If S1 and S2 are two proper subspaces, then
either S1 ∩ S2 = {0} or S1 = S2. Consequently, there are p + 1 proper
subspaces of Zp. Let

S0, S1, . . . , Sp

be the p + 1 distinct proper subspaces of Zp. Consider the set of non-zero
zero divisors

D = {D0,D1, . . . , Dp} ⊆ M2(Zp),

where, for i = 0, . . . , p we have Ker(Di) = Si.



1200 J. M. Grau et al. Adv. Appl. Clifford Algebras

Let M ∈ M2(Zp) be a non-zero zero divisor. Then, Im(M) is a proper
subspace, and hence Im(M) = Sk, for some k ∈ {0, . . . , p}. Consequently,
DkM = 0, and so D is a dominating set for Γ(M2(Zp)).

Let s < p and consider the set

E = {E0, E1, . . . , Es} ⊆ M2(Zp),

where, for i = 0, . . . , s, each Ei is a non-zero zero divisor. Then, we can choose
a subspace Sn such that Sn �= Ker(Ei), for i = 0, 1, . . . , s and a subspace Sm

such that Sm �= Im(Ei), for i = 0, 1, . . . , s.
Now, let B be a non-zero zero divisor such that Ker(B) = Sm and

Im(B) = Sn. Since BEi �= 0 and EiB �= 0, for i = 0, 1, . . . , s, it follows that
E is not a dominating set and the claim follows. �

As a consequence of the previous result we can easily compute the dom-
ination number of Γ(Zn[i, j, k]) when n is an odd square-free integer.

Theorem 11. Let n = p1 · · · pk with pi prime for every i. Then, the domination
number of the zero divisor graph Γ(Zn[i, j, k]) is k + p1 + · · · + pk.

Proof. Let Ci := {Mi,1, . . . ,Mi,1+pi
} be the dominating set for the graph

Γ(Zpi
[i, j, k]) given by Theorem 10. Now, it is easy to see that the set

k⋃
i=1

{(0, 0, . . . ,Mi,1, . . . 0, 0..), . . . , (0, 0, . . . ,Mi,1+pi
, . . . 0, 0 . . .)}

is a minimal dominating set of Γ(Zn[i, j, k]) and hence the result. �

In a similar way, we can proof the following result.

Theorem 12. Let n = 2sp1 · · · pk with pi is prime for every i and s > 0. Then,
the domination number of the zero divisor graph Γ(Zn[i, j, k]) is 1 + k + p1 +
· · · + pk.

We end this section presenting an open problem: For an odd prime num-
ber p and a positive integer t, what is the domination number of Γ(Zpt [i, j, k])?
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[18] Lam, T.Y. A First Course in Noncommutative Rings. Graduate Texts in
Mathematics, vol. 131. Springer, New York (2001)

[19] Lambek, J.: On the representation of modules by sheaves of factor mod-
ules. Can. Math. Bull. 14, 359–368 (1971)

[20] Li, Y., Bell, H.E., Phipps, C.: On reversible group rings. Bull. Austral. Math.
Soc. 74, 139–142 (2006)

[21] Marks, G.: Reversible and symmetric rings. J. Pure Appl. Algebra 174(3), 311–
318 (2002)

[22] Miguel, C.: Balanced zero-divisor graphs of matrix rings. Lobachevskii J.
Math. 34(2), 137–141 (2013)

[23] Nazzal, Kh., Ghanem, M.: On the line graph of the zero divisor graph for the
ring of Gaussian integers modulo n. Int. J. Combin., Art. ID 957284 (2012)

[24] Redmond, S.: The zero-divisor graph of a noncommutative ring. Int. J. Com-
mutative Rings 1(4), 203–211 (2002)

[25] Vignéras, M.F.: Arithmétique des algèbres de quaternions. Lecture Notes in
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