See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277560299

On power sums of matrices over a finite commutative ring

Article in International Journal of Algebra and Computation • May 2015
DOI: 10.1142/S0218196717500278 - Source: arXiv
citation
1

4 authors, including:

José María Grau
University of Oviedo
96 PUBLICATIONS 293 CITATIONS
SEE PROFILE

Ignacio Fernández Rúa
University of Oviedo
40 PUBLICATIONS 235 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

[^0]
ON POWER SUMS OF MATRICES OVER A FINITE COMMUTATIVE RING

P. FORTUNY, J.M. GRAU, A.M. OLLER-MARCÉN, AND I.F. RÚA

Abstract

In this paper we deal with the problem of computing the sum of the k-th powers of all the elements of the matrix ring $\mathbb{M}_{d}(R)$ with $d>1$ and R a finite commutative ring. We completely solve the problem in the case $R=\mathbb{Z} / n \mathbb{Z}$ and give some results that compute the value of this sum if R is an arbitrary finite commutative ring R for many values of k and d. Finally, based on computational evidence and using some technical results proved in the paper we conjecture that the sum of the k-th powers of all the elements of the matrix ring $\mathbb{M}_{d}(R)$ is always 0 unless $d=2, \operatorname{card}(R) \equiv 2(\bmod 4)$, $1<k \equiv-1,0,1(\bmod 6)$ and the only element $e \in R \backslash\{0\}$ such that $2 e=0$ is idempotent, in which case the sum is $\operatorname{diag}(e, e)$.

1. INTRODUCTION

For a ring R we denote by $\mathbb{M}_{d}(R)$ the ring of $d \times d$ matrices over R. Now, given an integer $k \geq 1$ we define the sum

$$
S_{k}^{d}(R):=\sum_{M \in \mathbb{M}_{d}(R)} M^{k} .
$$

This paper deals with the computation of $S_{k}^{d}(R)$ in the case when R is finite and commutative.

When $d=1$, the problem of computing $S_{k}^{1}(R)$ is completely solved only for some particular families of finite commutative rings. If R is a finite field \mathbb{F}_{q}, the value of $S_{k}^{1}\left(\mathbb{F}_{q}\right)$ is well-known. If $R=\mathbb{Z} / n \mathbb{Z}$ the study of $S_{k}^{1}(\mathbb{Z} / n \mathbb{Z})$ dates back to 1840 9] and has been completed in various works [2, [5, 7]. Finally, the case $R=\mathbb{Z} / n \mathbb{Z}[i]$ has been recently solved in [3]. For those rings, we have the following result.

Theorem 1. Let $k \geq 1$ be an integer.
i) Finite fields:

$$
S_{k}^{1}\left(\mathbb{F}_{q}\right)= \begin{cases}-1, & \text { if }(q-1) \mid k \\ 0, & \text { otherwise }\end{cases}
$$

ii) Integers modulo n :

$$
S_{k}^{1}(\mathbb{Z} / n \mathbb{Z})= \begin{cases}-\sum_{p|n, p-1| k} \frac{n}{p}, & \text { if } k \text { is even or } k=1 \text { or } n \not \equiv 0 \quad(\bmod 4) \\ 0, & \text { otherwise. }\end{cases}
$$

iii) Gaussian integers modulo n :

$$
S_{k}^{1}(\mathbb{Z} / n \mathbb{Z}[i])= \begin{cases}\frac{n}{2}(1+i), & \text { if } k>1 \text { is odd and } n \equiv 2(\bmod 4) \\ -\sum_{p \in \mathcal{P}(k, n)} \frac{n^{2}}{p^{2}}, & \text { otherwise. }\end{cases}
$$

where

$$
\mathcal{P}(k, n):=\left\{\text { prime } p: p \| n, p^{2}-1 \mid k, p \equiv 3 \quad(\bmod 4)\right\}
$$

and $p \| n$ means that $p \mid n$, but $p^{2} \nmid n$.
On the other hand, if $d>1$ the problem has been only solved when R is a finite field [1]. In particular, the following result holds.

Theorem 2. Let $k, d \geq 1$ be integers. Then $S_{k}^{d}\left(\mathbb{F}_{q}\right)=0$ unless $q=2=d$ and $1<k \equiv-1,0,1(\bmod 6)$ in which case $S_{k}^{d}\left(\mathbb{F}_{q}\right)=I_{2}$.

In this paper we deal with the computation of $S_{k}^{d}(R)$ with $d>1$ and R a finite commutative ring. In particular Section 2 is devoted to completely determine the value of $S_{k}^{d}(R)$ in the case $R=\mathbb{Z} / n \mathbb{Z}$ (that we usually write as \mathbb{Z}_{n}). In Section 3 we give some technical results regarding sums of non-commutative monomials over $\mathbb{Z} / n \mathbb{Z}$ which will be used in Section 4 to compute $S_{k}^{d}(R)$ for an arbitrary finite commutative ring R in many cases. Finally, we close the paper in Section 5 with the following conjecture based on strong computational evidence

Conjecture 1. Let $d>1$ and let R be a finite commutative ring. Then $S_{k}^{d}(R)=0$ unless the following conditions hold:
(1) $d=2$,
(2) $\operatorname{card}(R) \equiv 2(\bmod 4)$ and $1<k \equiv-1,0,1(\bmod 6)$,
(3) The unique element $e \in R \backslash\{0\}$ such that $2 e=0$ is idempotent.

Moreover, in this case

$$
S_{k}^{d}(R)=\left(\begin{array}{ll}
e & 0 \\
0 & e
\end{array}\right)
$$

2. Power sums of matrices over \mathbb{Z}_{n}

In what follows we will consider integers $n, d>1$. For the sake of simplicity, M_{n}^{d} will denote the set of integer matrices with entries in the range $\{0, \ldots, n-1\}$. Furthermore, for an integer $k \geq 1$, let $S_{k}^{d}(n)=\sum_{M \in M_{n}^{d}} M^{k}$. Our main goal in this section will be to compute the value of $S_{k}^{d}(n)$ modulo n. This is exactly the sum $S_{k}^{d}(\mathbb{Z} / n \mathbb{Z})$.

We start with the prime case. If $n=p$ is a prime, we have the following result [1. Corollary 3.2]
Proposition 1. Let p be a prime. Then, $S_{k}^{d}(p) \equiv 0(\bmod p)$ unless $d=p=2$.
Thus, the case $n=2$ must be studied separately. In fact, we have

Proposition 2.

$$
S_{k}^{2}(2) \equiv\left\{\begin{array}{lll}
0_{2} & (\bmod 2), & \text { if } k=1 \text { or } k \equiv 2,3,4 \quad(\bmod 6) \\
I_{2} & (\bmod 2), & \text { if } 1<k \equiv 0,1,5 \quad(\bmod 6)
\end{array}\right.
$$

Proof. For every $M \in M_{n}^{2}$ it holds that $M^{2} \equiv M^{8}(\bmod 2)$. As a consequence $S_{k}^{2}(2) \equiv S_{k+6}^{2}(2)(\bmod 2)$ for every $k>1$. Thus, the result follows just computing $S_{k}^{2}(2)$ for $1 \leq k \leq 7$.

Now, we turn to the prime power case. The following lemma is straightforward
Lemma 1. Let p be a prime. Then, any element M in $M_{p^{s+1}}^{d}$ can be uniquely written in the form $A+p^{s} B$, where $A \in M_{p^{s}}^{d}, B \in M_{p}^{d}$.

Using this lemma we can prove the following useful result.
Proposition 3. Let p be a prime. Then, $S_{k}^{d}\left(p^{s+1}\right) \equiv p^{d^{2}} S_{k}^{d}\left(p^{s}\right)\left(\bmod p^{s+1}\right)$.
Proof. By the previous lemma we have

$$
\begin{equation*}
S_{k}^{d}\left(p^{s+1}\right)=\sum_{M \in M_{p^{s+1}}^{d}} M^{k}=\sum_{A \in M_{p^{s}}^{d}} \sum_{B \in M_{p}^{d}}\left(A+p^{s} B\right)^{k} \tag{1}
\end{equation*}
$$

Using the non-commutative version of the binomial theorem we have that

$$
\left(A+p^{s} B\right)^{k} \equiv A^{k}+p^{s} \sum_{t=1}^{k} A^{k-t} B A^{t-1} \quad\left(\bmod p^{s+1}\right)
$$

Thus, combining this with (11) we obtain

$$
\begin{aligned}
S_{k}^{d}\left(p^{s+1}\right) & \equiv \sum_{B \in M_{p}^{d}}\left(\sum_{A \in M_{p^{s}}^{d}} A^{k}\right)+\sum_{t=1}^{k} \sum_{A \in M_{p^{s}}^{d}} A^{k-t}\left(p^{s} \sum_{B \in M_{p}^{d}} B\right) A^{t-1} \\
& \equiv p^{d^{2}} S_{k}^{d}\left(p^{s}\right)+\sum_{t=1}^{k} \sum_{A \in M_{p^{s}}^{d}} A^{k-t}\left(p^{s} S_{1}^{d}(p)\right) A^{t-1} \\
& \equiv p^{d^{2}} S_{k}^{d}\left(p^{s}\right) \quad\left(\bmod p^{s+1}\right)
\end{aligned}
$$

because $S_{1}^{d}(p) \equiv 0(\bmod p)$ by Propositions 1 and 2 (depending on whether p is odd or not).

Remark. Note that Proposition 3 implies that if $S_{k}^{d}\left(p^{s}\right) \equiv 0\left(\bmod p^{s}\right)$, then also $S_{k}^{d}\left(p^{s+1}\right) \equiv 0\left(\bmod p^{s+1}\right)$.

As a consequence we get the following result which extends Proposition 1 .
Corollary 1. $S_{k}^{d}\left(p^{s}\right) \equiv 0\left(\bmod p^{s}\right)$ unless $d=p=2$ and $s=1$.
Proof. If $p=d=2$, then Proposition 1 implies that $S_{k}^{2}(4) \equiv 2^{4} S_{k}^{2}(2) \equiv 0(\bmod 4)$, so the previous remark leads to $S_{k}^{2}\left(2^{s}\right) \equiv 0\left(\bmod 2^{s}\right)$, for every $s>1$. On the other hand, if d or p is odd, then we know by Proposition 1 that $S_{k}^{d}(p) \equiv 0(\bmod p)$. Again, the remark gives us $S_{k}^{d}\left(p^{s}\right) \equiv 0$, by induction for all $s \geq 1$.

In order to study the general case the following lemma will be useful. It is an analogue of [6, Lemma 3 i)]

Lemma 2. If $m \mid n$, then $S_{k}^{d}(n) \equiv\left(\frac{n}{m}\right)^{d^{2}} S_{k}^{d}(m)(\bmod m)$.

Proof. Given a matrix $M \in M_{n}^{d}$, let $M=\left(m_{i, j}\right)$ with $1 \leq i, j \leq d$. Then,

$$
\begin{aligned}
S_{k}^{d}(n) & =\sum_{M \in M_{n}^{d}} M^{k}=\sum_{0 \leq m_{i, j} \leq n-1}\left(m_{i, j}\right)^{k} \\
& \equiv\left(\frac{n}{m}\right)^{d^{2}} \sum_{0 \leq m_{i, j} \leq m-1}\left(m_{i, j}\right)^{k}=S_{k}^{d}(m) \quad(\bmod m)
\end{aligned}
$$

Now, we can prove the main result of this section.
Theorem 3. The following congruence modulo n holds:

$$
S_{k}^{d}(n) \equiv \begin{cases}\frac{n}{2} \cdot I_{2}, & \text { if } d=2, n \equiv 2 \quad(\bmod 4) \text { and } 1<k \equiv 0,1,5 \quad(\bmod 6) \\ 0_{2}, & \text { otherwise }\end{cases}
$$

Proof. Let $n=2^{s} p_{1}^{r_{1}} \cdots p_{t}^{r_{t}}$ be the prime power decomposition of n.
If $1 \leq i \leq t$, we have by Lemma 2 and Corollary 1 that

$$
S_{k}^{d}(n) \equiv\left(\frac{n}{p_{i}^{r_{i}}}\right)^{d^{2}} S_{k}^{d}\left(p_{i}^{r_{i}}\right) \equiv 0 \quad\left(\bmod p_{i}^{r_{i}}\right)
$$

On the other hand, using again Lemma 2 we have that

$$
S_{k}^{d}(n) \equiv\left(\frac{n}{2^{s}}\right)^{d^{2}} S_{k}^{d}\left(2^{s}\right) \quad\left(\bmod 2^{s}\right)
$$

Hence, Corollary 1 implies that $S_{k}^{d}(n) \equiv 0\left(\bmod 2^{s}\right)$ unless $d=p=2$ and $s=1$.
To conclude, it is enough to apply Proposition 2 together with the Chinese Remainder Theorem.

The following corollary easily follows from Theorem 3 and it confirms the conjecture stated in the sequence A017593 from the OEIS [8].

Corollary 2. $S_{n}^{2}(n) \not \equiv 0(\bmod n)$ if and only if $n \equiv 6(\bmod 12)$.
As a further application of Theorem 3 application we are going to compute the sum of the powers of the Hamilton quaternions over $\mathbb{Z} / n \mathbb{Z}$.

Proposition 4. For every $n \in \mathbb{N}$ and $l>0$, it holds that

$$
\sum_{z \in \mathbb{Z}_{n}[i, j, k]} z^{l}=0
$$

Proof. Since for all $z \in \mathbb{Z}_{2}[i, j, k]$ we have that $z^{2} \in \mathbb{Z}_{2}$, we deduce that $z^{4}=z^{2}$, and so it can be straightforwardly checked that

$$
\sum_{z \in \mathbb{Z}_{2}[i, j, k]} z^{l}=0
$$

Now, if $s>1$, observing that

$$
\mathbb{Z}_{2^{s}}[i, j, k] \cong\left\{\left(\begin{array}{cccc}
a & b & c & d \\
-b & a & -d & c \\
-c & d & a & -b \\
-d & -c & b & a
\end{array}\right): a, b, c, d \in \mathbb{Z}_{2^{s}}\right\}
$$

we can adapt Lemma 1. Proposition 3 and Corollary 1 to inductively obtain that

$$
\sum_{z \in \mathbb{Z}_{2} s[i, j, k]} z^{l}=0 .
$$

Finally, if $n=2^{s} m$ with m odd we know [4. Theorem 4] that

$$
\mathbb{Z}_{n}[i, j, k] \cong \mathbb{Z}_{2^{s}}[i, j, k] \times \mathbb{Z}_{m}[i, j, k] \cong \mathbb{Z}_{2^{s}}[i, j, k] \times \mathbb{M}_{2}\left(\mathbb{Z}_{m}\right)
$$

and the result follows from Theorem 3,

3. SUMS OF NON-COMMUTATIVE MONOMIALS OVER \mathbb{Z}_{n}

We will now consider a more general setting. Let $r \geq 1$ be an integer and consider $w\left(x_{1}, \ldots, x_{r}\right)$ a monomial in the non-commuting variables $\left\{x_{1}, \ldots, x_{r}\right\}$ of total degree k. In this situation, we define the sum

$$
S_{w}^{d}(n):=\sum_{A_{1}, \ldots, A_{r} \in M_{n}^{d}} w\left(A_{1}, \ldots, A_{r}\right)
$$

Note that if $r=1$, then $w\left(x_{1}\right)=x_{1}^{k}$ and $S_{w}^{d}(n)=S_{k}^{d}(n)$ so we recover the situation from Section 2, Thus, in what follows we assume $r>1$.

We want to study the value of $S_{w}^{d}(n)$ modulo n. To do so we first introduce two technical lemmas that extend [1, Lemma 2.3].

Lemma 3. Let $\tau \geq 1$ be an integer and let $\beta_{i}>0$ for every $1 \leq i \leq \tau$. If p is an odd prime,

$$
\sum_{x_{1}, \ldots, x_{\tau}} x_{1}^{\beta_{1}} \cdots x_{\tau}^{\beta_{\tau}} \equiv \begin{cases}\left(-p^{s-1}\right)^{\tau}, & \text { if } p-1 \mid \beta_{i} \text { for every } i ; \\ 0, & \text { otherwise. }\end{cases}
$$

where the sum is extended over x_{1}, \ldots, x_{τ} in the range $\left\{0, \ldots, p^{s}-1\right\}$. Also, if some $\beta_{i}=0$, then $\sum_{x_{1}, \ldots, x_{\tau}} x_{1}^{\beta_{1}} \cdots x_{\tau}^{\beta_{\tau}} \equiv 0\left(\bmod p^{s}\right)$.

Proof. It is enough to apply [6, Lemma 3 ii)] which states that

$$
\sum_{x_{i}=0}^{p^{s}-1} x_{i}^{\beta_{i}} \equiv\left\{\begin{array}{ll}
-p^{s-1}, & \text { if } p-1 \mid \beta_{i} ; \\
0, & \text { otherwise } .
\end{array} \quad\left(\bmod p^{s}\right)\right.
$$

for every $1 \leq i \leq \tau$. Observe that, if $\beta_{i}=0$, then:

$$
\sum_{x_{1}, \ldots, x_{\tau}} x_{1}^{\beta_{1}} \cdots x_{\tau}^{\beta_{\tau}}=\sum_{x_{i}} \sum_{x_{j}, j \neq i} x_{1}^{\beta_{1}} \cdots x_{i-1}^{\beta_{i-1}} x_{i+1}^{\beta_{i+1}} \cdots x_{\tau}^{\beta_{\tau}} \equiv 0 \quad\left(\bmod p^{s}\right)
$$

Remark. Observe that in the previous situation, if $\tau \geq 2$ and $s>1$, it easily follows that $\sum_{x_{1}, \ldots, x_{\tau}} x_{1}^{\beta_{1}} \cdots x_{\tau}^{\beta_{\tau}} \equiv 0\left(\bmod p^{s}\right)$ regardless the values of $\beta_{i} \geq 0$.
Lemma 4. Let $\tau \geq 1$ be an integer and let $\beta_{i}>0$ for every $1 \leq i \leq \tau$. Then,

$$
\sum_{x_{1}, \ldots, x_{\tau}} x_{1}^{\beta_{1}} \cdots x_{\tau}^{\beta_{\tau}} \equiv \begin{cases}1, & \text { if } s=1 \\ 0, & \text { if } s>1 \text { and } \beta_{i}>1 \text { and odd for some } i ; \quad\left(\bmod 2^{s}\right) \\ (-1)^{A}\left(2^{s-1}\right)^{B}, & \text { if } s>1 \text { and } \beta_{i}=1 \text { or even for every } i\end{cases}
$$

where the sum is extended over x_{1}, \ldots, x_{τ} in the range $\left\{0, \ldots, 2^{s}-1\right\}, A=\operatorname{card}\left\{\beta_{i}\right.$: $\left.\beta_{i}=1\right\}$ and $B=\operatorname{card}\left\{\beta_{i}: \beta_{i}\right.$ is even $\}$. Also, if some $\beta_{i}=0$, then $\sum_{x_{1}, \ldots, x_{\tau}} x_{1}^{\beta_{1}} \cdots x_{\tau}^{\beta_{\tau}} \equiv$ $0\left(\bmod 2^{s}\right)$.

Proof. It is enough to apply [6, Lemma 3 iii)] which states that

$$
\sum_{x_{i}=0}^{2^{s}-1} x_{i}^{\beta_{i}} \equiv\left\{\begin{array}{ll}
2^{s-1}, & \text { if } s=1 \text { or } s>1 \text { and } \beta_{1}>1 \text { is even; } \\
-1, & \text { if } s>1 \text { and } \beta_{i}=1 \\
0, & \text { if } s>1 \text { and } \beta_{1}>1 \text { is odd }
\end{array} \quad\left(\bmod p^{s}\right)\right.
$$

for every $1 \leq i \leq \tau$. The proof of the case when some $\beta_{i}=0$ is identical to that of the previous lemma.

As a consequence, we get the following results.
Proposition 5. Let p be an odd prime and let $s>1$ be an integer. Then,

$$
S_{w}^{d}\left(p^{s}\right) \equiv 0 \quad\left(\bmod p^{s}\right)
$$

Proof. Let $A_{l}=\left(a_{i, j}^{l}\right)_{1 \leq i, j \leq d}$ for every $1 \leq l \leq r$. Note that each entry in the matrix $S_{w}^{d}\left(p^{s}\right)$ is a homogeneous polynomial in the variables $a_{i, j}^{l}$. Observe also that these variables are summation indexes in the range $\left\{0, \ldots, p^{s}-1\right\}$. Hence, the number of variables is $r d^{2}>2$ and, since $s>1$, the Remark 3 can be applied to the sum of its monomials, and the result follows.

Proposition 6. Let $s>1$ be an integer. Assume that one of the following conditions holds:
i) $k \leq r d^{2}$,
ii) $k>r d^{2}$ and $k+r d^{2}$ is even.

Then, $S_{w}^{d}\left(2^{s}\right) \equiv 0\left(\bmod 2^{s}\right)$.
Proof. Just like in the previous proposition each entry in the matrix $S_{w}^{d}\left(2^{s}\right)$ is a homogeneous polynomial in the $r d^{2}$ variables $a_{i, j}^{l}$. Hence, it is a sum of elements of the form

$$
\sum_{a_{i, j}^{l} \in \mathbb{Z}_{2} s} \prod\left(a_{i, j}^{l}\right)^{\beta_{i, j, l}} .
$$

Observe that $\sum_{i, j, l} \beta_{i, j, l}=k$ so, if $k<r d^{2}$ it follows that some $\beta_{i, j, l}=0$, and so each monomial sum is $0 \bmod 2^{s}$ (because of Lemma 3). Therefore, each entry in the matrix $S_{w}^{d}(p)$ is $0\left(\bmod 2^{s}\right)$ in this case, as claimed.

Now, assume that $k \geq r d^{2}$ and $k+r d^{2}$ is even (in particular if $k=r d^{2}$). Due to Lemma 4 an element $\sum_{a_{i, j}^{l} \in \mathbb{Z}_{2^{s}}} \prod\left(a_{i, j}^{l}\right)^{\beta_{i, j, l}}$ is $0\left(\bmod 2^{s}\right)$ unless in one of its monomials the set of $r d^{2}$ exponents $\beta_{i, j, l}$ is formed by exactly $r d^{2}-1$ ones and 1 even value. But in this case $k=\left(r d^{2}-1\right)+2 \alpha$ so $k+r d^{2}$ is odd, a contradiction. Consequently, each entry in the matrix $S_{w}^{d}(p)$ is also $0\left(\bmod 2^{s}\right)$ in this case and the result follows.

As Remark 3 and Lemma 4 point out, the case $s=1$ must be considered separately. In this case, we have the following result.

Proposition 7. Let p be a prime. Assume that one of the following conditions holds:
i) $k<r d^{2}(p-1)$,
ii) k is not a multiple of $p-1$.

Then, $S_{w}^{d}(p) \equiv 0(\bmod p)$.

Proof. If $p=2$ condition ii) cannot hold and if condition i) holds, we can apply the same argument of the proof of the first part of Proposition 6 to get the result.

Now, if p is odd, again each entry in the matrix $S_{w}^{d}(p)$ is a homogeneous polynomial in the $r d^{2}$ variables $a_{i, j}^{l}$. Hence, it is a sum of elements of the form

$$
\sum_{a_{i, j}^{l} \in \mathbb{Z}_{p}} \prod\left(a_{i, j}^{l}\right)^{\beta_{i, j, l}} .
$$

We have that $\sum_{i, j, l} \beta_{i, j, l}=k$ so, if $k<r d^{2}(p-1)$ or if it is not a multiple of $p-1$ it follows that some $\beta_{i, j, l}$ is either 0 or not a multiple of $p-1$. In either case the corresponding element is $0(\bmod p)$ due to Lemma 3 and, consequently, each entry in the matrix $S_{w}^{d}(p)$ is also $0(\bmod p)$ as claimed.

Observe that in the previous results we have considered sums of the form

$$
S_{w}^{d}\left(p^{s}\right)=\sum_{A_{1}, \ldots, A_{r} \in M_{p^{s}}^{d}} w\left(A_{1}, \ldots, A_{r}\right)
$$

where all the matrices A_{i} belong to the same matrix ring $M_{p^{s}}^{d}$. The following proposition will be useful in the next section and deals with the case when the matrices A_{i} belong to different matrix rings. First, we introduce some notation. Given a prime p, let

$$
S_{w}^{d}\left(p^{s_{1}}, \ldots, p^{s_{r}}\right):=\sum_{A_{i} \in M_{p^{s_{i}}}^{d}} w\left(A_{1}, \ldots, A_{r}\right)
$$

If $s_{1}=\cdots=s_{r}=s$, then $S_{w}^{d}\left(p^{s_{1}}, \ldots, p^{s_{r}}\right)=S_{w}^{d}\left(p^{s}\right)$ and we are in the previous situation.

Proposition 8. With the previous notation, if $s_{1}>1$, then

$$
S_{w}^{d}\left(p^{s_{1}+1}, p^{s_{2}}, \ldots, p^{s_{r}}\right) \equiv p^{d^{2}} S_{w}^{d}\left(p^{s_{1}}, p^{s_{2}}, \ldots, p^{s_{r}}\right) \quad\left(\bmod p^{s_{1}+1}\right)
$$

Proof. Since $s_{1}>1$ we have that $2 s_{1}>s_{1}+1$ so, due to Lemma 1

$$
\begin{aligned}
S_{w}^{d}\left(p^{s_{1}+1}, p^{s_{2}}, \ldots, p^{s_{t}}\right)= & \sum_{\substack{A_{1} \in M_{p^{s_{1}+1}}^{A_{i} \in M_{p^{s_{i}}}^{d}}}} w\left(A_{1}, \ldots, A_{t}\right)= \\
= & \sum_{\substack{B \in M_{p^{s_{1}}, C \in M_{p}^{d}}^{A_{i} \in M_{p^{s_{i}}}^{d}}}} w\left(B+p^{s_{1}} C, A_{2}, \ldots, A_{r}\right) \equiv \\
\equiv & \sum_{\substack{B \in M_{p^{s_{1}}, C \in M_{p}^{d}}^{A_{i} \in M_{p^{\prime}}^{d}}}}\left(w\left(B, A_{2}, \ldots, A_{r}\right)+p^{s_{1}} \sum_{l} w_{l}\left(B, C, A_{2}, \ldots, A_{r}\right)\right)= \\
= & p^{d^{2}} S_{w}^{d}\left(p^{s_{1}}, \ldots, p^{s_{r}}\right)+p^{s_{1}} \sum_{l} \sum_{\substack{B \in M_{p^{s_{1}}}^{d}, C \in M_{p}^{d} \\
A_{i} \in M_{p^{s_{i}}}^{d}}} w_{l}\left(B, C, A_{2}, \ldots, A_{r}\right) \\
& \left(\bmod p^{s_{1}+1}\right) .
\end{aligned}
$$

Where $w_{l}\left(x, y, x_{2}, \ldots, x_{r}\right)$ denotes the monomial $w\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ where the $l-$ th ocurrence of the term x_{1} is substituted by y and the remaining ones by x (for instance, $w\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2} x_{1}$ gives us $w_{1}\left(x, y, x_{2}\right)=y x x_{2} x, w_{2}\left(x, y, x_{2}\right)=$ $\left.x y x_{2} x, w_{3}\left(x, y, x_{2}\right)=x^{2} x_{2} y\right)$.

But, for every l, the monomial $w_{l}\left(B, C, A_{2}, \ldots, A_{r}\right)$ contains C only once and with exponent 1. Hence,

$$
\sum_{\substack{B \in M_{p^{s_{1}}, C \in M_{p}^{d}}^{A_{i} \in M_{p}^{d}}}} w_{l}\left(B, C, A_{2}, \ldots, A_{r}\right) \equiv 0 \quad(\bmod p)
$$

because $S_{1}^{d}(p) \equiv 0(\bmod p)$ and the result follows.
The following corollary in now straightforward.
Corollary 3. Assume that $S_{w}^{d}\left(p^{s}\right) \equiv 0\left(\bmod p^{s}\right)$. Let us consider $s_{1} \geq s_{2} \geq \cdots \geq$ $s_{r}=s$. Then,

$$
S_{w}^{d}\left(p^{s_{1}}, \ldots, p^{s_{r}}\right) \equiv 0 \quad\left(\bmod p^{s_{1}}\right)
$$

Proof. Just apply the previous proposition repeatedly.

4. Power sums of matrices over a finite commutative ring

In this section we will use the results from Section 3 to compute $S_{k}^{d}(R)$ for an arbitrary finite commutative ring R in many cases.

First of all, note that if $\operatorname{char}(R)=n=p_{1}^{s_{1}} \cdots p_{t}^{s_{t}}$, then $R \cong R_{1} \times \cdots \times R_{t}$, where $\operatorname{char}\left(R_{i}\right)=p_{i}^{s_{i}}$ and each R_{i} is a subring of characteristic $p_{i}^{s_{i}}$ and, in particular, a $Z_{p_{i}^{s i}}$-module. This allows us to restrict ourselves to the case when $\operatorname{char}(R)$ is a prime power.

The simplest case arises when R is a free $\mathbb{Z}_{p^{s}}$-module for an odd prime p.
Proposition 9. Let p be an odd prime and let R be a finite commutative ring of characteristic p^{s}, such that R is a free $\mathbb{Z}_{p^{s}}$-module of rank r. Then,
i) If $s>1, S_{k}^{d}(R)=0$ for every $k \geq 1$ and $d \geq 2$.
ii) If $s=1, S_{k}^{d}(R)=0$ for every $d \geq 2$ and k such that either $k<r d^{2}(p-1)$ or k is not a multiple of $p-1$.

Proof. Note that under the previous assumptions and using Proposition 5 or Proposition 7 (depending on whether $s>1$ or $s=1$), it follows that

$$
\sum_{A_{1}, \ldots, A_{r} \in M_{p^{s}}^{d}}\left(x_{1} A_{1}+\cdots+x_{r} A_{r}\right)^{k} \equiv 0 \quad\left(\bmod p^{s}\right)
$$

because each entry of such a matrix is a polynomial in x_{1}, \ldots, x_{r} whose coefficients are 0 modulo p^{s}.

Consequently, for every $g_{1}, \ldots, g_{r} \in R$ we have that

$$
\sum_{A_{1}, \ldots, A_{r} \in M_{p^{s}}^{d}}\left(g_{1} A_{1}+\cdots+g_{r} A_{r}\right)^{k}=0
$$

Now, since R is free of rank r we can take a basis g_{1}, \ldots, g_{r} of R so that $M_{p^{s}}^{d}=$ $\left\{g_{1} A_{1}+\cdots+g_{r} A_{r} \mid A_{i} \in M_{p^{s}}^{d}\right\}$. Therefore

$$
S_{k}^{d}(R)=\sum_{A_{1}, \ldots, A_{r} \in M_{p^{s}}^{d}}\left(g_{1} A_{1}+\cdots+g_{r} A_{r}\right)^{k}
$$

This concludes the proof.
If $p=2$, we have the following version of Proposition 9
Proposition 10. Let R be a finite commutative ring of characteristic 2^{s}, such that R is a free $\mathbb{Z}_{2^{s}}$ - module of rank r. Then,
i) If $s>1, S_{k}^{d}(R)=0$ for every $d \geq 2$ and k such that $k \leq r d^{2}$ or $k>r d^{2}$ with $k+r d^{2}$ even.
ii) If $s=1, S_{k}^{d}(R)=0$ for every $d \geq 2$ and k such that either $k<r d^{2}$.

Proof. The proof is similar to that of Proposition 9 using Proposition 6 or Proposition 7 depending on whether $s>1$ or $s=1$.

Remark. Note that if R is a finite commutative ring of characteristic p^{s} and $s=1$, then R is necessarily free. Consequently, to study the non-free case we may assume that $s>1$.

Assume that elements g_{1}, \ldots, g_{r} form a minimal set of generators of a non-free $\mathbb{Z}_{p^{s}}$-module R. Since R is non-free and $\operatorname{char}(R)=p^{s}$, it follows that $r>1$ and also $s>1$. For every $i \in\{1, \ldots, r\}$ let $1 \leq s_{i} \leq s$ be minimal such that $p^{s_{i}} g_{i}=0$. Note that it must be $s_{i}=s$ for some i and $s_{j}<s$ for some j. There is no loss of generality in assuming that $s=s_{1} \geq \cdots \geq s_{r}$ and at least one of the inequalities is strict. Note that $p^{s_{1}}, \ldots, p^{s_{r}}$ are the invariant factors of the \mathbb{Z}-module R. With this notation we have the following result extending Proposition 9

Proposition 11. Let p be an odd prime and let R be a finite commutative ring of characteristic p^{s}, such that R is a non-free $\mathbb{Z}_{p^{s}}$-module. Then,
i) If $s_{r}>1, S_{k}^{d}(R)=0$ for every $k \geq 1$ and $d \geq 2$.
ii) If $s_{r}=1, S_{k}^{d}(R)=0$ for every $d \geq 2$ and k such that either $k<r d^{2}(p-1)$ or k is not a multiple of $p-1$.

Proof. First of all, observe that

$$
S_{k}^{d}(R)=\sum_{A_{i} \in M_{p^{s_{i}}}^{d}}\left(g_{1} A_{1}+\cdots+g_{r} A_{r}\right)^{k}
$$

In both situations i) and ii) it follows that $S_{w}^{d}\left(p^{s_{r}}\right) \equiv 0\left(\bmod p^{s_{r}}\right)$. Moreover, we are in the conditions of Corollary 3] so it follows that $S_{w}^{d}\left(p^{s}, p^{s_{2}}, \ldots, p^{s_{r}}\right) \equiv 0$ $\left(\bmod p^{s}\right)$. Consequently all the coefficients of the above sum are 0 modulo p^{s} and the result follows.

The corresponding result for $p=2$ is as follows.
Proposition 12. Let R be a finite commutative ring of characteristic 2^{s}, such that R is a non-free $\mathbb{Z}_{p^{s}}$-module. Then,
i) If $s_{r}>1, S_{k}^{d}(R)=0$ for every $d \geq 2$ and k such that $k \leq r d^{2}$ or $k>r d^{2}$ with $k+r d^{2}$ even.
ii) If $s_{r}=1, S_{k}^{d}(R)=0$ for every $d \geq 2$ and k such that either $k<r d^{2}$.

Proof. It is identical to the proof of Proposition 11

5. Conjectures and further work

Given a finite commutative ring R of characteristic n, we have seen in the last section that $S_{k}^{d}(R)=0$ for many values of k, d and n. In this section we present two conjectures based on strong computational evidence which, being true, would let us to give a general result about $S_{k}^{d}(R)$.

With the notation from the previous section, given an r-tuple of integers $\kappa=$ $\left(k_{1}, \ldots, k_{r}\right)$, we consider the set of monomials in the non-commuting variables $\left\{x_{1}, \ldots, x_{r}\right\}$

$$
\Omega_{\kappa}:=\left\{w: \operatorname{deg}_{x_{i}}(w)=k_{i}, \text { for every } i\right\}
$$

The following conjectures are based on computational evidence.
Conjecture 2. With the previous notation, let $s_{1} \geq s_{2} \geq \cdots \geq s_{r}$. Then

$$
S_{w}^{d}\left(p^{s_{1}}, p^{s_{2}}, \ldots, p^{s_{r}}\right) \equiv 0 \quad\left(\bmod p^{s_{1}}\right)
$$

unless $d=p=2$ and $s_{i}=1$ for all i.
Conjecture 3. If $p=2=d$ and $r>1$ then for every $\kappa \in \mathbb{N}^{r}$

$$
\sum_{w \in \Omega_{\kappa}} \sum_{A_{i} \in M_{2}^{d}} w\left(A_{1}, \ldots, A_{r}\right) \equiv 0 \quad(\bmod 2)
$$

The next lemma extends Lemma 2 in some sense. Its proof is straightforward.
Lemma 5. Let R_{1} and R_{2} be finite commutative rings, and let $R=R_{1} \times R_{2}$ be its direct product. Then

$$
S_{k}^{d}(R)=\left(\operatorname{card}\left(R_{2}\right)^{d^{2}} \cdot S_{k}^{d}\left(R_{1}\right), \operatorname{card}\left(R_{1}\right)^{d^{2}} \cdot S_{k}^{d}\left(R_{2}\right)\right) \in \mathbb{M}_{d}\left(R_{1}\right) \times \mathbb{M}_{d}\left(R_{2}\right)
$$

Now, the following proposition would follow from Conjectures 2 and 3 .
Proposition 13. Let R be a finite commutative ring of characteristisc p^{s} for some prime p. Then $S_{k}^{d}(R)=0$ unless $d=2, R=\mathbb{Z} / 2 \mathbb{Z}$ and $1<k \equiv-1,0,1(\bmod 6)$. Moreover, in this case $S_{k}^{d}(R)=I_{2}$.

Proof. Assume that $\left\langle g_{1} \ldots, g_{r}\right\rangle$ is a minimal set of generators of R as $\mathbb{Z}_{p^{s}}$-module. Let $s=s_{1} \geq s_{2} \geq \cdots \geq s_{r}$ be integers such that the order of g_{i} is $p^{s_{i}}$; i.e., s_{1}, \ldots, s_{r} are minimal such that $p^{s_{i}} g_{i}=0$.

In this situation,

$$
S_{k}^{d}(R)=\sum_{A_{i} \in M_{p^{s}}^{d}}\left(g_{1} A_{1}+\ldots+g_{r} A_{r}\right)^{k}=0
$$

unless $d=p=2, s=r=1$ and $1<k \equiv-1,0,1(\bmod 6)$ due to Conjecture 2,
On the other hand, if $d=p=2, s=r=1$ and $1<k \equiv-1,0,1(\bmod 6)$ it follows that

$$
S_{k}^{2}(R)=\sum_{A \in M_{2}^{2}}\left(g_{1} A\right)^{k}=\left(\begin{array}{cc}
g_{1}^{k} & 0 \\
0 & g_{1}^{k}
\end{array}\right)
$$

But since in this case $R=\left\{0, g_{1}\right\}$, there are only two possibilities: $g_{1}^{2}=g_{1}$ (and hence $R=\mathbb{Z} / 2 \mathbb{Z}$) or $g_{1}^{2}=0$ and the result follows.

Finally, the next general result holds provided Conjectures 2 and 3 are correct. It is Conjecture 1 as stated in the introduction to the paper.

Theorem 4. Let $d>1$ and let R be a finite commutative ring. Then $S_{k}^{d}(R)=0$ unless the following conditions hold:
(1) $d=2$,
(2) $\operatorname{card}(R) \equiv 2(\bmod 4)$ and $1<k \equiv-1,0,1(\bmod 6)$,
(3) The unique element $e \in R \backslash\{0\}$ such that $2 e=0$ is idempotent.

Moreover, in this case

$$
S_{k}^{d}(R)=\left(\begin{array}{cc}
e & 0 \\
0 & e
\end{array}\right)
$$

Proof. First, observe that if $\operatorname{card}(R) \equiv 2(\bmod 4)$, then R has $2 m$ elements, where m is odd. Therefore, the 2 -primary component of the additive group R has only two elements, and so there is a unique element $e \in R$ of additive order 2 .

Now, if R is of characteristic p^{s} for some prime, the result follows from the above proposition. Hence, we assume that R has composite characteristic. Let $R=R_{1} \times R_{2}$ with R_{1} the zero ring or $\operatorname{char}\left(R_{1}\right)=2^{s}$ and $\operatorname{char}\left(R_{2}\right)$ odd. Due to Lemma 5 and Proposition 13 it follows that $S_{k}^{d}(R)=\left(\operatorname{card}\left(R_{2}\right)^{d^{2}} \cdot S_{k}^{d}\left(R_{1}\right), 0\right)$.

Now, $S_{k}^{d}\left(R_{1}\right)=0$ unless $d=2=p, R_{1}=\mathbb{Z} / 2 \mathbb{Z}$ and $1<k \equiv-1,0,1(\bmod 6)$ in which case

$$
S_{k}^{d}(R)=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{ll}
e & 0 \\
0 & e
\end{array}\right)
$$

where $e=(1,0) \in R_{1} \times R_{2}$ is the only idempotent of R such that $2 e=0$.
Remark. Note that if, in addition, R is unital then the element e from the previous theorem is just $e=\frac{\operatorname{card}(R)}{2} \cdot 1_{R}$. Also note that if $S_{k}^{d}(R) \neq 0$, then $R \cong \mathbb{Z} / 2 \mathbb{Z} \times R_{2}$ with $\operatorname{card}\left(R_{2}\right)$ odd or $R_{2}=\{0\}$.

We close the paper with a final conjecture.
Conjecture 4. Theorem 4 remains true if R is non-commutative.

References

[1] J.V. Brawley, L. Carlitz, J. Levine. Power sums of matrices over a finite field. Duke Math. J., 41:9-24, 1974.
[2] L. Carlitz. The Staudt-Clausen theorem. Math. Mag., 34:131-146, 1960-1961.
[3] P. Fortuny, J.M. Grau, A. M. Oller-Marcén. A von Staudt-type result for $\sum_{z \in \mathbb{Z}_{n}[i]} z^{k}$. Monatsh. Math. DOI: 10.1007/s00605-015-0736-5, 2015.
[4] J.M. Grau, C. Miguel, A.M. Oller-Marcén. On the structure of quaternion rings over $\mathbb{Z} / n \mathbb{Z}$. Adv. Appl. Clifford Algebr., DOI: 10.1007/s00006-015-0544-y, 2015.
[5] J.M. Grau, P. Moree, A.M. Oller-Marcén. Solutions of the congruence $\sum_{k=1}^{n} k^{f(n)} \equiv 0$ $(\bmod n) . M$ ath. Nachr., to appear.
[6] J.M. Grau, A.M. Oller-Marcén, J. Sondow. On the congruence $1^{m}+2^{m}+\cdots+m^{m} \equiv n$ $(\bmod m)$ with $n \mid m$ Monatsh. Math., DOI 10.1007/s00605-014-0660-0, 2014.
[7] P. Moree. On a theorem of Carlitz-von Staudt. C. R. Math. Rep. Acad. Sci. Canada, 16(4):166-170, 1994.
[8] N.J.A. Sloane. The On-Line Encyclopedia of Integer Sequences. https://oeis.org.
[9] K.G.C. von Staudt. Beweis eines Lehrsatzes die Bernoullischen Zahlen betreffend. J. Reine Angew. Math, 21:372-374, 1840.

Departamento de Matemáticas, Universidad de Oviedo, Avda. Calvo Sotelo, s/n, 33007 Oviedo, Spain

E-mail address: fortunypedro@uniovi.es
Departamento de Matemáticas, Universidad de Oviedo, Avda. Calvo Sotelo, s/n, 33007 Oviedo, Spain

E-mail address: grau@uniovi.es
Centro Universitario de la Defensa de Zaragoza, Ctra. Huesca s/n, 50090 Zaragoza, SpAIN

E-mail address: oller@unizar.es
Departamento de Matemáticas, Universidad de Oviedo, Avda. Calvo Sotelo, s/n, 33007 Oviedo, Spain

E-mail address: rua@uniovi.es

[^0]: Project
 Proporcionalidad aritmética en secundaria View project

