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ON POWER SUMS OF MATRICES OVER A FINITE

COMMUTATIVE RING

P. FORTUNY, J.M. GRAU, A.M. OLLER-MARCÉN, AND I.F. RÚA

Abstract. In this paper we deal with the problem of computing the sum of
the k-th powers of all the elements of the matrix ring Md(R) with d > 1 and
R a finite commutative ring. We completely solve the problem in the case
R = Z/nZ and give some results that compute the value of this sum if R is
an arbitrary finite commutative ring R for many values of k and d. Finally,

based on computational evidence and using some technical results proved in
the paper we conjecture that the sum of the k-th powers of all the elements
of the matrix ring Md(R) is always 0 unless d = 2, card(R) ≡ 2 (mod 4),
1 < k ≡ −1, 0, 1 (mod 6) and the only element e ∈ R \ {0} such that 2e = 0 is
idempotent, in which case the sum is diag(e, e).

1. introduction

For a ring R we denote by Md(R) the ring of d× d matrices over R. Now, given
an integer k ≥ 1 we define the sum

Sd
k(R) :=

∑

M∈Md(R)

Mk.

This paper deals with the computation of Sd
k(R) in the case when R is finite and

commutative.
When d = 1, the problem of computing S1

k(R) is completely solved only for some
particular families of finite commutative rings. If R is a finite field Fq, the value of
S1
k(Fq) is well-known. If R = Z/nZ the study of S1

k(Z/nZ) dates back to 1840 [9]
and has been completed in various works [2, 5, 7]. Finally, the case R = Z/nZ[i]
has been recently solved in [3]. For those rings, we have the following result.

Theorem 1. Let k ≥ 1 be an integer.

i) Finite fields:

S1
k(Fq) =

{

−1, if (q − 1) | k ;

0, otherwise.

ii) Integers modulo n:

S1
k(Z/nZ) =











−
∑

p|n,p−1|k

n

p
, if k is even or k = 1 or n 6≡ 0 (mod 4);

0, otherwise.

1
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iii) Gaussian integers modulo n:

S1
k(Z/nZ[i]) =











n
2 (1 + i), if k > 1 is odd and n ≡ 2 (mod 4);

−
∑

p∈P(k,n)

n2

p2
, otherwise.

where

P(k, n) := {prime p : p || n, p2 − 1 | k, p ≡ 3 (mod 4)}

and p || n means that p | n, but p2 ∤ n.

On the other hand, if d > 1 the problem has been only solved when R is a finite
field [1]. In particular, the following result holds.

Theorem 2. Let k, d ≥ 1 be integers. Then Sd
k(Fq) = 0 unless q = 2 = d and

1 < k ≡ −1, 0, 1 (mod 6) in which case Sd
k(Fq) = I2.

In this paper we deal with the computation of Sd
k(R) with d > 1 and R a finite

commutative ring. In particular Section 2 is devoted to completely determine the
value of Sd

k(R) in the case R = Z/nZ (that we usually write as Zn). In Section
3 we give some technical results regarding sums of non-commutative monomials
over Z/nZ which will be used in Section 4 to compute Sd

k(R) for an arbitrary finite
commutative ring R in many cases. Finally, we close the paper in Section 5 with
the following conjecture based on strong computational evidence

Conjecture 1. Let d > 1 and let R be a finite commutative ring. Then Sd
k(R) = 0

unless the following conditions hold:

(1) d = 2,
(2) card(R) ≡ 2 (mod 4) and 1 < k ≡ −1, 0, 1 (mod 6),
(3) The unique element e ∈ R \ {0} such that 2e = 0 is idempotent.

Moreover, in this case

Sd
k(R) =

(

e 0
0 e

)

.

2. Power sums of matrices over Zn

In what follows we will consider integers n, d > 1. For the sake of simplicity,
Md

n will denote the set of integer matrices with entries in the range {0, . . . , n− 1}.
Furthermore, for an integer k ≥ 1, let Sd

k(n) =
∑

M∈Md
n
Mk. Our main goal in this

section will be to compute the value of Sd
k(n) modulo n. This is exactly the sum

Sd
k(Z/nZ).
We start with the prime case. If n = p is a prime, we have the following result

[1, Corollary 3.2]

Proposition 1. Let p be a prime. Then, Sd
k(p) ≡ 0 (mod p) unless d = p = 2.

Thus, the case n = 2 must be studied separately. In fact, we have

Proposition 2.

S2
k(2) ≡

{

02 (mod 2), if k = 1 or k ≡ 2, 3, 4 (mod 6);

I2 (mod 2), if 1 < k ≡ 0, 1, 5 (mod 6).
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Proof. For every M ∈ M2
n it holds that M2 ≡ M8 (mod 2). As a consequence

S2
k(2) ≡ S2

k+6(2) (mod 2) for every k > 1. Thus, the result follows just computing

S2
k(2) for 1 ≤ k ≤ 7. �

Now, we turn to the prime power case. The following lemma is straightforward

Lemma 1. Let p be a prime. Then, any element M in Md
ps+1 can be uniquely

written in the form A+ psB, where A ∈ Md
ps , B ∈ Md

p .

Using this lemma we can prove the following useful result.

Proposition 3. Let p be a prime. Then, Sd
k(p

s+1) ≡ pd
2

Sd
k(p

s) (mod ps+1).

Proof. By the previous lemma we have

(1) Sd
k(p

s+1) =
∑

M∈Md

ps+1

Mk =
∑

A∈Md
ps

∑

B∈Md
p

(A+ psB)k.

Using the non-commutative version of the binomial theorem we have that

(A+ psB)k ≡ Ak + ps
k
∑

t=1

Ak−tBAt−1 (mod ps+1).

Thus, combining this with (1) we obtain

Sd
k(p

s+1) ≡
∑

B∈Md
p







∑

A∈Md
ps

Ak






+

k
∑

t=1

∑

A∈Md
ps

Ak−t



ps
∑

B∈Md
p

B



At−1

≡ pd
2

Sd
k(p

s) +

k
∑

t=1

∑

A∈Md
ps

Ak−t
(

psSd
1 (p)

)

At−1

≡ pd
2

Sd
k(p

s) (mod ps+1)

because Sd
1 (p) ≡ 0 (mod p) by Propositions 1 and 2 (depending on whether p is

odd or not). �

Remark. Note that Proposition 3 implies that if Sd
k(p

s) ≡ 0 (mod ps), then also
Sd
k(p

s+1) ≡ 0 (mod ps+1).

As a consequence we get the following result which extends Proposition 1.

Corollary 1. Sd
k(p

s) ≡ 0 (mod ps) unless d = p = 2 and s = 1.

Proof. If p = d = 2, then Proposition 1 implies that S2
k(4) ≡ 24S2

k(2) ≡ 0 (mod 4),
so the previous remark leads to S2

k(2
s) ≡ 0 (mod 2s), for every s > 1. On the

other hand, if d or p is odd, then we know by Proposition 1 that Sd
k(p) ≡ 0 (mod p).

Again, the remark gives us Sd
k(p

s) ≡ 0, by induction for all s ≥ 1. �

In order to study the general case the following lemma will be useful. It is an
analogue of [6, Lemma 3 i)]

Lemma 2. If m | n, then Sd
k(n) ≡

( n

m

)d2

Sd
k(m) (mod m).
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Proof. Given a matrix M ∈ Md
n , let M =

(

mi,j

)

with 1 ≤ i, j ≤ d. Then,

Sd
k(n) =

∑

M∈Md
n

Mk =
∑

0≤mi,j≤n−1

(

mi,j

)k

≡
( n

m

)d2
∑

0≤mi,j≤m−1

(

mi,j

)k

= Sd
k(m) (mod m)

�

Now, we can prove the main result of this section.

Theorem 3. The following congruence modulo n holds:

Sd
k(n) ≡

{n

2
· I2, if d = 2, n ≡ 2 (mod 4) and 1 < k ≡ 0, 1, 5 (mod 6);

02, otherwise.

Proof. Let n = 2spr11 · · · prtt be the prime power decomposition of n.
If 1 ≤ i ≤ t, we have by Lemma 2 and Corollary 1 that

Sd
k(n) ≡

(

n

prii

)d2

Sd
k(p

ri
i ) ≡ 0 (mod prii ).

On the other hand, using again Lemma 2 we have that

Sd
k(n) ≡

( n

2s

)d2

Sd
k(2

s) (mod 2s).

Hence, Corollary 1 implies that Sd
k(n) ≡ 0 (mod 2s) unless d = p = 2 and s = 1.

To conclude, it is enough to apply Proposition 2 together with the Chinese
Remainder Theorem. �

The following corollary easily follows from Theorem 3 and it confirms the con-
jecture stated in the sequence A017593 from the OEIS [8].

Corollary 2. S2
n(n) 6≡ 0 (mod n) if and only if n ≡ 6 (mod 12).

As a further application of Theorem 3 application we are going to compute the
sum of the powers of the Hamilton quaternions over Z/nZ.

Proposition 4. For every n ∈ N and l > 0, it holds that
∑

z∈Zn[i,j,k]

zl = 0.

Proof. Since for all z ∈ Z2[i, j, k] we have that z2 ∈ Z2, we deduce that z4 = z2,
and so it can be straightforwardly checked that

∑

z∈Z2[i,j,k]

zl = 0.

Now, if s > 1, observing that

Z2s [i, j, k] ∼=























a b c d
−b a −d c
−c d a −b
−d −c b a









: a, b, c, d ∈ Z2s
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we can adapt Lemma 1, Proposition 3 and Corollary 1 to inductively obtain that
∑

z∈Z2s [i,j,k]

zl = 0.

Finally, if n = 2sm with m odd we know [4, Theorem 4] that

Zn[i, j, k] ∼= Z2s [i, j, k]× Zm[i, j, k] ∼= Z2s [i, j, k]×M2(Zm)

and the result follows from Theorem 3. �

3. Sums of non-commutative monomials over Zn

We will now consider a more general setting. Let r ≥ 1 be an integer and
consider w(x1, . . . , xr) a monomial in the non-commuting variables {x1, . . . , xr} of
total degree k. In this situation, we define the sum

Sd
w(n) :=

∑

A1,...,Ar∈Md
n

w(A1, . . . , Ar).

Note that if r = 1, then w(x1) = xk
1 and Sd

w(n) = Sd
k(n) so we recover the situation

from Section 2. Thus, in what follows we assume r > 1.
We want to study the value of Sd

w(n) modulo n. To do so we first introduce two
technical lemmas that extend [1, Lemma 2.3].

Lemma 3. Let τ ≥ 1 be an integer and let βi > 0 for every 1 ≤ i ≤ τ . If p is an

odd prime,

∑

x1,...,xτ

xβ1

1 · · ·xβτ

τ ≡

{

(−ps−1)τ , if p− 1 | βi for every i;

0, otherwise.
(mod ps)

where the sum is extended over x1, . . . , xτ in the range {0, . . . , ps − 1}. Also, if

some βi = 0, then
∑

x1,...,xτ
xβ1

1 · · ·xβτ
τ ≡ 0 (mod ps).

Proof. It is enough to apply [6, Lemma 3 ii)] which states that

ps−1
∑

xi=0

xβi

i ≡

{

−ps−1, if p− 1 | βi;

0, otherwise.
(mod ps)

for every 1 ≤ i ≤ τ . Observe that, if βi = 0, then:
∑

x1,...,xτ

xβ1

1 · · ·xβτ

τ =
∑

xi

∑

xj ,j 6=i

xβ1

1 · · ·x
βi−1

i−1 x
βi+1

i+1 · · ·xβτ

τ ≡ 0 (mod ps)

�

Remark. Observe that in the previous situation, if τ ≥ 2 and s > 1, it easily

follows that
∑

x1,...,xτ

xβ1

1 · · ·xβτ

τ ≡ 0 (mod ps) regardless the values of βi ≥ 0.

Lemma 4. Let τ ≥ 1 be an integer and let βi > 0 for every 1 ≤ i ≤ τ . Then,

∑

x1,...,xτ

xβ1

1 · · ·xβτ

τ ≡











1, if s = 1;

0, if s > 1 and βi > 1 and odd for some i;

(−1)A(2s−1)B , if s > 1 and βi = 1 or even for every i

(mod 2s)
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where the sum is extended over x1, . . . , xτ in the range {0, . . . , 2s−1}, A = card{βi :

βi = 1} and B = card{βi : βi is even}. Also, if some βi = 0, then
∑

x1,...,xτ
xβ1

1 · · ·xβτ
τ ≡

0 (mod 2s).

Proof. It is enough to apply [6, Lemma 3 iii)] which states that

2s−1
∑

xi=0

xβi

i ≡











2s−1, if s = 1 or s > 1 and β1 > 1 is even;

−1, if s > 1 and βi = 1;

0, if s > 1 and β1 > 1 is odd.

(mod ps)

for every 1 ≤ i ≤ τ . The proof of the case when some βi = 0 is identical to that of
the previous lemma. �

As a consequence, we get the following results.

Proposition 5. Let p be an odd prime and let s > 1 be an integer. Then,

Sd
w(p

s) ≡ 0 (mod ps).

Proof. Let Al =
(

ali,j
)

1≤i,j≤d
for every 1 ≤ l ≤ r. Note that each entry in the

matrix Sd
w(p

s) is a homogeneous polynomial in the variables ali,j . Observe also that

these variables are summation indexes in the range {0, . . . , ps − 1}. Hence, the
number of variables is rd2 > 2 and, since s > 1, the Remark 3 can be applied to
the sum of its monomials, and the result follows. �

Proposition 6. Let s > 1 be an integer. Assume that one of the following condi-

tions holds:

i) k ≤ rd2,
ii) k > rd2 and k + rd2 is even.

Then, Sd
w(2

s) ≡ 0 (mod 2s).

Proof. Just like in the previous proposition each entry in the matrix Sd
w(2

s) is a
homogeneous polynomial in the rd2 variables ali,j . Hence, it is a sum of elements
of the form

∑

al
i,j

∈Z2s

∏

(ali,j)
βi,j,l .

Observe that
∑

i,j,l βi,j,l = k so, if k < rd2 it follows that some βi,j,l = 0, and

so each monomial sum is 0 mod 2s (because of Lemma 3). Therefore, each entry
in the matrix Sd

w(p) is 0 (mod 2s) in this case, as claimed.
Now, assume that k ≥ rd2 and k + rd2 is even (in particular if k = rd2). Due

to Lemma 4 an element
∑

al
i,j

∈Z2s

∏

(ali,j)
βi,j,l is 0 (mod 2s) unless in one of its

monomials the set of rd2 exponents βi,j,l is formed by exactly rd2 − 1 ones and 1
even value. But in this case k = (rd2 − 1) + 2α so k + rd2 is odd, a contradiction.
Consequently, each entry in the matrix Sd

w(p) is also 0 (mod 2s) in this case and
the result follows. �

As Remark 3 and Lemma 4 point out, the case s = 1 must be considered sepa-
rately. In this case, we have the following result.

Proposition 7. Let p be a prime. Assume that one of the following conditions

holds:
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i) k < rd2(p− 1),
ii) k is not a multiple of p− 1.

Then, Sd
w(p) ≡ 0 (mod p).

Proof. If p = 2 condition ii) cannot hold and if condition i) holds, we can apply the
same argument of the proof of the first part of Proposition 6 to get the result.

Now, if p is odd, again each entry in the matrix Sd
w(p) is a homogeneous poly-

nomial in the rd2 variables ali,j . Hence, it is a sum of elements of the form

∑

al
i,j

∈Zp

∏

(ali,j)
βi,j,l .

We have that
∑

i,j,l βi,j,l = k so, if k < rd2(p− 1) or if it is not a multiple of p− 1
it follows that some βi,j,l is either 0 or not a multiple of p − 1. In either case the
corresponding element is 0 (mod p) due to Lemma 3 and, consequently, each entry
in the matrix Sd

w(p) is also 0 (mod p) as claimed. �

Observe that in the previous results we have considered sums of the form

Sd
w(p

s) =
∑

A1,...,Ar∈Md
ps

w(A1, . . . , Ar),

where all the matrices Ai belong to the same matrix ring Md
ps . The following

proposition will be useful in the next section and deals with the case when the
matrices Ai belong to different matrix rings. First, we introduce some notation.
Given a prime p, let

Sd
w(p

s1 , . . . , psr ) :=
∑

Ai∈Md

psi

w(A1, . . . , Ar).

If s1 = · · · = sr = s, then Sd
w(p

s1 , . . . , psr ) = Sd
w(p

s) and we are in the previous
situation.

Proposition 8. With the previous notation, if s1 > 1, then

Sd
w(p

s1+1, ps2 , . . . , psr) ≡ pd
2

Sd
w(p

s1 , ps2 , . . . , psr ) (mod ps1+1).
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Proof. Since s1 > 1 we have that 2s1 > s1 + 1 so, due to Lemma 1

Sd
w(p

s1+1, ps2 , . . . , pst) =
∑

A1∈Md

ps1+1

Ai∈Md

psi

w(A1, . . . , At) =

=
∑

B∈Md
ps1

,C∈Md
p

Ai∈Md

psi

w(B + ps1C,A2, . . . , Ar) ≡

≡
∑

B∈Md
ps1

,C∈Md
p

Ai∈Md

psi

(

w(B,A2, . . . , Ar) + ps1
∑

l

wl(B,C,A2, . . . , Ar)

)

=

= pd
2

Sd
w(p

s1 , . . . , psr ) + ps1
∑

l

∑

B∈Md
ps1

,C∈Md
p

Ai∈Md

psi

wl(B,C,A2, . . . , Ar)

(mod ps1+1).

Where wl(x, y, x2, . . . , xr) denotes the monomial w(x1, x2, . . . , xr) where the l −
th ocurrence of the term x1 is substituted by y and the remaining ones by x
(for instance, w(x1, x2) = x2

1x2x1 gives us w1(x, y, x2) = yxx2x,w2(x, y, x2) =
xyx2x,w3(x, y, x2) = x2x2y).

But, for every l, the monomial wl(B,C,A2, . . . , Ar) contains C only once and
with exponent 1. Hence,

∑

B∈Md
ps1

,C∈Md
p

Ai∈Md

psi

wl(B,C,A2, . . . , Ar) ≡ 0 (mod p)

because Sd
1 (p) ≡ 0 (mod p) and the result follows. �

The following corollary in now straightforward.

Corollary 3. Assume that Sd
w(p

s) ≡ 0 (mod ps). Let us consider s1 ≥ s2 ≥ · · · ≥
sr = s. Then,

Sd
w(p

s1 , . . . , psr ) ≡ 0 (mod ps1).

Proof. Just apply the previous proposition repeatedly. �

4. Power sums of matrices over a finite commutative ring

In this section we will use the results from Section 3 to compute Sd
k(R) for an

arbitrary finite commutative ring R in many cases.
First of all, note that if char(R) = n = ps11 · · · pstt , then R ∼= R1×· · ·×Rt, where

char(Ri) = psii and each Ri is a subring of characteristic psii and, in particular, a
Zp

si
i
−module. This allows us to restrict ourselves to the case when char(R) is a

prime power.
The simplest case arises when R is a free Zps−module for an odd prime p.

Proposition 9. Let p be an odd prime and let R be a finite commutative ring of

characteristic ps, such that R is a free Zps−module of rank r. Then,

i) If s > 1, Sd
k(R) = 0 for every k ≥ 1 and d ≥ 2.
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ii) If s = 1, Sd
k(R) = 0 for every d ≥ 2 and k such that either k < rd2(p− 1)

or k is not a multiple of p− 1.

Proof. Note that under the previous assumptions and using Proposition 5 or Propo-
sition 7 (depending on whether s > 1 or s = 1), it follows that

∑

A1,...,Ar∈Md
ps

(x1A1 + · · ·+ xrAr)
k ≡ 0 (mod ps)

because each entry of such a matrix is a polynomial in x1, . . . , xr whose coefficients
are 0 modulo ps.

Consequently, for every g1, . . . , gr ∈ R we have that
∑

A1,...,Ar∈Md
ps

(g1A1 + · · ·+ grAr)
k = 0.

Now, since R is free of rank r we can take a basis g1, . . . , gr of R so that Md
ps =

{g1A1 + · · ·+ grAr|Ai ∈ Md
ps}. Therefore

Sd
k(R) =

∑

A1,...,Ar∈Md
ps

(g1A1 + · · ·+ grAr)
k.

This concludes the proof. �

If p = 2, we have the following version of Proposition 9

Proposition 10. Let R be a finite commutative ring of characteristic 2s, such that

R is a free Z2s−module of rank r. Then,

i) If s > 1, Sd
k(R) = 0 for every d ≥ 2 and k such that k ≤ rd2 or k > rd2

with k + rd2 even.

ii) If s = 1, Sd
k(R) = 0 for every d ≥ 2 and k such that either k < rd2.

Proof. The proof is similar to that of Proposition 9, using Proposition 6 or Propo-
sition 7 depending on whether s > 1 or s = 1. �

Remark. Note that if R is a finite commutative ring of characteristic ps and s = 1,
then R is necessarily free. Consequently, to study the non-free case we may assume
that s > 1.

Assume that elements g1, . . . , gr form a minimal set of generators of a non-free
Zps−module R. Since R is non-free and char(R) = ps, it follows that r > 1 and
also s > 1. For every i ∈ {1, . . . , r} let 1 ≤ si ≤ s be minimal such that psigi = 0.
Note that it must be si = s for some i and sj < s for some j. There is no loss of
generality in assuming that s = s1 ≥ · · · ≥ sr and at least one of the inequalities
is strict. Note that ps1 , . . . , psr are the invariant factors of the Z−module R. With
this notation we have the following result extending Proposition 9.

Proposition 11. Let p be an odd prime and let R be a finite commutative ring of

characteristic ps, such that R is a non-free Zps−module. Then,

i) If sr > 1, Sd
k(R) = 0 for every k ≥ 1 and d ≥ 2.

ii) If sr = 1, Sd
k(R) = 0 for every d ≥ 2 and k such that either k < rd2(p− 1)

or k is not a multiple of p− 1.
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Proof. First of all, observe that

Sd
k(R) =

∑

Ai∈Md

psi

(g1A1 + · · ·+ grAr)
k.

In both situations i) and ii) it follows that Sd
w(p

sr ) ≡ 0 (mod psr ). Moreover,
we are in the conditions of Corollary 3, so it follows that Sd

w(p
s, ps2 , . . . , psr) ≡ 0

(mod ps). Consequently all the coefficients of the above sum are 0 modulo ps and
the result follows. �

The corresponding result for p = 2 is as follows.

Proposition 12. Let R be a finite commutative ring of characteristic 2s, such that

R is a non-free Zps−module. Then,

i) If sr > 1, Sd
k(R) = 0 for every d ≥ 2 and k such that k ≤ rd2 or k > rd2

with k + rd2 even.

ii) If sr = 1, Sd
k(R) = 0 for every d ≥ 2 and k such that either k < rd2.

Proof. It is identical to the proof of Proposition 11. �

5. Conjectures and further work

Given a finite commutative ring R of characteristic n, we have seen in the last
section that Sd

k(R) = 0 for many values of k, d and n. In this section we present
two conjectures based on strong computational evidence which, being true, would
let us to give a general result about Sd

k(R).
With the notation from the previous section, given an r-tuple of integers κ =

(k1, . . . , kr), we consider the set of monomials in the non-commuting variables
{x1, . . . , xr}

Ωκ := {w : degxi
(w) = ki, for every i}.

The following conjectures are based on computational evidence.

Conjecture 2. With the previous notation, let s1 ≥ s2 ≥ · · · ≥ sr. Then

Sd
w(p

s1 , ps2 , . . . , psr) ≡ 0 (mod ps1),

unless d = p = 2 and si = 1 for all i.

Conjecture 3. If p = 2 = d and r > 1 then for every κ ∈ Nr

∑

w∈Ωκ

∑

Ai∈Md
2

w(A1, . . . , Ar) ≡ 0 (mod 2).

The next lemma extends Lemma 2 in some sense. Its proof is straightforward.

Lemma 5. Let R1 and R2 be finite commutative rings, and let R = R1 ×R2 be its

direct product. Then

Sd
k(R) = (card(R2)

d2

· Sd
k(R1), card(R1)

d2

· Sd
k(R2)) ∈ Md(R1)×Md(R2)

Now, the following proposition would follow from Conjectures 2 and 3.

Proposition 13. Let R be a finite commutative ring of characteristisc ps for some

prime p. Then Sd
k(R) = 0 unless d = 2, R = Z/2Z and 1 < k ≡ −1, 0, 1 (mod 6).

Moreover, in this case Sd
k(R) = I2.
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Proof. Assume that 〈g1 . . . , gr〉 is a minimal set of generators of R as Zps-module.
Let s = s1 ≥ s2 ≥ · · · ≥ sr be integers such that the order of gi is p

si ; i.e., s1, . . . , sr
are minimal such that psigi = 0.

In this situation,

Sd
k(R) =

∑

Ai∈Md

psi

(g1A1 + ...+ grAr)
k = 0,

unless d = p = 2, s = r = 1 and 1 < k ≡ −1, 0, 1 (mod 6) due to Conjecture 2.
On the other hand, if d = p = 2, s = r = 1 and 1 < k ≡ −1, 0, 1 (mod 6) it

follows that

S2
k(R) =

∑

A∈M2
2

(g1A)
k =

(

gk1 0
0 gk1

)

.

But since in this case R = {0, g1}, there are only two possibilities: g21 = g1 (and
hence R = Z/2Z) or g21 = 0 and the result follows. �

Finally, the next general result holds provided Conjectures 2 and 3 are correct.
It is Conjecture 1, as stated in the introduction to the paper.

Theorem 4. Let d > 1 and let R be a finite commutative ring. Then Sd
k(R) = 0

unless the following conditions hold:

(1) d = 2,
(2) card(R) ≡ 2 (mod 4) and 1 < k ≡ −1, 0, 1 (mod 6),
(3) The unique element e ∈ R \ {0} such that 2e = 0 is idempotent.

Moreover, in this case

Sd
k(R) =

(

e 0
0 e

)

.

Proof. First, observe that if card(R) ≡ 2 (mod 4), then R has 2m elements, where
m is odd. Therefore, the 2−primary component of the additive group R has only
two elements, and so there is a unique element e ∈ R of additive order 2.

Now, if R is of characteristic ps for some prime, the result follows from the
above proposition. Hence, we assume that R has composite characteristic. Let
R = R1 × R2 with R1 the zero ring or char(R1) = 2s and char(R2) odd. Due to

Lemma 5 and Proposition 13 it follows that Sd
k(R) = (card(R2)

d2

· Sd
k(R1), 0).

Now, Sd
k(R1) = 0 unless d = 2 = p, R1 = Z/2Z and 1 < k ≡ −1, 0, 1 (mod 6) in

which case

Sd
k(R) =

((

1 0
0 1

)

,

(

0 0
0 0

))

=

(

e 0
0 e

)

,

where e = (1, 0) ∈ R1 ×R2 is the only idempotent of R such that 2e = 0. �

Remark. Note that if, in addition, R is unital then the element e from the previous

theorem is just e = card(R)
2 · 1R. Also note that if Sd

k(R) 6= 0, then R ∼= Z/2Z×R2

with card(R2) odd or R2 = {0}.

We close the paper with a final conjecture.

Conjecture 4. Theorem 4 remains true if R is non-commutative.
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