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elements of a finite commutative unital ring, thus generalizing 
known results for finite fields, the rings of integers modulo n
or the ring of Gaussian integers modulo n. As an application, 
we focus on quotient rings of the form (Z/nZ)[x]/(f(x)) for a 
polynomial f ∈ Z[x].
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1. Introduction

For a finite ring R and k ≥ 1, we define the power sum

Sk(R) :=
∑
r∈R

rk.
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Throughout the paper we will deal only with finite commutative unital rings and our 
main objective will be the computation of Sk(R) in this case.

The problem of computing Sk(R) has been completely solved only for some particular 
families of finite rings. If R is a finite field Fq, the value of Sk(Fq) is well-known. If 
R = Z/nZ, the study of Sk(Z/nZ) dates back to 1840 [5] and has been addressed in 
various works [1,3,4]. More recently, the case R = Z/nZ[i] has been solved in [2]. For 
these cases, we have the following known results.

Proposition 1.

i)

Sk(Fq) =
{
−1, if (q − 1) | k ;
0, otherwise.

ii)

Sk(Z/nZ) =

⎧⎪⎨
⎪⎩
−

∑
p|n,p−1|k

n

p
, if k is even or k = 1 or n �≡ 0 (mod 4);

0, otherwise.

iii)

Sk(Z/nZ[i]) =

⎧⎪⎨
⎪⎩

n
2 (1 + i), if k > 1 is odd and n ≡ 2 (mod 4);

−
∑

p∈P(k,n)

n2

p2 , otherwise.

where

P(k, n) := {prime p : p || n, p2 − 1 | k, p ≡ 3 (mod 4)}

and p || n means that p | n, but p2 � n.

Let R be a finite commutative unital ring and assume that |R| = ps11 · · · psll . This 
implies that char(R) = pt11 · · · ptll with 1 ≤ ti ≤ si for every i. Define rings Ri = R/ptii R

for every i ∈ {1, . . . , l}. Then, we have the following decomposition as a direct sum of 
rings,

R ∼= R1 ⊕ · · · ⊕Rl, (1)

with char(Ri) = ptii and ti = si if and only if Ri is isomorphic to Z/psii Z.
In addition, for every 1 ≤ i ≤ l, the additive group (Ri, +) is a finite abelian p-group 

so it can be decomposed as a direct sum of cyclic p-groups
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Ri
∼= Ri,1 ⊕ · · · ⊕Ri,mi

, (2)

with Ri,j
∼= Z/p

ui,j

i Z and 1 ≤ ui,j ≤ ti.
Given k ≥ 1, define the sets

Pk(R) := {pi : Ri is a field and psii − 1 | k},

Pk(R) := {pi : Ri is isomorphic to Z/psii Z with si > 1 and pi − 1 | k}.

Remark 1. Note that, due to Proposition 1, these sets consist of primes pi such that 
their corresponding ring Ri in decomposition (1) satisfies that Sk(Ri) �= 0. Proposition 2
below will imply that these are the only primes with this property.

In this paper, we completely solve the problem of computing Sk(R) for any finite 
commutative unital ring. In particular, we will prove the following result.

Theorem 1. Let R be a finite commutative unital ring with |R| = ps11 · · · psll and let k ≥ 1
be an integer. Then, with the previous notation

i) If k is even, then

Sk(R) = −

⎛
⎝ ∑

pi∈Pk

|R|
psii

+
∑

pi∈Pk

|R|
pi

⎞
⎠ .

ii) If k > 1 is odd and 2 ∈ Pk, then Sk(R) = −|R|/2ν2(|R|).
iii) If k > 1 is odd and 2 ∈ Pk, then Sk(R) = −|R|/2.
iv) If k > 1 is odd and Ri

∼= F2[x]/(x2) for some i, then Sk(R) = u, where u is the only 
non-zero nilpotent element of R such that 2u = 0.

v) If k = 1 and Ri
∼= F2 for some i, then Sk(R) = −|R|/2.

vi) In any other case, Sk(R) = 0.

The paper is organized as follows. In Section 2 we provide all the results needed in 
order to prove Theorem 1. The proof of this theorem is the sole purpose of Section 3. Fi-
nally, as an application, we compute the power sums over (Z/nZ)[x]/(f(x)) in Section 4.

2. Preparatory results

We begin this section with the following straightforward result.

Lemma 1. Let R1 and R2 be finite commutative unital rings and let R = R1 ⊕R2 be its 
direct sum. Then,

Sk(R) = (|R2|Sk(R1), |R1|Sk(R2)).
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Lemma 1, together with decomposition (1) above implies that, in order to get a 
general result, we can restrict ourselves to the prime-power characteristic case. Hence, 
throughout this section R will be a finite commutative unital ring with char(R) = pt.

In such case, due to decomposition (2), the additive group (R, +) is the direct sum 
of cyclic p-groups. If (R, +) is itself a cyclic p-group, then it must be R ∼= Z/ptZ and 
Proposition 1 ii) applies to obtain that Sk(R) = −pt−1 if p − 1 | k and Sk(R) = 0
otherwise. Consequently, we will just focus on the non-cyclic case.

First of all, we will prove that if t > 1; i.e., if the characteristic is a prime-power but 
not a prime then Sk(R) = 0.

Proposition 2. Let R be a finite commutative unital ring such that char(R) = pt with 
t > 1. If (R, +) is not a cyclic p-group, then Sk(R) = 0 for every k ≥ 1.

Proof. Due to decomposition (2) we have that R ∼= R1 ⊕ · · · ⊕ Rm with m ≥ 2, where 
Ri

∼= Z/ptiZ with 1 ≤ ti ≤ t.
Hence, if we denote by xi a generator of Ri, then every element of R can be uniquely 

written in the form a1x1 + · · ·+ amxm with ai ∈ {0, . . . , pti − 1} for each i ∈ {1, . . . , m}. 
Thus,

Sk(R) =
pti−1∑
ai=0

(a1x1 + · · · + amxm)k =
k∑

s=0

pti−1∑
ai=0

(
k

s

)
(a1x1)s(a2x2 + · · · + amxm)k−s.

The proof is by induction on m ≥ 2.
First of all, assume that m = 2. In this case,

Sk(R) =
k∑

s=0

(
k

s

) pt1−1∑
a1=0

pt2−1∑
a2=0

(a1x1)s(a2x2)k−s

with either t1 ≥ 2 or t2 ≥ 2, for if t1, t2 < 2 then t = 1 which is not possible.

For every s ∈ {0, . . . , k}, denote by A(s) :=
pt1−1∑
a1=0

pt2−1∑
a2=0

(a1x1)s(a2x2)k−s. Since

ptixi = 0 we have that

A(0) =
pt1−1∑
a1=0

pt2−1∑
a2=0

(a2x2)k = pt2
pt2−1∑
a2=0

(a2x2)k = 0,

A(k) =
pt1−1∑
a1=0

pt2−1∑
a2=0

(a1x1)k = pt1
pt1−1∑
a1=0

(a1x1)k = 0.

On the other hand, if 0 < s < k, then
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A(s) =
pt1−1∑
a1=0

(a1x1)s
pt2−1∑
a2=0

(a2x2)k−s

and due to Proposition 1 ii) we have that 
pt1−1∑
a1=0

(a1x1)s is either 0 or −pt1−1xs
1 and 

also that 
pt2−1∑
a2=0

(a2x2)k−s is either 0 or −pt2−1xk−s
2 . Consequently, it follows that either 

A(s) = 0 or A(s) = pt1+t2−2xs
1x

k−s
2 but in this latter case, since either t1 ≥ 2 or t2 ≥ 2, 

it also follows that A(s) = 0 as claimed.
Assume that the result is true for 2 ≤ j < m. We have

Sk(R) =
k∑

s=0

(
k

s

) pt1−1∑
a1=0

(a1x1)s
pti−1∑
ai=0
i�=1

(a2x2 + · · · + amxm)k−s

and for every 0 ≤ s ≤ k at least one of the terms appearing in the last expression is 0 
by the induction hypothesis. �

The following series of technical lemmata will be useful when we consider the case 
t = 1 in the sequel. In what follows Fq will denote the field with q elements.

Lemma 2. Let R be a finite commutative unital Fq-algebra with q > 2 such that there 
exists x ∈ R− {0} with x2 = 0. Then, Sk(R) = 0 for every k ≥ 1.

Proof. Given x ∈ R− {0} with x2 = 0 we can decompose R as the direct sum of vector 
subspaces R = 〈x〉 ⊕R for some R ≤ R. Thus,

Sk(R) =
∑
a∈Fq

∑
t∈R

(ax + t)k =
∑
a∈Fq

∑
t∈R

(tk + ktk−1ax) =

= q
∑
t∈R

tk +
∑
a∈Fq

a
∑
t∈R

ktk−1x =
∑
t∈R

ktk−1x
∑
a∈Fq

a = 0,

because, if q > 2, we have 
∑
a∈Fq

a = 0 by Proposition 1 i). �

Lemma 3. Let R be a finite commutative unital Fq-algebra such that there exists a linearly 
independent set {x, y} with xy = 0. Then, Sk(R) = 0 for every k ≥ 1.

Proof. Given a linearly independent set {x, y} with xy = 0 we can decompose R as the 
direct sum of vector subspaces R = 〈x〉 ⊕ 〈y〉 ⊕R. Thus,
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Sk(R) =
∑
a∈Fq

∑
b∈Fq

∑
t∈R

(ax + by + t)k =

=
∑
a∈Fq

∑
b∈Fq

∑
t∈R

(
tk +

k∑
s=1

(
k

s

)
(asxs + bsys)tk−s

)
=

= q2
∑
t∈R

tk + q
∑
a∈Fq

∑
t∈R

k∑
s=1

(
k

s

)
asxstk−s + q

∑
b∈Fq

∑
t∈R

k∑
s=1

(
k

s

)
bsystk−s = 0

as claimed. �
Lemma 4. Let R ∼= F2[x]/(x2) and let e = x +(x2) be the only non-zero nilpotent element 
of R. Then, Sk(R) = e if k > 1 is odd and Sk(R) = 0 otherwise.

Proof. In this situation, R = {0, 1, e, 1 + e} and since char(R) = 2, we have that

Sk(R) = 0k + 1k + ek + (1 + e)k = ke

and the result follows. �
Finally, the main tool to prove Theorem 1 is the following result.

Lemma 5. Let R be a finite commutative unital ring of prime-power characteristic.

i) If R ∼= Fpr and pr − 1 | k, then Sk(R) = −1.
ii) If R ∼= Z/prZ and p − 1 | k, then Sk(R) = −pr−1.
iii) If R ∼= F2[x]/(x2) and k > 1 is odd, then Sk(R) = e where e is the only non-zero 

nilpotent element in R.
iv) In any other case, Sk(R) = 0.

Proof. To prove i) and ii) it is enough to apply Proposition 1 (Parts i) and ii), respec-
tively). On the other hand, iii) follows from Lemma 4.

To prove iv), assume that Sk(R) �= 0. Proposition 2 implies that if (R, +) is not a 
cyclic p-group, it must have prime characteristic. If it is cyclic, then Proposition 1 i) or ii) 
applies (depending on whether R is a field or not) and condition i) or ii) would hold, 
respectively. If R is not cyclic and has prime characteristic, then it can be a field or not. 
If it is a field we apply again Proposition 1 i). If it is not a field, then Lemma 3 implies 
that R cannot contain two linearly independent zero-divisors so, not being a field, it 
must contain a non-zero nilpotent element of index 2. But in this case, Lemma 2 implies 
that char(R) = 2. Since all the previous restrictions lead to R ∼= F2[x]/(x2), Lemma 4
applies and the result follows. �
3. Proof of Theorem 1

After all the previous work we can proceed to proof Theorem 1. First of all, observe 
that we can apply Lemma 1 to decomposition (1) to obtain that
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Sk(R) =
(
|R|
ps11

Sk(R1), . . . ,
|R|
psll

Sk(Rl)
)
.

Now,

i) If k is even, Lemma 5 implies that Sk(Ri) = 0 unless Ri is a field with |Ri| − 1 | k
or Ri

∼= Z/psii Z with pi − 1 | k (recall that in the latter case char(Ri) = |Ri|). Due 
to Proposition 1 i) and ii), in the first case Sk(Ri) = −1 while in the second case 
Sk(Ri) = −psi−1

i . The result follows.
ii) If k > 1 is odd and 2 ∈ Pk, we can assume without loss of generality that p1 = 2. 

Then, Lemma 5 implies that Sk(Ri) = 0 for every i ≥ 2 and the result follows from 
Proposition 1 i).

iii) It is enough to reason like in ii) but using Proposition 1 ii).
iv) Again the same idea as in ii) and iii) is used, but the claim follows from Lemma 4.
v) The same as in ii), iii) and iv). Note that in this case 2 ∈ Pk and we can apply either 

Proposition 1 i) or ii).
vi) Lemma 5 states that the only cases in which Sk(Ri) �= 0 for some i are precisely the 

previous ones.

4. Application. Power sums over (Z/nZ)[x]/(f(x))

As an application of the previous results, we are interested in computing the power 
sum Sk((Z/nZ)[x]/(f(x))), where f(x) is a monic polynomial. When deg f = 1, the result 
is straightforward because (Z/nZ)[x]/(f(x)) ∼= Z/nZ and Proposition 1 ii) applies.

Now, let us focus on the quadratic case. Before we proceed, let us introduce some 
notation. Given any positive integer n and integers b, c we define

Rb,c
n := (Z/nZ)[x]/(x2 + bx + c),

and let us denote e = x + (x2 + bx + c) the residue class of x.
As usual, to compute the value of Sk(Rb,c

n ) we will first focus on the case when n is a 
prime power.

Proposition 3. Let k ≥ 1 be and integer.

i) If s is a positive integer,

Sk(Rb,c
2s ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if s = 1, b and c are odd and 3 | k;
1 + e, if s = 1, b is even, c is odd and k > 1 is odd;
e, if s = 1, b and c are even and k > 1 is odd;
0, otherwise.

ii) If p is an odd prime and s is a positive integer,
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Sk(Rb,c
ps ) =

{
−1, if s = 1, p2 − 1 | k and b2 − 4c is not a square mod. p;
0, otherwise.

Proof.

i) First of all, if s > 1 then char(Rb,c
2s ) ≥ 4 and we can apply Proposition 2 to obtain 

that Sk(Rb,c
2s ) = 0 for every k in this case.

If s = 1 and both b and c are even, then Rb,c
2s = F2[x]/(x2) and by Lemma 4 it follows 

that Sk(Rb,c
2s ) = e if k > 1 is odd and Sk(Rb,c

2s ) = 0 otherwise.
If s = 1, b is even and c is odd, then Rb,c

2s = F2[x]/(x2 +1) and by Lemma 4 it follows 
that Sk(Rb,c

2s ) = 1 + e if k > 1 is odd (note that 1 + e is the only non-zero nilpotent 
element) and Sk(Rb,c

2s ) = 0 otherwise.
If s = 1, b is odd and c is even, then Rb,c

2s = F2[x]/(x2+x). Since 0 = x2+x = x(x +1), 
we can apply Lemma 3 with the linearly independent set {e, e + 1} to obtain that 
Sk(Rb,c

2s ) = 0 for every k in this case.
Finally, if both b and c are odd, then Rb,c

2s = F2[x]/(x2+x +1) ∼= F4 because x2+x +1
is irreducible. Hence, we apply Proposition 1 i) to obtain that Sk(Rb,c

2s ) = −1 = 1 if 
3 | k and Sk(Rb,c

2s ) = 0 otherwise.
ii) First of all, if s > 1 then char(Rb,c

ps ) ≥ p2 and we can apply Proposition 2 to obtain 
that Sk(Rb,c

ps ) = 0 for every k in this case.
If s = 1, observe that x2 + bx + c is reducible if and only if b2 − 4c is a quadratic 
residue modulo p. Now, if x2 +bx +c is reducible we can apply Lemma 2 or Lemma 3
to obtain that Sk(Rb,c

ps ) = 0 for every k. Finally, if x2 + bx + c is irreducible then 
Rb,c

ps
∼= Fp2 and Proposition 1 i) ends the proof. �

As a consequence of this proposition, we can prove the following general result in the 
quadratic case.

Corollary 1. Let n be any positive integer. Given integers k ≥ 1, b and c we define the 
following set:

Pb,c(k, n) := {prime p : p || n, p2 − 1 | k, b2 − 4c is not a quadratic residue modulo p}.

Then:

Sk(Rb,c
n ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n
2 , if b and c are odd, 3 | k and 2 || n;
n
2 (1 + e), if b is even, c is odd, k > 1 is odd, and 2 || n;
n
2 e, if b and c are even, k > 1 is odd and 2 || n;

−
∑

p∈Pb,c(k,n)

n2

p2 , otherwise.
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Proof. Observe that for n1 and n2 coprime we have Rb,c
n1n2

∼= Rb,c
n1

⊕Rb,c
n2

. Thus, it suffices 
to apply Proposition 3. �

As a particular case, we obtain the power sum over the rings (Z/nZ)[
√
D] for a 

square-free integer D.

Corollary 2. Let k, n ≥ 1 be integers and let D be a square-free integer. Consider the set

P(k, n) := {prime p : p || n, p2 − 1 | k, D is not a quadratic residue modulo p}

and let e = x + (x2 −D) be the residue class of x. Then,

Sk((Z/nZ)[
√
D]) =

⎧⎪⎨
⎪⎩

n
2 (1 + e), if k > 1 is odd and 2 || n;

−
∑

p∈P(k,n)

n2

p2 , otherwise.

Proof. Just take f(x) = x2 −D and apply Corollary 1. �
Remark 2. If we consider the case D = −1, the previous corollary immediately gives 
Proposition 1 iii), which was proved in [2] using different, more direct, techniques.

Finally, we consider the case when the degree of the polynomial is greater than 2. 
The involved ideas are quite similar to those previously used. We introduce the following 
notation:

Rf
n := (Z/nZ)[x]/(f(x)).

Corollary 3. Let f(x) be monic polynomial with integer coefficients such that deg f > 2
and let k, n ≥ 1 be integers. Consider the set

Pf (k, n) := {prime p : p || n, pdeg f − 1 | k, f(x) is irreducible modulo p}.

Then,

Sk(Rf
n) ≡ −

∑
p∈Pf (k,n)

ndeg f

pdeg f
.

Proof. Let n = ps11 · · · psll . Then, as usual

Rf
n
∼= Rf

p
s1
1

⊕ · · · ⊕Rf

p
sl
l

and we can apply Lemma 1.
Note that Sk(Rf

p
si
i

) = −1 if pi ∈ Pf (n, k) and Sk(Rf

p
si
i

) = 0 otherwise. Since |Rf
n| =

ndeg f , the result follows. �
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