ON THE DIAMETER OF THE COMMUTING GRAPH OF THE FULL MATRIX RING OVER THE REAL NUMBERS

J.M. GRAU, A.M. OLLER-MARCÉN*, AND C. TASIS

ABSTRACT. In a recent paper C. Miguel proved that the diameter of the commuting graph of the matrix ring $M_n(\mathbb{R})$ is equal to 4 if either n = 3 or $n \ge 5$. But the case n = 4 remained open, since the diameter could be 4 or 5. In this work we close the problem showing that also in this case the diameter is 4.

Keywords: Commuting graph, Diameter, Idempotent matrix. MSC(2010): Primary: 05C50; Secondary: 15A27.

1. Introduction

For a ring R, the commuting graph of R, denoted by $\Gamma(R)$, is a simple undirected graph whose vertices are all non-central elements of R, and two distinct vertices a and b are adjacent if and only if ab = ba. The commuting graph was introduced in [1] and has been extensively studied in recent years by several authors [2, 3, 4, 5, 6, 7, 12, 13].

In a graph G, a path \mathcal{P} is a sequence of distinct vertices (v_1, \ldots, v_k) such that every two consecutive vertices are adjacent. The number k-1 is called the length of \mathcal{P} . For two vertices u and v in a graph G, the distance between u and v, denoted by d(u, v), is the length of the shortest path between u and v, if such a path exists. Otherwise, we define $d(u, v) = \infty$. The diameter of a graph G is defined

diam $(G) = \sup\{d(u, v) : u \text{ and } v \text{ are vertices of } G\}.$

A graph G is called connected if there exists a path between every two distinct vertices of G, equivalently, $\operatorname{diam}(G) < \infty$.

Much research has been conducted regarding the diameter of commuting graphs of certain classes of rings [3, 7, 8, 9, 10]. Here, we deal with the full matrix rings over fields. Let \mathbb{F} be an arbitrary field. We known that $\Gamma(M_2(\mathbb{F}))$ is never connected. It was proved in [4] that $\Gamma(M_n(\mathbb{F}))$ is connected if and only if every field extension of \mathbb{F} of degree *n* contains a proper intermediate field. Moreover, it was shown in [3] that if $\Gamma(M_n(\mathbb{F}))$ is connected, then $4 \leq \operatorname{diam}(\Gamma(M_n(\mathbb{F}))) \leq 6$ and it is conjectured that $\operatorname{diam}(\Gamma(M_n(\mathbb{F}))) \leq 5$. Let \mathbb{Q} and \mathbb{R} be the fields of rational and real numbers, respectively. We know from [3, 4] that $\Gamma(M_n(\mathbb{Q}))$ is non-connected for any $n \geq 2$ and $\operatorname{diam}(\Gamma(M_n(\mathbb{F}))) = 4$ for every algebraically closed field \mathbb{F}

^{*}Corresponding author.

and $n \geq 3$. Quite recently, C. Miguel [11] has verified this conjecture for \mathbb{R} , proving the following result.

Theorem 1.1. Let $n \geq 3$ be any integer. Then, $diam(\Gamma(M_n(\mathbb{R}))) = 4$ for $n \neq 4$ and $4 \leq diam(\Gamma(M_4(\mathbb{R}))) \leq 5$.

Unfortunately, this result left open the question wether $\operatorname{diam}(\Gamma(M_4(\mathbb{R})))$ is 4 or 5. In this paper we solve this open problem. Namely we will prove the following result.

Theorem 1.2. The diameter of $\Gamma(M_4(\mathbb{R}))$ is equal to 4.

2. On the diameter of $\Gamma(M_n(\mathbb{R})$

Before we proceed, let us introduce some notation. If $a, b \in \mathbb{R}$, we define the matrix $A_{a,b}$ as

$$A_{a,b} := \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

Now, given two matrices $X, Y \in M_n(\mathbb{R})$, we define

$$X \oplus Y := \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \in \mathrm{M}_{2n}(\mathbb{R}).$$

Finally, two matrices $A, B \in M_n(\mathbb{R})$ are called *similar* and are written as $A \sim B$ if there exists an invertible matrix P such that $P^{-1}AP = B$.

The proof of Theorem 1 given in [11] relies on the possible forms of the Jordan canonical form of a real matrix. In particular, it is proved that the distance between two matrices $A, B \in M_4(\mathbb{R})$ is at most 4 unless we are in the situation where A and B have no real eigenvalues and only one of them is diagonalizable over \mathbb{C} . In other words, the case when

$$A \sim \begin{pmatrix} A_{a,b} & 0 \\ 0 & A_{c,d} \end{pmatrix}, \quad B \sim \begin{pmatrix} A_{s,t} & I_2 \\ 0 & A_{s,t} \end{pmatrix}.$$

The following result will provide us the main tool to prove that the distance between A and B is at most 4 also in the previous setting. It is true for any division ring D. In what follows, given a matrix A, L_A and R_A will denote the left and right multiplication by A, respectively.

Proposition 2.1. Let $A, B \in M_n(D)$ matrices such that $A^2 = A$ and $B^2 = 0$. Then, there exists a non-scalar matrix commuting with both A and B.

Proof. Since $A^2 = A$; i.e., A(I - A) = (I - A)A = 0, then one of nullity A or nullity (I - A) is at least n/2. Since I - A is also idempotent and a matrix commutes with A if and only if it commutes with I - A we can assume that nullity $A \ge n/2$. Moreover, since $B^2 = 0$, it follows that nullity $B \ge n/2$.

Now, if $\operatorname{Ker} L_A \cap \operatorname{Ker} L_B \neq \{0\}$ and $\operatorname{Ker} R_A \cap \operatorname{Ker} R_B \neq \{0\}$ we can apply [3, Lemma 4] and the result follows. Hence, we assume that $\operatorname{Ker} L_A \cap \operatorname{Ker} L_B = \{0\}$, since in the case $\operatorname{Ker} R_A \cap \operatorname{Ker} R_B = \{0\}$ we can consider the transposes of A and B instead of A and B, respectively. Note that, in these conditions, n = 2r and the nullities of A and B are equal to r.

Let \mathcal{B}_1 and \mathcal{B}_2 be bases for $\operatorname{Ker} L_A$ and $\operatorname{Ker} L_B$, respectively, and consider $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ a basis for D^n . Since A is idempotent, it follows that $D^n = \operatorname{Ker} L_A \oplus \operatorname{Im} L_A$.

We want to find the representation matrix of L_A in the basis \mathcal{B} . To do so, if $v \in \mathcal{B}_2$, we write v = a + a' with $a \in \operatorname{Ker} L_A$ and $a' \in \operatorname{Im} L_A$. If a' = Aa''for some $a'' \in D^n$, then Av = Aa + Aa' = 0 + A(Aa'') = Aa'' = a' = -a + v. Since Av = 0 for every $v \in \mathcal{B}_1$, we get that the representation matrix of L_A in the basis \mathcal{B} is of the form

$$\begin{pmatrix} 0 & A' \\ 0 & I_r \end{pmatrix},$$

with $A' \in M_r(D)$.

Now, we want to find the representation matrix of L_B in the basis \mathcal{B} . Clearly, Bv = 0 for every $v \in \mathcal{B}_2$. Let $w \in \mathcal{B}_1$. Then, $Bw = w_1 + w_2$ with $w_1 \in \text{Ker}L_A$ and so $w_2 \in \text{Ker}L_B$. Hence, $0 = B^2w = Bw_1$ and $w_1 \in \text{Ker}L_A \cap \text{Ker}L_B = \{0\}$. Thus, the representation matrix of L_B in the basis \mathcal{B} is of the form

$$\begin{pmatrix} 0 & 0 \\ B' & 0 \end{pmatrix},$$

with $B' \in M_r(D)$.

As a consequence of the previous work we can find a regular matrix P such that:

$$PAP^{-1} = \begin{pmatrix} 0 & A' \\ 0 & I_r \end{pmatrix}, \quad PBP^{-1} = \begin{pmatrix} 0 & 0 \\ B' & 0 \end{pmatrix}.$$

Now, if $A'B' \neq B'A'$, then $P^{-1}(A'B' \oplus B'A')P$ is a non-scalar matrix commuting with A and B. If A' and B' commute, we can find a non-scalar matrix $S \in M_r(D)$ commuting with both A' and B'. Therefore $P^{-1}(S \oplus S)P$ commutes with both A and B and the proof is complete.

We are now in the condition to prove the main result of the paper.

Theorem 2.2. The diameter of $\Gamma(M_4(\mathbb{R}))$ is four.

Proof. In [11] it was proved that $d(A, B) \leq 4$ for every $A, B \in M_4(\mathbb{R})$, unless

$$A \sim \begin{pmatrix} A_{a,b} & 0\\ 0 & A_{c,d} \end{pmatrix}$$
 and $B \sim \begin{pmatrix} A_{s,t} & I_2\\ 0 & A_{s,t} \end{pmatrix}$

for some real numbers a, b, c, d, r, s. Hence, we only focus on this case. Assume that

$$A = P^{-1} \begin{pmatrix} A_{a,b} & 0\\ 0 & A_{c,d} \end{pmatrix} P \text{ and } B = Q^{-1} \begin{pmatrix} A_{s,t} & I_2\\ 0 & A_{s,t} \end{pmatrix} Q,$$

for some invertible matrices P and Q. Let

$$M = P^{-1} \begin{pmatrix} 0 & 0 \\ 0 & I_2 \end{pmatrix} P$$
 and $N = Q^{-1} \begin{pmatrix} 0 & I_2 \\ 0 & 0 \end{pmatrix} Q$.

It is straightforwardly checked that $M^2 = M$, $N^2 = 0$, AM = MA, and BN = NB. Furthermore, Proposition 2.1 implies that there exists a non-scalar matrix X that commutes both with M and N.

Thus, we have found a path (A, M, X, N, B) of length 4 connecting A and B and the result follows.

Corollary 2.3. For every $n \geq 3$, $diam(\Gamma(M_4(\mathbb{R}))) = 4$.

Acknowledgments

We want to thank the anonymous referee for his useful comments that helped to improve the paper, in particular its introduction.

References

- S. Akbari, M. Ghandehari, M. Hadian and A. Mohammadian, On commuting graphs of semisimple rings, *Linear Algebra Appl.* **390** (2004), 345–355.
- [2] S. Akbari, D. Kiani and F. Ramezani, Commuting graphs of group algebras, Comm. Algebra 38(9) (2010), 3532–3538.
- [3] S. Akbari, A. Mohammadian, H. Radjavi and P. Raja, On the diameters of Commuting Graphs, *Linear Algebra Appl.* 418 (2006), 161–176.
- [4] S. Akbari, H. Bidkhori and A. Mohammadian, Commuting graphs of matrix algebras, Comm. Algebra 36(11) (2008), 4020–4031.
- [5] S. Akbari and P. Raja, Commuting graphs of some subsets in simple rings, *Linear Algebra Appl.* 416 (2006), 1038–1047.
- [6] J. Araujo, M. Kinyon and J. Konieczny, Minimal paths in the commuting graphs of semigroups, *European J. Combin.* **32(2)** (2011), 178–197.
- [7] G. Dolinar, B. Kuzma and P. Oblak, On maximal distances in a commuting graph, Electron. J. Linear Algebra 23 (2012), 243–256.
- [8] D. Dolan, D. Kokol and P. Oblak, Diameters of commuting graphs of matrices over semirings, Semigroup Forum 84(2) (2012), 365–373.
- [9] D. Dolan and P. Oblak, Commuting graphs of matrices over semirings, *Linear Algebra Appl.* 435 (2011), 1657–1665.
- [10] M. Giudici and A. Pope, The diameters of commuting graphs of linear groups and matrix rings over the integers modulo m, Australas. J. Combin. 48 (2010), 221–230.
- [11] C. Miguel, A note on a conjecture about commuting graphs, *Linear Algebra Appl.* 438 (2013), 4750–4756.
- [12] A. Mohammadian, On commuting graphs of finite matrix rings, Comm. Algebra 38(3) (2010), 988–994.
- [13] G. R. Omidi and E. Vatandoost, On the commuting graph of rings, J. Algebra Appl. 10(3) (2011), 521–527.

(J.M. Grau) Departamento de Matemáticas, Universidad de Oviedo. Avenida Calvo Sotelo s/n, 33007 Oviedo, Spain

E-mail address: grau@uniovi.es

(A.M. Oller-Marén) Centro Universitario de la Defensa de Zaragoza. Carretera de Huesca $\rm s/n,~50090~Zaragoza,~Spain$

E-mail address: oller@unizar.es

(C. Tasis) Departamento de Matemáticas, Universidad de Oviedo. Avenida Calvo Sotelo s/n, 33007 Oviedo, Spain

E-mail address: ctasis@uniovi.es