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Abstract In this paper a general formulation for the kinetics of multi-step enzymatic
reactions is presented. The optimal enzyme and metabolite concentrations are studied
for the problem of minimizing the operation time in which the substrate is converted
into the product. We give an analytic solution for three different kinetic models for
both the unbranched and branched cases. Sufficient conditions for the optimality of
the solution are studied. Several examples are presented.

Keywords Optimal control · Kinetic models · Analytical laws

Mathematics Subject Classification 49J30 · 49M05 · 80A30

1 Introduction

The kinetics of multi-step enzymatic reactions is an ongoing research topic and, in it,
the minimization of the operation time in which the substrate is transformed into the
product is one of the classical problems which is being currently studied. In it, one
measures the optimal profiles of both the enzyme and the metabolite. Our aim in this
work is to obtain a general analytic solution for this problem. This way, we avoid the
unwieldy numerical solutions, which are always tainted by the specific traits of each
particular problem.

This is one of several papers published together in Journal of Mathematical Chemistry on the “Special
Issue: CMMSE 2017”.

B L. Bayón
bayon@uniovi.es

1 Department of Mathematics, University of Oviedo, EPI, Gijón, Spain

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-017-0810-4&domain=pdf


1814 J Math Chem (2018) 56:1813–1825

In the last years, several results have been presented on the topic. In many of them,
an unbranched reaction chain of n irreversible reaction steps is studied (e.g. [1], where
an explicit solution for the simplest case, n = 2 with linear kinetic model, is given).
A mathematical model of an unbranched reaction chain with n = 3 and obeying
the Michaelis–Menten (MM) kinetic model is used in [2]. In [3], a quasi-analytic
solution is found for n = 3 and linear kinetics. In [4], the general case of n steps with
MM kinetic model is analyzed and quantitative properties are presented, although the
authors do not give an explicit analytical solution. In [5], we use a linear kinetic model
for the solution of the general case of n steps. Later, in [6], we improve our results with
a quasi-analytical solution for the n-steps MM model using the Lambert W-function.

Branched pathways have also been studied, certainly, but only specific cases. In
[7], a network inspired in the glycolysis, with the MMmodel, is considered. The same
example is revisited in [8] and a new pathway with two outputs is presented. Other
objective functionals may also be considered, like maximizing the productivity of the
metabolite [9] or the flux of a particularmetabolite [10]. However, in this workwe shall
minimize the operation time to obtain a specified concentration of the final product.

The numerical methods for the solution of our dynamic optimization problem are
usually classified into two groups: direct and indirect methods. Direct methods include
complete parametrization [11], multiple shooting [12] or control vector parametriza-
tion [13]. In all of them, the basic idea is to transform the original problem into a
non-linear programming problem by discretizing and approximating the control and
the state variables.

On the other hand, the indirect methods solve the optimization problem using
Pontryagin’s Minimum Principle (PMP) taking into account the necessary optimality
conditions. In this paper, the problem is stated as an Optimal Control Problem (OCP)
and using PMP [14] we obtain the solution. Even more (and this is unusual in the
literature), we shall also study the sufficient conditions to obtain an optimum. We also
remark that we allow the possibility of using three different kinetic models in the same
example. Finally, we consider not only an unbranched metabolic pathway but also a
branched scheme. We obtain general, model-independent laws, for the first time.

The paper is organized as follows. In Sect. 2wepresent the statement of the problem.
The general laws of the optimal solution are obtained in Sect. 3, and a new kinetic
model, the power law, is also presented. Section 4 contains a study on the verification
of the sufficient conditions. Then we generalize the problem to the branched case
with a statement valid for any graph satisfying some specific conditions. In Sect. 6
we present numerical examples for a well-known test-case. Finally, we end with a
summary of the main conclusions.

2 Statement of the problem

For the sake of simplicity we start with the simplest case of an unbranched metabolic
pathway composed of n irreversible reaction steps converting substrate x1 into product
p. The value x1(t) is the substrate concentration at time t , p(t) the concentration of the
final product, xi (t), (i = 2, . . . , n) the concentration of the intermediate compounds,
and ui (t) (i = 1, . . . , n) the concentration of the enzyme catalyzing the i th reaction
(see Fig. 1).
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Fig. 1 Unbranched scheme

Once we have fully studied this case, we shall perform the generalization to the
branched one. The rate of the i th reaction, vi (xi (t), ui (t)) is linear in the enzyme
concentrations, ui :

vi (xi (t), ui (t)) = wi (xi (t)) · ui (t) (1)

The following are frequently used kinetic models:

wi (xi ) = ki xi (Mass action)

wi (xi ) = ki xi

Ki + xi
(Michaelis-Menten)

wi (xi ) = ki xc
i (Power law)

(2)

The dynamical model for the pathway is given by the law of conservation of mass:

ẋi (t) = vi−1(xi−1(t), ui−1(t)) − vi (xi (t), ui (t)); (i = 1, . . . , n). (3)

Theobjective is to transform x1 into p as fast as possible;wedenote t f thefinal time.We
assume an exhaustible initial substrate, x1, and imposing p(t f ) = C f (0 < C f < 1),
we obtain:

x1(t f ) + x2(t f ) + · · · + xn(t f ) = 1 − C f (4)

so that the optimization problem may thus be stated as the control problem (Pr):

(Pr) : τC f = min
u1,...un

∫ t f
0 dt = min

u1,...un
t f

subject to: (3), (4)
u1 ≥ 0, . . . un ≥ 0; u1 + · · · + un ≤ 1

(5)

3 Optimal solution

In two previous papers, we used PMP to obtain the solution to (Pr) for the mass action
model [5] and for the MMmodel [6]. When the control appears linearly, as is the case
for the problem under consideration, the control switches between its upper and lower
bounds at discrete instants: the optimal control is said to be a bang-bang type control
and those instants are called the switching times. The general form of the solution can
be described as follows: there exist n switching times, as many as enzymes, so that
the optimal i-enzyme profile is proved to be of bang-band type and satisfies:

ui (t) =
{
1 for t ∈ [ti−1, ti )
0 for t /∈ [ti−1, ti )

; i = 1, . . . , n (6)
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where {t0, t1, t2, ..., tn} are the switching times, with t0 = 0 and tn = t f .

We shall denote by x ji (t) (for i, j = 1, . . . , n) the optimal j th metabolite con-
centration, in the i th interval [ti−1, ti ]. The optimal solution of the complete system
can be described on each interval, knowing that on the i th interval, [ti−1, ti ] (for
i = 2, . . . , n − 1), there are 4 laws governing the metabolite concentrations:

(a) Metabolites before the i th remain at a constant value given by:

x ji (t) = x j j (t j ) for j = 1, . . . , i − 1 (7)

(b) The i thmetabolite follows a lawgiven by a function depending on: the parameters
of the model, the previous switching time, and the value of the i th metabolite on
the previous interval:

xii (t) = f (xii−1(ti−1), ti−1, t) (8)

(c) The i + 1-th metabolite follows a law obtained from the one of the previous
metabolite as follows:

xi+1i (t) = xii−1(ti−1) − xii (t) (9)

(d) Metabolites from the i + 2-th on have not been activated yet, so that their value
is zero:

x ji (t) = 0 for j = i + 2, . . . , n (10)

A schematic idea is shown in Fig. 2.
On the first interval (i = 1), letting x10(t0) = 1, only Laws (b), (c) and (d) apply;

on the last-but-one (i = n − 1), only Laws (a), (b) and (c) apply; whereas on the last
one (i = n), only Laws (a) and (b).

Notice that the formulas above are general and they only depend on the kinetic
model [Law (b)]. In [5] we obtained the law for the mass action model (i.e. the linear
one), getting:

xii (t) = f (xii−1(ti−1), ti−1, t) = xii−1(ti−1) exp(−ki (t − ti−1)) (11)

Fig. 2 Optimal concentration laws for the metabolites
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Elsewhere, in [6], we obtained the law for the Michaelis–Menten model, which gives:

xii (t) = f (xii−1(ti−1), ti−1, t)

= Kmi W

(
xii−1(ti−1)

Kmi
exp

(
xii−1(ti−1)

Kmi

)

exp

(

− ki

Kmi
(t − ti−1)

))
(12)

where W is the Lambert W -function.
We present, for the first time, in this paper, the expression of Law (b) for the kinetic

model given by the power law. The expression is now:

xii (t) = f (xii−1(ti−1), ti−1, t)

=
[
(xii−1(ti−1))

1−c − (1 − c)ki (t − ti−1)
](1−c)−1

(13)

The method for computing this optimal solution is analogous to the one we shown
in our previous papers, and we refer the reader to them (mainly “Appendix 1” in [6],
where it is given in detail).

The idea is to define theHamiltonian H(x1, . . . , xn, u1, . . . , un, λ1 . . . , λn, t) asso-
ciated to the problem (Pr):

H = 1 +
n∑

i=1

λi ẋi (t)

= 1 +
n∑

i=1

λi
[
wi−1(xi−1(t)) · ui−1(t) − wi (xi (t)) · ui (t)

]
(14)

and compute the optimum values for xi and ui applying the necessary conditions in
PMP on that Hamiltonian. In this case:

(i) λ̇i (t) = −∂ H

∂xi
; λi (t f ) = 0

(i i) min
u1,...un

H

(i i i) ẋi (t) = wi−1(xi−1(t)) · ui−1(t) − wi (xi (t)) · ui (t); xi (0) = xi0,

(iv) H(x1, . . . , xn, u1, . . . , un, , λ1 . . . , λn, t f ) = 0

(15)

where i = 1, . . . , n. Our system is autonomous, so that Ht ≡ 0 ⇒ H(t) = cte. This
condition together with (iv) implies that H(t) = 0.

We obtain the optimal solution constructively by intervals, starting at t = 0 and
concatenating the results. Once these values are computed, one still needs to calculate
the switching times t1, t2, . . . , tn−1 and the operation time t f . To this end, we use the
restriction (4) and define the augmented functional:

L(t1, t2, . . . , tn−1, t f , β) = t f + β(x1n(t f ) + x2n(t f ) + · · · + xnn(t f ) − C f )

(16)

where the values of the concentrations x1n(t f ) = x1n(t1), x2n(t f ) = x2n(t2), . . . ,
xnn(t f ) are given, and where the unknowns t1, t2, . . . , tn−1 and t f appear. Then we
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solve the non-linear system:

∂L

∂t1
= 0; ∂L

∂t2
= 0; . . . ; ∂L

∂tn−1
= 0; ∂L

∂t f
= 0; ∂L

∂β
= 0 (17)

Once the optimal values of the switching times t1, t2, . . . , tn−1 and t f are obtained
numerically, the remaining values of the solution are immediately obtained analytically
using the closed-form formulas (a)–(d), and the problem is completely solved.

Notice that, remarkably, the laws given above allow the simultaneous consideration
of several models when studying the pathway: one just needs to use the appropriate
function f (xii−1(ti−1), ti−1, t) in Law (b).

4 Sufficient conditions

Considering the optimal control problem, with x(t) and u(t) denoting n -dimensional
vectors:

min
u(t)

J =
∫ T

0
F(x(t), u(t), t)dt + B[T, x(T )] (18)

ẋ(t) = f (x(t), u(t), t); x(0) = x0 (19)

u(t) ∈ U (t), 0 ≤ t ≤ T (20)

we can guarantee the sufficient conditions for the existence of an optimal solution
using Arrow’s Theorem [14] The optimal solution found in the previous section is
based on the use of the initial conditions imposed by PMP. When certain convexity
conditions are satisfied, then the conditions stipulated by the PMP are also sufficient
for minimization. Traditionally, the most frequently used sufficiency results are Man-
gasarian’s and Arrow’s Theorems [14]. We are going to study the sufficiency of the
conditions using Arrow’s result (this sufficiency is not considered in the previous
works [4–6]).

Arrow’s Theorem 1 Let u∗(t), x∗(t), λ∗(t) the solutions obtained upon applying
PMP ∀t ∈ [0, T ]. Let:

H0(x, λ, t) = min
u∈U (t)

H(x, u, λ, t) (21)

be the Derived Hamiltonian. If the function H0(x, λ∗, t) is convex on x for each
t ∈ [0, T ] and B is convex in x, then u∗ is the optimal control of the problem and
x∗ is the optimal state trajectory. Moreover, λ∗ the optimal trajectory of the adjoint
variables.
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In our case:

min
u(t)

J = min
u1,...un

∫ t f

0
dt

ẋi (t) = wi−1(xi−1(t)) · ui−1(t) − wi (xi (t)) · ui (t), i = 1, . . . , n

u1 ≥ 0, . . . , un ≥ 0; u1 + · · · + un ≤ 1

(22)

Upon minimizing H(x, u, λ, t) in u ∈ U (t) one obtains a function u = u0(x, λ, t)
from which H0(x, u0(x, λ, t), λ, t) can be computed. In each case, the equations of
the model (Mass action, Michaelis–Menten and Power law) provide the sufficient
conditions in one way or another. From the bang-bang nature of the solution given by
PMP, we know that

u0
1(t) = c1, . . . , u0

n(t) = cn ⇒ u0(x, λ, t) = const (23)

The results for each of the considered models follow. Let

H0(x, λ, t) = H0
(

x1, . . . , xn, u0
1, . . . , u0

n, λ1 . . . , λn, t
)

(24)

Mass action The Derived Hamiltonian is:

H0(x, λ, t)

= 1 + λ1

(
−u0

1x1
)

+ λ2

(
u0
1x1 − u0

2x2
)

+ · · · + λn

(
u0

n−1xn−1 − u0
n xn

)

= 1 + λ1(−c1x1) + λ2(c1x1 − c2x2) + · · · + λn(cn−1xn−1 − cn xn)

= 1 + (−c1λ1 + c1λ2)x1 + (−c2λ2 + c2λ3)x2 + · · · + (−cnλn)xn (25)

which is linear in x and so, convex.
Michaelis–Menten In this case:

H0(x, λ, t) = 1 + λ1

(

−c1
k1x1

Km1 + x1

)

+ λ2

(

c1
k1x1

Km1 + x1
− c2

k2x2
Km2 + x2

)

+ · · · + λn

(
kn−1xn−1

Kmn−1 + xn−1
cn−1 − kn xn

Kmn + xn
cn

)

(26)

Whose Hessian matrix

H =

⎛

⎜
⎜
⎜
⎝

∂2H0

∂x21
· · · ∂2H0

∂x1∂xn

...
...

∂2H0

∂xn∂x1
· · · ∂2H0

∂x2n

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2(λ1−λ2)c1k1km1
(km1+x1)3

0 · · · 0

0
. . .

...
...

. . .

0 · · · 2λncnknkmn
(kmn+xn)3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(27)
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happens to be diagonal, whence

xT
Hx=2(λ1 − λ2)c1k1km1

(km1 + x1)3
x21 + 2(λ2 − λ3)c2k2km2

(km2 + x2)3
x22 + · · · + 2λncnknkmn

(kmn + xn)3
x2n ≥ 0

(28)
In [6] one can see that:

λ1 ≥ λ2 ≥ λ3 ≥ λn ≥ 0 (29)

which implies that H is positive semidefinite. Hence, H0(x, λ, t) is convex in x for
all t ∈ [t0, t f ].

Power law For this model:

H0(x, λ, t) = 1 + λ1

(
−u0

1xc
1k1

)
+ λ2

(
u0
1xc

1k1 − u0
2xc

2k2
)

+ · · · + λn

(
u0

n−1xc
n−1kn−1 − u0

n xc
nkn

)
(30)

H =

⎛

⎜
⎜
⎜
⎜
⎝

(λ1 − λ2)c1k1c(1 − c)xc−2
1 0 · · · 0

0
. . .

...
...

. . .

0 · · · λncnknc(1 − c)xc−2
n

⎞

⎟
⎟
⎟
⎟
⎠
(31)

One has:

xT
Hx=(λ1−λ2)c1k1c(1−c)xc

1 +(λ2−λ3)c2k2c(1−c)xc
2 +· · ·+λncnknc(1−c)xc

n .

(32)
In order to guarantee that H is positive semidefinite and H0(x, λ, t) is convex in x ,
we must impose c ∈ [0, 1].

5 Generalization

After having solved the general case of the unbranched pathway, we present, in this
section, the case of branched pathways. Non-linear pathways give rise to the following
two sets for each node:

1. For the i th metabolite, the set Ωi represents those produced from it (Fig. 3a).
2. The set Θi represents those metabolites which produce the i th one (Fig. 3b).

The chemical reactions we cover can be specified using the graph topology (see
[15] for a general reference on Graph Theory). Let G be the directed graph describing
the reaction, with vertices {x1, . . . , xn} and edges {e1, . . . , er }. The required property
is:
Given two vertices xi , x j there is a directed path from i to j if and only if i < j .

Notice that in our graphs, an edge e = (xk, xl) exists when reaction l happens after
reaction l without intermediate products (in a temporal, not chemical, sense). Thus,
the topology of our graphs is given by the temporal dependence of the reactions, not
necessarily by the chemical dependence.
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Fig. 3 Branched pathways

These graphs represent the fact that the synthesis of one enzyme requires the degra-
dation of all the previous ones; this is the case, for example, of the glycolysis, see [8].
Following that paper, we assume that the optimal profile follows a patternmatching the
topology of the pathway, reflecting the fact that the enzymes are activated sequentially.
Notice that the type of graphs we deal with have a strictly upper-triangular adjacency
matrix (and more conditions, but this one is easy to verify). The enzyme profiles show
that for the synthesis of one enzyme the degradation of the previous is needed. So, the
optimal profiles follow a pattern that matches with the pathway topology, In this way
the sequential activation of the enzymes is reflected.
With the same notation as above, the optimal solution of these branched systems can
be described on the i th interval [ti−1, ti ] ( i = 2, . . . , n − 1) with these 4 laws:

– (a′) For the metabolites before the i−th one:

x ji (t) = x j j (t j ) for j = 1, . . . , i − 1 (33)

– (b′) For the i th metabolite:

xii (t) = f (xii−1(ti−1), ti−1, t) (34)

– (c′) All the metabolites j ∈ Ωi follow the same law:

x ji (t) = x ji−1(ti−1) + xii−1(ti−1) − xii (t) (35)

– (d′) The metabolites j th such that i < minΘ j , have not been activated yet:

x ji (t) = 0 (36)

The only differences with the unbranched system appear in (c′) and (d′).

6 Numerical examples

We provide several simulations which illustrate the general formulations above. We
shall use a test example already studied by several authors and inspired by the upper
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Fig. 4 Glycolysis inspired
network

part of glycolysis. The original problem was stated by Bartl et al. [7] and was also
considered in [8] with a new formulation incorporating the enzyme dynamics.
The pathway (Fig. 4) consists of four enzymatic reactions with one branch. Recall that
x1 corresponds to the substrate, x2, x3 and x4 are the intermediate metabolites and
x p represents the product. The alternative route of the glycolysis is represented by u2
(corresponding to the enzyme aldolase) metabolizing the intermediate x2 to x3 and x4.

The single aim is to minimize the time needed to transform the substrate x1
into a fixed amount (90%) of product x p, (i.e. C f = 0.9). We assume unbuffered
or exhaustible substrate x1 (i.e. the substrate is consumed during the process) and
enzymes are assumed to become activated instantaneously (just-in-time activation).
The following initial conditions at t = 0: x0 = [1, 0, 0, 0, 0]T; u0 = [0, 0, 0, 0]T are
imposed. Metabolites and enzymes are expressed in concentration units and time in
seconds.

Additionally, restrictions on enzyme concentrations and their total amount are intro-
duced in a normalized form as:

u1 ≥ 0, . . . un ≥ 0; u1 + · · · + un ≤ 1 (37)

This is in agreementwith the assumption that the cell can only allocate a certain amount
of protein to a pathway, and with experimental observations [16] in Escherichia coli.
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The classical theoretical studies ([7,8]) are based on theMichaelis–Menten kinetics:

wi (xi ) = ki xi

Ki + xi
(38)

with unity rate constants for ki and Ki : ki = 1(s−1), Ki = 1(m M). However, we
also give results for the other two laws we have studied: mass action and the power
law. The case studies are based on the values obtained by a least-squares fit, taking
the Michaelis–Menten model as the exact one. The parameters we obtain for the other
models are:

wi (xi ) = ki xi = 0.578258x (39)

wi (xi ) = ki xc
i = 0.516434x0.674676 (40)

The fit (see Fig. 5) is, naturally, much better for the power law (which has two parame-
ters) than for the linear mass-action model (which has only one). The optimal solution
for the switching times ti is given in Table 1, for i = 1, . . . , 4. The total operation times
τC f = t4 = t f are written in boldface. These values are upon solving the nonlinear
system (17) using Mathematica®. The solutions obtained using MM and the Power
law are quite similar, due to the good fit of the latter to the former. This contrasts with
themass actionmodel. The CPU running time on a budget computer (Intel Core 2/2.66
GHz) is 0.016 for the Mass action model, 0.156 for MM and 0.031 for the power law.

Recall that our method finds the solution in analytic form and in the case of the
MM model, this implies the use of the Lambert W -function. Its symbolic use is what
consumes most of the CPU time (up to 5 and 10 times the time of the other models).

Fig. 5 Three different laws

Table 1 Switching times and operation time of the optimal solution

Model t1 t2 t3 t f

Mass action 6.31172 12.6234 17.7365 24.0482

Michaelis–Menten 4.59187 9.18407 12.5971 17.1774

Power law 4.05568 8.13458 11.041 15.1464
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The Mass action model is not a good choice due to its poor approximation but the
power law model combines both a good fit and good running time. Moreover, this
model can be considered an approximation of the Hill model:

wi (xi ) = ki xn
i

Ki + xn
i

(41)

Hill kinetics exhibit sigmoidal behaviour, leading to a switch-like behaviour for suf-
ficiently high n. It is the typical model of some enzymes exhibiting a phenomenon
known as cooperativity. Recall that the example we have considered contains just 4
enzymes. The effect would be much more remarkable for large n.

Figure 6 shows the optimal solution obtained for the enzyme concentration in the
MM model. The solution of the optimal control problem is of bang-bang type and all
the ui are 1 on all the intervals where they are active. In our case, in whichweminimize
the operation time, the activation intervals of the enzymes are consecutive. This is not
so when other functionals are considered (as, in [8], where they use the cost of the
enzymes). Figure 7 shows the optimal solution for the substrate concentration x1, the
concentrations of the intermediate compounds, x2, x3, x4, and the concentration of the
final product p for the MM model. We remark the consequence of the ramification of
the pathway.During interval []t1, t2] enzyme u2 is activated, producing simultaneously
both x3 and x4. In Fig. 7 we have slightly moved their plots to highlight them (they
are equal). Immediately later, enzyme u3 is activated, which also produces x4, whose
increase is visible in the plot.

Fig. 6 Optimal enzyme profile

Fig. 7 Profiles of metabolite and product
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7 Conclusions

We have developed in this paper the general laws governing the optimization of
metabolic pathways.Ourmethod finds an analytic solution,without recourse to numer-
ical approximations.We study three different models:Mass action,Michaelis–Menten
and, one specific contribution of this paper, the Power Law. The results we obtain high-
light the importance of the analytic formulas that we provide for the Power Law, as
it is an easy to implement model and which efficiently approximates complex mod-
els like Michaelis–Menten or Hill’s. Despite the simplicity of the test case, we can
already notice howour general laws permit the solution of network topologies allowing
sequential orderings, including ramifications.

References

1. E.Klipp, R.Heinrich,H.G.Holzhutter, Prediction of temporal gene expression.Metabolic optimization
by re-distribution of enzyme activities. Eur. J. Biochem. 269(22), 5406–5413 (2002)

2. A. Zaslaver, A. Mayo, R. Rosenberg, P. Bashkin, H. Sberro, M. Tsalyuk, M. Surette, U. Alon, Just-in-
time transcription program in metabolic pathways. Nat. Genet. 36(5), 486–491 (2004)

3. M. Bartl, P. Li, S. Schuster, Modelling the optimal timing in metabolic pathway activation—use of
Pontryagin’s maximum principle and role of the golden section. BioSystems 101, 67–77 (2010)

4. D. Oyarzun, B. Ingalls, R. Middleton, D. Kalamatianos, Sequential activation of metabolic pathways:
a dynamic optimization approach. Bull. Math. Biol. 71(8), 1851–1872 (2009)

5. L. Bayon, J.A. Otero, M.M. Ruiz, P.M. Suarez, C. Tasis, Sensitivity analysis of a linear unbranched
chemical process with n steps. J. Math. Chem. 53(3), 925–940 (2015)

6. L. Bayon, J.A. Otero, P.M. Suarez, C. Tasis, Solving linear unbranched pathways with Michaelis–
Menten kinetics using the Lambert W-function. J. Math. Chem. 54(7), 1351–1369 (2016)

7. M. Bartl, M. Kotzing, C. Kaleta, S. Schuster, P. Li, Just-in-time activation of a glycolysis inspired
metabolic network-solution with a dynamic optimization approach, in Proceedings 55nd International
Scientific Colloquium (2010), pp. 217–222

8. G. de Hijas-Liste, E. Klipp, E. Balsa-Canto, J. Banga, Global dynamic optimization approach to predict
activation in metabolic pathways. BMC Syst. Biol. 8(1), 1–15 (2014)

9. A.F. Villaverde, S. Bongard, K.Mauch, E. Balsa-Canto, J.R. Banga,Metabolic engineering with multi-
objective optimization of kinetic models. J. Biotech. 222, 1–8 (2016)

10. G. Xu, L. Wang, An improved geometric programming approach for optimization of biochemical
systems. J. Appl. Math. 2014, 1–10 (2014)

11. L.T. Biegler, A.M. Cervantes, A. Watcher, Advances in simultaneous strategies for dynamic process
optimization. Chem. Eng. Sci. 57(4), 575–593 (2002)

12. H.G. Bock, K.J. Plitt, A multiple shooting algorithm for directsolution of optimal control problems,
in Proceedings 9th IFAC World Congress (Pergamon Press, New York, 1984), pp. 242–247

13. V.S. Vassiliadis, R.W.H. Sargent, C.C. Pantelides, Solution of a class of multistage dynamic opti-
mization problems. 1. Problems without path constraints. Ind. Eng. Chem. Res. 33(9), 2111–2122
(1994)

14. A. Chiang, Elements of Dynamic Optimization (Waveland Press, Long Grove, 2000)
15. R. Gould, Graph Theory (Dover Publications, Mineola, 2012)
16. K.M. Slade, R. Baker,M. Chua, N.L. Thompson, G.J. Pielak, Effects of recombinant protein expression

on green fluorescent protein diffusion in Escherichia coli. Biochemistry 48(23), 5083–5089 (2009)

123

Author's personal copy


	CMMSE-17: general analytical laws for metabolic pathways
	Abstract
	1 Introduction
	2 Statement of the problem
	3 Optimal solution
	4 Sufficient conditions
	5 Generalization
	6 Numerical examples
	7 Conclusions
	References




