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Abstract
The Infimal Convolution operator is well known in the context of convex analysis.
This operator admits a very precise micro-economic interpretation: if several produc-
tion units produce the same output, the Infimal Convolution of their cost functions
represents the joint cost function distributing the production among all of them in the
most efficient possible way. The drawback of this operator is that it does not discrim-
inate whether one of some of the production units is not profitable (in the sense that it
would be preferable to do without it).This is the motivating idea for the present work,
in which we introduce a new operator: the Selective Infimal Convolution. We give not
just its definition and basic properties but also an algorithm for its exact computation.
Using this, we avoid the combinatorial blowing-up of other classical methods used
for solving similar problems. Even more, our approach solves a one-parameter fam-
ily of problems, not just a single one. We provide an application to the Firm’s Cost
Minimization Problem, one of the most important problems in Microeconomics.

Keywords Infimal Convolution · Unit Commitment · Cost Minimization Problem

Mathematics Subject Classification 91B38 · 47S99

1 Introduction

In the context of Electrical Engineering, there arises a problem which needs to be
solved frequently: The Unit Commitment (UC) problem, which consists in determin-
ing the schedule in which production units are to be used and how much each unit
should produce in order to meet a power demand, while satisfying operational and
technological constraints, over a time horizon. Due to its combinatorial nature and the
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nonlinearities presented, solving the UC problem (for real sized examples) is a hard
computational and optimization task: it is a NP-hard problem.

The UC problem dates back to the 1940s and has since been extensively studied
in the literature. Several review articles have been written, like Padhy (2004), where
the author reviews more than 150 published articles. More recently, other interesting
reviews have come out, like Tung et al. (2012), Samani et al. (2013), Dai et al. (2015)
and Singh and Kumar (2016). In them, several optimization techniques, based both on
exact and on approximate algorithms have been reported, as well as in economic envi-
ronments (Santos and Vigo-Aguiar 1998; Vigo-Aguiar et al. 2017). These approaches
can be classified in three types: classical, non-classical and hybrid methods. Some
methods are focusing on speed and others on accuracy.

In theFirst type, several approaches based on exactmethods have beenused, such as:
Exhaustive Enumeration, Priority List, Branch and Bound, Dynamic Programming,
Mixed-Integer Programming or Lagrangian Relaxation. The main drawbacks of all
these techniques come of the dimensionality problem, not only in computational time,
but also in storage requirements. For instance, the branch-and-bound method has
a exponential growth in the computational time with problem dimension. Also, in
Lagrangian Relaxation, as the number of units increases, there some difficulties arise
for obtaining feasible solutions. We refer the reader to the review papers for the details
of each method.

More recently, several meta-heuristic methods and hybrids of them have been pro-
posed. These approaches have, in general, better performance than the traditional
heuristics. The most commonly used meta-heuristic methods are simulated annealing,
evolutionary programming, memetic algorithms, particle swarm optimization, tabu
search, and genetic algorithms. These UC solution techniques use approximations
of the problem and the approximation may result in inaccurate solutions, which are
undesirable.

Obviously, from an Economics point of view, this problem has a great relevance for
companies, and needs to be efficiently solved. In this paper we present the problem in a
more general economic framework: we shall consider one of the most important issues
for firms in the field of Microeconomics (Varian 2005): the Firm’s Cost Minimization
Problem, which can be stated as follows: needing to produce a given output ξ , choose
the optimal inputs xi , (i = 1, . . . , N ) which minimize the cost. In this paper we
consider a firm that operates under perfect competition, i.e. its prices are independent of
the firm’s input and output decisions. The production function [see Luenberger (1995),
Jehle and Reny (2001)] expresses how inputs are transformed into outputs. The most
widely used production functions are theLeontief production function,Cobb-Douglas’
model and the one that we consider in this paper: the Linear production function. We
shall also generalize the problem by adding box constraints for the inputs.
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Computational Approach for the Firm’s Cost Minimization… 537

Let A = {1, . . . , N } and {Fi }i∈A be a family of strictly convex functions.We denote
by PrA(ξ) the problem consisting in:

minimizing:
∑

i∈B
Fi (xi )

subject to:
∑

i∈B
xi = ξ

mi ≤ xi ≤ Mi , ∀i = 1, . . . , N
B ⊂ A

(1)

and having to decide which of the N inputs are committed or uncommitted.
We shall consider two types of cost functions:

Case 1 Linear functions:

Fi (xi ) = ai + bi xi (2)

Case 2 Quadratic functions:

Fi (xi ) = αi + βi xi + γi x
2
i (3)

where γi > 0. The compactness of the set defined by the constraints guarantees that
PrA(ξ) has a solution ∀ξ ∈ [

∑

i∈A
mi ,

∑

i∈A
Mi ], and the strict convexity of each

Fi , that this solution is unique.
In the context of optimization (and especially in Convex Analysis), the Infimal

Convolution (IC) operator is widely known (Moreau 1970; Rockafellar 1970); we
recall its definition:

Definition 1 Let F,G : R −→ R̄ := R ∪ {+∞,−∞} be two functions. The Infimal
Convolution of F and G is the following function:

F 	 G(x) := inf
y∈R{F(x) + G(y − x)} (4)

For a survey of the properties of this operation, see Strömberg (1996) or Bauschke
and Combettes (2011).

Remark 1 It is well known that (�(R, R̄),	) is a commutative semigroup, where
�(R, R̄) is the set of functions f : R −→ R̄.

The following equality holds

(
⊙

i∈A

Fj

)

(K ) = inf∑

i∈A
xi=K

(
∑

i∈A

Fi (xi )

)

(5)

for every finite set A ⊂ N.
When the functions are restricted to a specific domain Dom(Fi ) = [mi , Mi ], the

definition above remains valid, just by letting Fi (x) = +∞ if x /∈ Dom(Fi ). In this
case, one has the following equivalent definition:
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538 L. Bayón et al.

Definition 2 We shall call

(F1 	 F2)(K ) := min
x1+x2=K
mi≤xi≤Mi

(F1(x1) + F2(x2)) = min
m1≤x≤M1

m2≤K−x1≤M2

((F1(x) + F2(K − x)) (6)

Ψ A(K ) :=
⊙

i∈A

Fj (K ) = min∑
i∈A Fi (xi )=K
mi≤xi≤Mi

(
∑

i∈A

Fi (xi )

)

(7)

With this definition, if Ψ A is the Infimal Convolution of several production cost
production functions, then Ψ A(K ) represents the joint cost for the production level
K when this is distributed among the several units in the most efficient way. This
operator has already been used in Mathematical Economics in Bayón et al. (2016).

This notion leads to a more realistic one which allows using only those production
units which are profitable: that is, to disregard those whose use in the productive
process would be costlier than their omission.

This is the motivating idea for the introduction of the operator we have called the
Selective Infimal Convolution (SIC). Even though its formal definition is presented
in this paper, the underlying idea has already been considered (see the Introduction)
in the framework of Electrical Engineering (the UC problem), although in that setting
it presents technical complications which prevent a rigorous and abstract statement as
the one we propose. Even more, we do not limit ourselves to a specific problem but
to a one-parameter family of problems, obtained by varying the value ξ of the output.

The rest of the paper is organized as follows. Section 2 presents the definition and
main properties of the SIC operator. Section 3 outlines the Optimization Algorithm for
the exact calculationof theSICoperator. Section4presents several numerical examples
and analyzes the operational complexity of the algorithm. Section 5 concludes the
paper and proposes some future work. In “Appendix”, we include the proof of the
formula for the SIC in the quadratic case, for the sake of completeness.

2 Definition and Properties of the SIC Operator

Wegive now the elementary properties of this new operator. Proofs are omitted, as they
consist of elementary group calculations which provide no insight into the problem at
hand.

Definition 3 Let F,G : R −→ R̄ := R∪{+∞,−∞} be two functions. The Selective
Infimal Convolution (SIC) of F and G is the following function:

(F s G)(x) := min{F(x),G(x), (F 	 G)(x)} (8)

The first two results give the basic properties of the SIC operator and describe how
one can compute its value for a family of functions from the IC operator.

Proposition 1 (�(R, R̄), s ) is a commutative semigroup.
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Proposition 2 Let A ⊂ N be an initial segment and Gi : R −→ R̄for i ∈ A. Then:

s
i∈A

Gi (x) = min
B∈P(A)

(
⊙

i∈B
Gi (x)

)

= min
B⊆A

{
⊙

i∈B
Gi (x)

}

(9)

where P(A) represents the set of non-empty subsets of A.

The SIC is the solution to a family of mixed-integer programming problems; this
is the content of the following result.

Proposition 3 Let {Fi }i∈A ⊂ �(R, R̄). The following holds:

s
i∈A

Fi (ξ) = inf
D

∑

i∈A

zi · Fi (xi ) (10)

with:

D = {(x, z) ∈R
n × {0, 1}n : ∣

∣ :
∑

i∈A

zi · xi = ξ (11)

Finally, for the sake of completeness, we present two Propositions which give the
explicit expression of the Infimal Convolution of two linear or quadratic functions.
These are required to compute the SIC in a symbolic way.

Let Fi , for i = 1, 2 be two linear functions as:

Fi (xi ) = ai + bi xi (12)

Proposition 4 Let Fi (xi ) = ai + bi xi , (i = 1, 2) with domains [mi , Mi ]. Let us
assume that b1 ≤ b2. The following equality holds:

(F1 	 F2)(ξ) :=
{
F1(ξ − m2) + F2(m2) if ξ ∈ [m1 + m2, M1 + m2]
F1(M1) + F2(ξ − M1) if ξ ∈ [M1 + m2, M1 + M2] (13)

For two strictly convex quadratic functions

Fi (xi ) = αi + βi xi + γi x
2
i (14)

(convex means γi > 0) with i = 1, 2, we have the following result.

Proposition 5 Let Fi (xi ) = αi + βi xi + γi x2i (i = 1, 2) with domains [mi , Mi ]. Let
us assume that F ′

1(m1) ≤ F ′
2(m2). Define

l1 = (−β1 + β2 + 2γ2m2)

2γ1
; l2 = (β1 − β2 + 2γ1M1)

2γ2
; l3 = (−β1 + β2 + 2γ2M2)

2γ1
(15)
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540 L. Bayón et al.

and

F12(ξ) = α1 + α2 − (β1 − β2)
2

4(γ1 + γ2)
+ γ2β1 + γ1β2

γ1 + γ2
ξ + γ1γ2

γ1 + γ2
ξ2. (16)

Then

(A) If F ′
1(m1) ≤ F ′

2(m2) ≤ F ′
1(M1) ≤ F ′

2(M2), then:

(F1
⊙

F2)(ξ) :=
⎧
⎨

⎩

F1(ξ − m2) + F2(m2) if ξ ∈ [m1 + m2,m2 + l1]
F12(ξ) if ξ ∈ [m2 + l1, M1 + l2]
F2(ξ − M1) + F1(M1) if ξ ∈ [M1 + l2, M1 + M2]

(17)

(B) If F ′
1(m1) ≤ F ′

2(m2) ≤ F ′
2(M2) ≤ F ′

1(M1), then:

(F1 	 F2)(ξ) :=
⎧
⎨

⎩

F1(ξ − m2) + F2(m2) if ξ ∈ [m1 + m2,m2 + l1]
F12(ξ) if ξ ∈ [m2 + l1, M2 + l3]
F1(ξ − M2) + F2(M2) if ξ ∈ [M2 + l3, M1 + M2]

(18)

(C) If F ′
1(m1) ≤ F ′

1(M1) ≤ F ′
2(m2) ≤ F ′

2(M2), then:

(F1 	 F2)(ξ) :=
{
F1(ξ − m2) + F2(m2) if ξ ∈ [m1 + m2, M1 + m2]
F1(M1) + F2(ξ − M1) if ξ ∈ [M1 + m2, M1 + M2] (19)

Details on these propositions are given in Bayón et al. (2011, 2014).

3 An Exact Algorithm for Computing the SIC

We present in this section an exact method for computing the SIC in an exact way.
It makes use of Propositions 4 and 5 in the previous sections. Using them, we can
compute the SIC of a family of functions F1, . . . , Fn in a recursive way. To this end,
we implement the following collection of modules.

(Module 1) IC of 2 cost functions
To implement this we only need to apply Propositions 4 and 5 to a pair of functions

F1 and F2 to obtain

F1 	 F2 (20)

(Module 2) Minimum function of several functions
This module computes the minimum of several functions (i.e. for their graphs, the

enveloping curve which is lowest).

R(x) = min{F1(x), F2(x), . . . , Fn(x)} (21)

This is, in general, a piece-wise defined function.
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(Module 3) IC of N cost functions
We also need a way to compute the IC of a family of cost functions,

F1(x), . . . , FN (x). (22)

It is calculated by computing all the ICs of all the pairs of functions Fi 	 Fj and
then computing the minimum:

F1 	 F2 = min
(i, j)

(F1i 	 F2 j ); i = 1, . . . , k(1); j = 1, . . . , N (23)

(Module 4) SIC of 2 cost functions
Once the IC of 2 functions is computed, the SIC of 2 functions can be computed

using the minimum:

(F1 s F2)(x) = min{F1(x), F2(x), (F1 	 F2)(x)} (24)

Which is, in general, another piece-wise defined function.
(Module 5) SIC of N cost functions
Bearing in mind the associative nature of the SIC operation, the SIC of N cost

functions can now be calculated by means of a recursive process, carrying out N SIC
operations using the recurrence:

F1 s F2 s · · · s FN = (F1 s F2 s · · · s FN−1) s FN (25)

That is: once we have obtained the SIC of the first two units, we calculate the SIC of
the obtained result F1 s F2 with the third F3 and so on, sequentially.

We might also consider the divide-and-conquer method:

F1 s F2 s · · · s FN = (F1 s F2 s · · · s Fn
2
) s (Fn

2+1 s · · · s Fn) (26)

The analytic expression of the SIC of the N cost functions yields the total cost of
the optimal solution for any ξ .

4 Numerical Examples

Based on the above results, we are now ready to present two examples: the linear
case and the quadratic case. For this purpose, we implemented the aforementioned
algorithms in Mathematica�.

4.1 Linear Case

We first consider a case test with 5 inputs, where the parameters of the linear cost
functions Fi (xi ), (i = 1, . . . , 5) are presented in Table 1.

Fi (xi ) = ai + bi xi (27)
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542 L. Bayón et al.

Table 1 Parameters of the linear
cost functions Fi (xi )

Fi (xi ) ai bi mi Mi

F1 2 1 0 7

F2 1 3 2 9

F3 3 2 1 10

F4 4 5 0 8

F5 5 4 3 6

Table 2 Optimal total cost and
committed inputs

Output level ξ Inputs Total cost

[
li , ui

]
1 2 3 4 5 Ai Bi

[0, 7] 1 2 1

[7, 8] 1 3 6 1

[8, 17] 1 3 −2 2

[17, 19] 1 2 3 1 2

[19, 26] 1 2 3 −18 3

[26, 28] 1 2 3 4 −66 5

[28, 29] 1 2 3 5 −10 3

[29, 32] 1 2 3 5 −39 4

[32, 40] 1 2 3 4 5 −67 5

Unlike the methods mentioned above, our algorithm provides the analytic solution
for all values of the output level ξ . The SIC is a piece-wise-linear function (Z pieces)
of the form:

F1 s F2 s · · · s F5 = c(ξ) = {Hi (ξ)} = {Ai + Bi · ξ} ; ξ ∈ [li , ui ] , i = 1, . . . , Z (28)

The total cost (Ai + Bi · ξ ) for each interval (i = 1, . . . , Z ) of output level ξ is listed
in Table 2. This table shows also the inputs which are committed.

As Fig. 1 shows, the SIC for this example has Z = 9 pieces and shows both
continuous non-convex areas and discontinuities.

The computation of the SIC does not only provide the minimum value of the total
cost but also, for any ξ , the production distribution among the N inputs. The procedure
is as follows: first, given a certain ξ , choose the interval [li , ui ] , i = 1, . . . , Z , for
which ξ ∈ [li , ui ]. Then, order the Fi of the inputs i ∈ {k1, . . . kr } which are used
in that interval in increasing order of their slopes, bi , say bi1 < bi2 < . . . , bir . The
distribution of inputs is then as follows: each input i , starting from i1 is used up to its
maximum capacity Mi up until the output level is reached, at which point, no more
inputs are used.

For instance, for ξ = 27 we need to consider the interval [li , ui ] = [26, 28] where
the used inputs are: 1, 2, 3, 4. The optimal cost is given by:

Ai + Bi · ξ = −66 + 5 · 27 = 69 (29)
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Fig. 1 SIC of the linear cost functions for Table 1

Table 3 Parameters of the
quadratic cost functions Fi (xi )

Fi (xi ) αi βi γi mi Mi

F1 26.97 0.3975 0.002176 0 100

F2 21.13 0.3059 0.001861 50 200

F3 21.13 0.5500 0.001861 40 90

Considering each bi , the order of the inputs is: 1, 3, 2, 4. Hence, just taking into
account the Mi , we get:

x1 = 7; x3 = 10; x2 = 9; x4 = 1 (30)

because of the condition

∑
xi = ξ. (31)

4.2 Quadratic Case

Secondly, we consider a case test with 3 inputs, where the the cost functions Fi (xi ),
(i = 1, . . . , 3) follow a quadratic model:

Fi (xi ) = αi + βi xi + γi x
2
i (32)

The parameters are listed in Table 3.
The SIC is now a piece-wise quadratic function of the form:

F1 s F2 s F3 = c(ξ) = {Hi (ξ)}
=

{
Ai + Bi · ξ + Ci · ξ2

}
; ξ ∈ [li , ui ] , i = 1, . . . , Z (33)

The SIC obtained for any output level ξ is presented in Table 4.
As Fig. 2 shows, the SIC in this example has also Z = 9 pieces.
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Table 4 Optimal total cost and
inputs commitment

Output level ξ Inputs Total cost

[
li , ui

]
1 2 3 Ai Bi Ci

[0.00, 40.00] 1 26.97 0.3975 0.002176

[40.00, 41.92] 3 21.13 0.5500 0.001861

[41.92, 50.00] 1 26.97 0.3975 0.002176

[50.00, 200.00] 2 21.13 0.3059 0.001861

[200.00, 241.53] 1 2 47.58 0.3481 0.001003

[241.53, 300.00] 1 2 97.63 -0.0663 0.001861

[300.00, 317.49] 1 2 3 65.15 0.4188 0.000651

[317.49, 345.58] 1 2 3 93.24 0.2418 0.000930

[345.58, 390.00] 1 2 3 204.37 -0.4012 0.001861

Fig. 2 SIC of the quadratic cost functions

A remarkable behaviour is noticeable in this example. We see how, for ξ = 50, the
cost function c(ξ) is discontinuous. The left and right limits are, respectively:

Ai + Bi · ξ + Ci · ξ2 = 26.97 + 0.3975 · 50 + 0.002176 · 502 = 52.28

Ai + Bi · ξ + Ci · ξ2 = 21.13 + 0.3059 · 50 + 0.001861 · 502 = 41.07 (34)

The point given by that cost on the left is

41.07 = 26.97 + 0.3975 · ξ + 0.002176 · ξ2 ⇒ ξ = 30.42 (35)

and we conclude that, in this example, producing 50 units of output is cheaper than
producing any other quantity between 30.42 and 50.

4.3 Profit Maximization Problem

In the previous sections, we solvedwhat is traditionally known as theFirm’s CostMin-
imization (FCM) Problem. Using the computed SIC, we can also solve an associated
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Fig. 3 FPM problem, linear case

Fig. 4 FPM problem, quadratic
case

problem: the Firm’s Profit Maximization (FPM) Problem. The idea is that, in order to
solve the FPM problem, we first compute analytically the minimum cost function:

c(ξ) = min
xi

∑
Fi (xi ) (36)

and then, maximize over the output quantity:

max
ξ

(pξ − c(ξ)) (37)

where xi are the inputs, ξ is the output and p is the price of the output.
In the simplest case, when c(ξ) is of class C1, it is necessary to determine the

optimum level of output ξ for which the marginal cost c′(ξ) coincides with the price
p. In our case, the problem is more complicated, as c(ξ) is not even continuous. In
Fig. 3 we give the graphical representation of the benefit pξ − c(ξ), for the previous
linear example, with p = 2.8. As we see, the maximum of the benefit coincides with
the maximum of

2.8ξ − H3(ξ) (38)

which happens for ξ = 17, at which point inputs 1 and 3 are used. In the linear case, as
the Hi (ξ) are also linear, the maximum is always achieved at the one of the endpoints
of the intervals [li , ui ] .
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Table 5 Optimal total cost for
the IC

Output level ξ Inputs Total Cost

[
li , ui

]
1 2 3 Ai Bi Ci

[90.00, 111.71] 1 2 3 96.01 0.0058 0.002176

[111.71, 214.83] 1 2 3 81.36 0.2678 0.001003

[214.83, 317.49] 1 2 3 65.15 0.4188 0.000651

[317.49, 345.58] 1 2 3 93.24 0.2418 0.000930

[345.58, 390.00] 1 2 3 204.37 -0.4012 0.001861

Table 6 Comparison between SIC and IC

Method Cost Inputs

SIC 21.13 + 0.3059 · 150 + 0.001861 · 1502 = 108.88 {2}
IC 81.36 + 0.2678 · 150 + 0.001003 · 1502 = 144.09 {1, 2, 3}

On the other hand, in Fig. 4 we plot the profit for the quadratic case computed
above, for the specific value p = 0.8. In the quadratic case, as the Hi (ξ) are also
quadratic, the maximum can be either at the endpoints or in the interior of one of the
sub-intervals [li , ui ]. In our example, it comes from maximizing

pξ − H4(ξ) = 0.8 · ξ − (21.13 + 0.3059 · ξ + 0.001861 · ξ2) ⇒ ξ = 132.75 (39)

and in this case, only input 2 is used.

4.4 Comparison with the Infimal Convolution

In order to provide some insight, we show how the SIC in the quadratic example above
(Table 3) compares against the IC (Bayón et al. 2016). As the IC requires the use of
all the inputs at all times, the optimal solution obviously different, as Table 5 shows.

Notice first of all, that the IC provides values only starting at ξ = 90, which is
the minimum output level when using the three inputs. Also, the IC only divides the
whole ξ interval into 5 pieces, in contrast with the 9 into which the SIC divides it. The
cost functions coincide for the last three sub-intervals (as must be, as in both cases all
the inputs are used).

Comparing the costs obtained for the SIC and the IC for ξ = 150, for example, we
get:

Table 6 shows, as expected, that the cost is much less for the SIC, as one is allowed
to use not all the inputs but only the most efficient ones.
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5 Conclusions

The Unit Commitment (UC) problem is a well-known combinatorial optimization
problem arising in operations planning of power systems. Numerous algorithms have
been formulated in the past six decades for optimization of the UC problem. But
researchers coincide in considering it an open problem, in which novel algorithms
are required. This paper addresses this issue for the solution of the unit commitment
problem.

We have presented its definition and basic properties and a new algorithm for
computing an exact solution. This algorithm does not show the combinatorial blowing-
up of other classical methods like Exhaustive Enumeration or Branch and Bound.
Our application to the Firm’s Cost Minimization Problem and to the Firm’s Profit
Maximization Problem shows the potential of our method in several problems of
Economy. The most relevant point is that we solve not just a specific case but a family
of problems which arise when varying the output value. This way, one can obtain
qualitative properties of the solution, as we show in our examples.

Appendix: Proof of the Formula for the SIC (Quadratic Case)

Proposition 5 Let Fi (xi ) = αi + βi xi + γi x2i with domains [mi , Mi ] and γi > 0
(i = 1, 2). Let us assume that F ′

1(m1) ≤ F ′
2(m2). Define

l1 = (−β1 + β2 + 2γ2m2)

2γ1
; l2 = (β1 − β2 + 2γ1M1)

2γ2
; l3 = (−β1 + β2 + 2γ2M2)

2γ1
(40)

and

F12(ξ) = α1 + α2 − (β1 − β2)
2

4(γ1 + γ2)
+ γ2β1 + γ1β2

γ1 + γ2
ξ + γ1γ2

γ1 + γ2
ξ2. (41)

Then
(A) If F ′

1(m1) ≤ F ′
2(m2) ≤ F ′

1(M1) ≤ F ′
2(M2), then:

(F1
⊙

F2)(ξ) :=
⎧
⎨

⎩

F1(ξ − m2) + F2(m2) if ξ ∈ [m1 + m2,m2 + l1]
F12(ξ) if ξ ∈ [m2 + l1, M1 + l2]
F2(ξ − M1) + F1(M1) if ξ ∈ [M1 + l2, M1 + M2]

(42)

(B) If F ′
1(m1) ≤ F ′

2(m2) ≤ F ′
2(M2) ≤ F ′

1(M1), then:

(F1
⊙

F2)(ξ) :=
⎧
⎨

⎩

F1(ξ − m2) + F2(m2) if ξ ∈ [m1 + m2,m2 + l1]
F12(ξ) if ξ ∈ [m2 + l1, M2 + l3]
F1(ξ − M2) + F2(M2) if ξ ∈ [M2 + l3, M1 + M2]

(43)
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(C) If F ′
1(m1) ≤ F ′

1(M1) ≤ F ′
2(m2) ≤ F ′

2(M2), then:

(F1
⊙

F2)(ξ) :=
{
F1(ξ − m2) + F2(m2) if ξ ∈ [m1 + m2, M1 + m2]
F1(M1) + F2(ξ − M1) if ξ ∈ [M1 + m2, M1 + M2] (44)

Proof The case for n quadratic functions has been studied in Bayón et al. (2010). In
this paper we only deal with the case n = 2.

(A) Let (xξ , yξ ) be the minimum of F1(x) + F2(y) subject to x + y = ξ , with m1 ≤
xξ ≤ M1 and m2 ≤ yξ ≤ M2.

We first show that the following holds:

(i) If F ′
1(m1) < F ′

2(m2) or (F ′
1(m1) = F ′

2(m2)) then yξ > m2 ⇒ xξ > m1 (or
xξ = m1 ⇒ yξ = m2).

(ii) If F ′
2(m2) < F ′

1(M1) or (F ′
2(m2) = F ′

1(M1)) then xξ = M1 ⇒ yξ > m2 (or
yξ = m2 ⇒ xξ < M1).

(iii) If F ′
1(M1) < F ′

2(M2) or (F ′
1(M1) = F ′

2(M2)) then xξ < M1 ⇒ yξ < M2 (or
yξ = M2 ⇒ xξ = M1).

We prove just the case (i), the other two follow from a similar reasoning.
(i) LetF ′

1(m1) ≤ F ′
2(m2). Assuming that xξ = m1 and yξ > m2 leads to a contra-

diction. Consider the function:

Φ(ε) = F1(xξ + ε) + F2(yξ − ε) (45)

Hence Φ ′(0) = F ′
1(m1) − F ′

2(yξ ) < F ′
1(m1) − F ′

2(m2) ≤ 0, which contradicts the
minimal nature of (xξ , yξ ).

Notice that (i) guarantees that the minimum cannot be obtained for xξ = m1 and
m2 < yξ ≤ M2; (ii) guarantees that the minimum cannot be obtained for yξ = m2
and xξ = M1, and finally (iii) guarantees that the minimum cannot be obtained for
yξ = M2 and m1 ≤ xξ < M1.

Thus, we have the following possibilities:

– If yξ = m2 and m1 ≤ xξ < M1 then F ′
1(xξ ) ≤ F ′

2(m2). As F ′
1 is increasing, there

must exist some l1 ≥ xξ with F ′
1(l1) = F ′

2(m2), that is,

l1 = (−β1 + β2 + 2γ2m2)

2γ1
(46)

such that yξ = m2 and xξ = ξ −m2 ∈ [m1, l1], fromwhich ξ ∈ [m1+m2, l1+m2]
and certainly, in this interval, (F1

⊙
F2) (ξ) = F1(ξ − m2) + F2(m2).

– If xξ = M1 andm2 < yξ ≤ M2 then F ′
1(M1) ≤ F ′

2(yξ ). As F
′
2 is increasing, there

must exist some l2 ≤ yξ with F ′
1(M1) = F ′

2(l2), that is,

l2 = (β1 − β2 + 2γ1M1)

2γ2
(47)

such that xξ = M1 and yξ = ξ − M1 ∈ [l2, M2], from which ξ ∈ [M1 + l2, M1 +
M2] and certainly, in this interval, (F1

⊙
F2) (ξ) = F1(M1) + F2(ξ − M1).
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– If m1 < xξ < M1 and m2 < yξ < M2 then F ′
1(xξ ) = F ′

2(yξ ). It is clear that, in
this case, ξ ∈ [l1 + m2, M1 + l2] and

min
y

{F1(ξ − y) + F2(y)} = α1 + α2 − (β1 − β2)
2

4(γ1 + γ2)
+ γ2β1 + γ1β2

γ1 + γ2
ξ + γ1γ2

γ1 + γ2
ξ2

(48)

which function we denote F12(ξ).
(B) and (C) are proved using a similar reasoning. ��
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