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Abstract
Weconsider a version of the secretary problem inwhich each candidate has an identical
twin. As in the classical secretary problem, the aim is to choose a top candidate, i.e.,
one of the best twins, with the highest possible probability.Wefind an optimal stopping
rule for such a choice, the probability of success, and its asymptotic behavior.We use a
novel technique that allows the problem to be solved exactly in linear time and obtain
the asymptotic values by solving differential equations. Furthermore, the proposed
technique may be used to study the variants of the same problem and in other optimal
stopping problems.

Keywords Secretary problem · Combinatorial optimization

Mathematics Subject Classification 60G40 · 62L15

1 Introduction

The secretary problem is one ofmany names for a famous problem of optimal stopping
theory. This problem can be stated as follows: an employer is willing to hire the best
secretary out of n rankable candidates. These candidates are interviewed one by one in
random order. A decision about each particular candidate is to be made immediately
after the interview. Once rejected, a candidate cannot be called back. During the
interview, the employer can rank the candidate among all the preceding ones, but is
unaware of the quality of yet unseen candidates. The goal is then to determine the
optimal strategy that maximizes the probability of selecting the best candidate.

This problem has a very elegant solution. Dynkin (1963) and Lindley (1961) inde-
pendently proved that the best strategy consists in a so-called threshold strategy.
Namely, in rejecting roughly the first n/e (cutoff value) interviewed candidates and
then selecting the first one that is better than all the preceding ones. Following this
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strategy, the probability of selecting the best candidate is at least 1/e, this being its
approximate value for large values of n. This well-known solution was later refined
by Gilbert and Mosteller (1966), showing that

⌊
(n − 1

2 )e
−1 + 1

2

⌋
is a better approxi-

mation than �n/e�, although the difference is never greater than 1.
The secretary problem has been addressed by many authors in different fields such

as applied probability, statistics and decision theory. Extensive bibliographies on the
topic can be found in Ferguson (1989), Ferguson et al. (1991) and Szajowski (2009).
On the other hand, different generalizations of this classic problem have recently been
consideredwithin the framework of partially ordered objects (Freij andWastlund 2010;
Garrod andMorris 2012; Georgiou et al. 2008) or matroids (Babaioff et al. 2007; Soto
2011). The paper by Bearden Bearden (2006) is also worth mentioning, where the
author considers a situation in which the employer receives a payoff for selecting a
candidate equal to the “score” of the candidate (in the classic problem, the payoff is 1
if the candidate is really the best, and 0 otherwise). In this situation, the optimal cutoff
value is roughly the square root of the number of candidates.

A variant introduced relatively recently by Garrod et al. (2012) and included in his
doctoral thesis (Garrod 2011) considers a version of the secretary problem in which
each candidate has an identical twin. As in the classic problem, the aim is to select a
top candidate, i.e. one of the best twins, with the highest possible probability. More
recently, Shai Vardi addressed the same problem in Vardi (2014, 2015), where he calls
it the returning secretary problem. Curiously, he seems to ignore Garrod’s papers, as
they are not included in his bibliography.

As in the case of the secretary problem, it would be excessive to say that this new
variant is motivated by a real-world application scenario. However, it constitutes an
interesting mathematical challenge that has led us to introduce a novel methodol-
ogy based on the resolution of differential equations and that might be useful in the
asymptotic analysis of other optimal stopping problems.

In this problem, as in the secretary problem, the optimal stopping strategy is a
strategy threshold. Specifically, for each number of pairs of twin secretaries, n ∈ N,
there exists a kn such that the optimal strategy is to interview kn different secretaries
and thereafter select, in your second inspection, the first one that is better than all the
previous ones. Both Garrod and Shai Vardi approach this problem as a best-choice
problem for partially ordered objects and, in their papers, study asymptotic behaviour
as n → ∞ of the optimal stopping threshold, kn , and of the probability of success,
Pn . Both authors deduce, denoting by W the Lambert W-function,

lim
n→∞

kn

n
= ϑ := 2

W (2e5)
= 0.4709265...

For the asymptotic probability of success, both arrive at different expressions of
the same value:

Garrod finds that

lim
n→∞ Pn =

(
3 + 4

(
−1 +

√
1

1−ϑ

) (−1 + 1
ϑ

)2)
ϑ

3
= 0.767974...
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and Shai Vardi that

lim
n→∞ Pn = 2

√
1 − ϑ − 4 (1 − ϑ)

3
−

(
1 − √

1 − ϑ
)2

log(ϑ)

3
= 0.767974...

In the present paper,we address the problem in a completely differentway, obtaining
the asymptotic probability of success, which appears with a different expression than
those above:

lim
n→∞ Pn = −4 + 6

√
1 − ϑ + 4ϑ + (−2 + 2

√
1 − ϑ + ϑ

)
log(ϑ)

3
= 0.767974...

We have thus introduced a novel technique that falls outside the framework of
partial ordered objects (which in our opinion do not from part of the nature of this
problem) that can also be applied to the study of variants of the problem in which, for
example, penalization is considered in the case of failure or costs for the interviews
conducted.

The paper is organized as follows. In Sect. 2, we present some technical results. In
Sect. 3, the formula that calculates the probability of success, the optimal threshold
and its asymptotic values is deduced. In Sect. 4, we reflect on the efficiency of the exact
calculation of Pn and kn . In Sect. 5, we solve variants of the problem, considering
penalties in the case of failure and costs for the interviews. In Sect. 6, we conclude the
paper by raising some future challenges related to this work.

2 Some technical results

In optimal stopping problems, where the probability of success is given by a function
Fn(k), where k represents the stopping threshold and n the number of stages, it is
usual for the asymptotic value of the optimal stopping threshold to be of the type
β · n, where β ∈ (0, 1). Sometimes, the arguments for its calculation are somewhat
lax, considering Fn(k) the step to the limit, with the mere substitution k → nx and
subsequent maximization of the limit function f (x) := limn(Fn(nx)). Whatever the
case, when this convergence is uniform on [0, 1], the reasoning is entirely correct,
because we have the following result.

Proposition 1 Let {Fn}n∈N be a sequence of real functions with Fn defined by integer
values in {0, 1, ..., n}, and let M(n) be the value for which the function Fn reaches its
maximum. Assume that the sequence of functions { fn}n∈N given by fn(x) := Fn(�nx�)
converges uniformly on [0, 1] to f continuous in [0, 1] and that θ is the only global
maximum of f in [0, 1]. Then,

(i) lim
n

M(n)/n = θ .

(ii) lim
n

Fn(M(n)) = f (θ).

(iii) If M(n) ∼ M(n) then lim
n

Fn(M(n)) = f (θ).
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Proof The proof is straightforward and analogous to that presented in Bayón et al.
(2017) for the functions Fn with a real variable and domain [0, n] and fn(x) = Fn(nx).

	

The uniform convergence of fn(x) := Fn(�nx�) can sometimes be difficult to

establish a priori. However, the nature of the problem, togetherwith a simple inspection
of the evolution of the succession curve fn(x) for moderately large values of n, makes
the assumption of the uniformity of convergence entirely reasonable and even the
assumption that the function limit is of class C1. Making this assumption, let us now
see a novel procedure for calculating the limit of the sequence fn when the functions
Fn are defined recursively. However, let us first consider some auxiliary results.

Lemma 1 Consider a sequence of functions Fn : [0, n] ∩ Z → R each of which is
defined recursively by the conditions:

Fn(k) = Gn(k) + Hn(k)Fn(k − 1) and Fn(0) = μ

If fn(x) := Fn(�nx�) converges uniformly to f on [0, 1], hn(x) := Hn(�nx�)−1 and
gn(x) := Gn(�nx�) converge to 0 on (0, 1) and uniformly on [a, b] for all 0 < a <

b < 1, then f ∗
n (x) := Fn(�nx� − 1) converges to f on (0, 1) and uniformly on [a, b]

for all 0 < a < b < 1.

Proof It suffices to observe that the sequence

f ∗
n (x) = fn(x) − gn(x)

hn(x) + 1

converges to f on (0, 1) and uniformly on [a, b] for all 0 < a < b < 1. 	

Lemma 2 Let {Fn}n∈N be a sequence of real functions of real variable with Fn with
domain [0, n]. If fn(x) := Fn(nx) converges uniformly on [0, 1] to f , then also
f ∗
n (x) := Fn(�nx�).

Proof It is straightforward. 	

Lemma 3 Let { fn}n∈N be a sequence of real functions such that fn → f uniformly
on [0, 1], with f being continuous. We define

Wn(x) := fn(x − 1/n) − fn(x)

−1/n

and it is known that for all 0 < a < b < 1, Wn(x) is Riemann integrable and that
it converges at W(x) uniformly on [a, b]. It is also known that W is continuous in
(0, 1). Thus, f (x) is derivable in (0, 1) and f ′(x) = W(x).

Proof Consider a compact [a, b] with 0 < a < b < 1 and x ∈ [a, b]. Due to the
uniform convergence ofWn , we may state that

∫ x

a
W(t)dt = lim

n→∞

∫ x

a
Wn(t)dt = (�).
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Developing to the limit on the right,

(�) = lim
n→∞ n

(∫ x

a
fn(t) − fn(t − 1/n) dt

)
,

from which, due to the change in variables u = t − 1/n:

(�) = lim
n→∞ n

(∫ x

x−1/n
fn(t)dt −

∫ a

a−1/n
fn(t)dt

)
.

We shall prove that this limit is exactly f (x)− f (a). Let ε > 0. There exists an n0 such
that | fn(x) − f (x)| < ε/2 for all x ∈ [a, b]. Moreover, due to f being continuous, it
is uniformly continuous. Hence, there exists an n0 such that | f (x) − f (y)| < ε/2 if
|x − y| < 1/n0. Thus,∣∣∣∣n

(∫ x

x−1/n
fn(t)dt −

∫ a

a−1/n
fn(t)dt

)
− f (x) + f (a)

∣∣∣∣
=

∣∣∣∣n
(∫ x

x−1/n
fn(t) − f (x)dt −

∫ a

a−1/n
fn(t) − f (a)dt

)∣∣∣∣ < n
1

n

ε

2
− n

1

n

ε

2
= ε

Therefore, ∫ x

a
W(t)dt = f (x) − f (a),

for x ∈ [a, b], and hence W(x) = f ′(x). Furthermore, as this is true for any a, b ∈
(0, 1), it follows that f (x) is derivable in (0, 1) with f ′(x) = W(x) for all x ∈ (0, 1).

	

Theorem 1 Consider a sequence of functions Fn : [0, n] ∩ Z → R, each of which are
defined recursively by the conditions:

Fn(k) = Gn(k) + Hn(k)Fn(k − 1) and Fn(0) = μ

Let fn(x) := Fn(�nx�), hn(x) := n(1− Hn(�nx�)) and gn(x) := nGn(�nx�). If both
hn(x) and gn(x) converge on (0, 1) and uniformly on [ε, ε′] for all 0 < ε < ε′ < 1
to continuous functions in (0, 1), h(x) and g(x), respectively, and fn(x) → f (x)

uniformly on [0, 1] with f ∈ C[0, 1], then f (0) = μ and f satisfy in (0, 1)

f ′(x) = − f (x)h(x) + g(x)

Proof Making k = �nx� in the recursion, we have that

Fn(�nx�) = Gn(�nx�) + Hn(�nx�)Fn(�nx� − 1)

Fn(�nx� − 1) − Fn(�nx�) = Fn(�n(x − 1/n)�, n) − Fn(�nx�)
= fn(x − 1/n) − fn(x)
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Now, let

Wn(x) := fn(x − 1/n) − fn(x)

−1/n

Wn(x) = Fn(�nx� − 1) − Fn(�nx�)
1/n

= Fn(�nx� − 1) − Gn(�nx�) − Hn(�nx�)Fn(�nx� − 1)

−1/n

= Fn(�nx� − 1)(1 − Hn(�nx�)) − Gn(�nx�)
−1/n

= −Fn(�nx� − 1)hn(x) + gn(x)

Now, taking into account 1 and making f ∗(x) := Fn(�nx� − 1), we have that Wn

converge uniformly on [ε, ε′] for all 0 < ε < ε′ < 1

lim
n→∞ Wn(x) = lim

n→∞( f ∗
n (x)hn(x) − gn(x)) = f (x)h(x) − g(x)

In short, from the above lemma, f ′(x) = − f (x)h(x) + g(x) and, due to the
continuity of f , f (0) = μ. 	


We obtain a similar result with a forward recursion.

Theorem 2 Consider a sequence of functions Fn : [0, n] ∩ Z → R, each of which are
defined recursively by the conditions:

Fn(k) = Gn(k) + Hn(k)Fn(k + 1) and Fn(n) = μ

Let fn(x) := Fn(�nx�), hn(x) := n(1− Hn(�nx�)) and gn(x) := nGn(�nx�). If both
hn(x) and gn(x) converge on (0, 1) and uniformly on [ε, ε′] for all 0 < ε < ε′ < 1
to continuous functions in (0, 1), h(x) and g(x), respectively, and fn(x) → f (x)

uniformly on [0, 1] with f ∈ C[0, 1], then f (1) = μ and f satisfies in (0, 1)

f ′(x) = f (x)h(x) − g(x)

Remark In the case of the classic secretary problem, the function of the probability of
success using the threshold k, Pn(k), can be expressed with the following recurrence
relation:

Pn(k) = 1

n
+ k

k + 1
Pn(k + 1); Pn(n) = 0

Making pn(x) = Pn(�nx�) and assuming the uniform convergence pn(x) → p(x)

on [0, 1], p(x) must satisfy p′(x) = p(x)
x − 1, which, with the condition p(1) = 0,

we have the well-known function p(x) = −x log(x), whose maximization in [0, 1]
provides the asymptotic value of the optimal threshold, n/e, and the asymptotic prob-
ability of success, e−1.
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3 The returning secretary problem

Let us assume that there are n secretaries that arrive in an online fashion. Each secretary
arrives twice and the order is chosen uniformly at random from the (2n)! possible
orders. At all times, it is only possible to discern who is the best secretary of all the
secretaries seen so far and whether it is their first or second arrival. Once we accept
a secretary, the process ends. We win if we accept (or select) the best secretary. We
would like to maximize the probability of winning.

With the aim of offering simpler reasoning that is easier to follow on the part of the
reader, we shall consider the following equivalent game.

(1) Let us assume we have an urn with 2n objects; n different, rankable objects, each
one of which has a clone (twin)

(2) Objects are randomly extracted from the urn and are shown to the player, until
the player chooses one of them.

(3) When shown an object, all those that are worse than this object and whose twin
has already been shown (inspected) previously are removed from the urn.

(4) To select one of two copies of the best object is considered success.

It should be noted that equivalence is to be understood assuming that, when an
object is strictly inferior to the best of the already inspected objects, it is irrelevant for
the player if its twin has or has not already been inspected. In other words, the relevant
information for the player is the number of different objects shown and whether the
best object or an object equal to the previous ones has been inspected once or twice.
Having said this, once an object that is not better than or equal to all the previous ones
has been inspected, its twin may effectively be considered to have also been inspected;
hence point (3).

For the sake of brevity, we will say that an already inspected object is maximal if it
is better than all the other inspected objects, while a maximal candidate in its second
inspection will be called a nice candidate.

It should be noted that if k different objects are inspected and one is selected that is
maximal, the probability of success is k/n, as in the secretary problem. However, it is
obvious that it is always preferable to reject it on its first inspection, as we will always
be able to select it on its second inspection and, until then, other better candidates
might appear. As in the classic secretary problem, the optimal strategy in this problem
is a threshold strategy and it may be formalized as follows.

Theorem 3 For the returning secretary problem, if n is the number of different objects,
there exists kn such that the following strategy is optimal:

(1) Reject the kn first different inspected objects.
(2) After that, accept the first nice candidate.

The optimal threshold is denominated by kn . We now introduce the following
functions defined on {0, 1, ...., n}, where n represents the number of different objects
(number of twins) and the variable k, the number of different objects already inspected.

• We denote by �n(k) the probability of success when k different objects have been
inspected, the maximal has only been inspected once and the aim is to select the
next nice candidate to be inspected.
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• We denote by 	n(k) the probability of success when k different objects have been
inspected, the maximal has been inspected twice and the aim is to select the next
nice candidate to be inspected.

• We denote by ϒn(k) the probability that, after having inspected the kth different
object for the first time, the maximal has been inspected twice.

• We denote by �n(k) the probability of success after having interviewed the kth
different object for the first time, pending the selection of the first nice candidate
to appear. In other words, �n(k) represents the probability of success using k as
the threshold. This probability will depend on whether the kth different inspected
object is maximal or not and, if it is not, it will depend on whether the maximal
has been explored twice or only once. Having stated this, the following expression
is straightforward

�n(k) = ϒn(k)	n(k) + (1 − ϒn(k))�n(k)

3.1 8n(k): probability of success having inspected k different objects, with the
maximal having been inspected only once

We now calculate the probability of success when k different objects have been exam-
ined, with the maximal having been inspected only once, and following the strategy
of accepting the next nice candidate to appear.

If k different objects have been inspected and the maximal only once, we can effec-
tively consider that there are still 2n−2k+1 objects in the urn: the twin of themaximal
and all the pairs of identical objects that have not been inspected. Two scenarios now
exist for the next inspection (with the understanding, as already stated, that the non-
inspected objects whose twin has already been inspected and is not maximal may in
effect be considered already inspected).

(A) The twin of the maximal is inspected before a new object appears. This occurs
with probability

pn(k) := 1

1 − 2 k + 2 n

as there is only one favourable case (the twin of the maximal is inspected) and
(1−2 k+2 n) possible cases. In this case, the object is selected and the probability
of success will be k/n.

(B) A new and different object is inspected. It does not matter whether it is a new
maximal or not; in both cases, we shall be in the situation of having inspected
k +1 different objects and of having inspected the maximal once. The probability
of this scenario occurring is 1 − pn(k) and the probability of success in this case
will be that corresponding to the same problem but with k + 1 different inspected
objects.

In short, we have the recursive relationship between the probability of success when
k different objects have been inspected and the maximal has been inspected only once,
�n(k), and the probability of success with k +1 different objects,�n(k +1), under the
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same conditions. The recursion is based on the fact that �n(n) = 1. This is because if
n different objects have been seen and the twin of the maximal has not been inspected,
success is obviously assured waiting for the twin of the maximal to appear.

�n(k) = k

n
pn(k) + (1 − pn(k))�n(k + 1)

= k + 2 n (−k + n)

n (1 − 2 k + 2 n)
�n(k + 1)

�n(n) = 1

Lemma 4 For all n ∈ N and 0 ≤ k ≤ n, the function �n defined recursively above
satisfies

�n(k) = 2n + k

3n

Proof By recursion backwards. It suffices to observe that it is true for k = n and that,
if it is true for k + 1, this means that it is also true for k. In effect,

�n(k + 1) = 2n + (k + 1)

3n
⇒ �n(k) = 2n + k

3n

	

Remark Note that for k = 1, we have the case called The No Waiting Case in Vardi
(2015); i.e. accept the first nice candidate to appear. Note that for all n, the probability
of success with this (non-optimal) strategy is at least 2/3.

Proposition 2 The sequence of functions �̂n(x) := �n(�nx�) converges uniformly on
[0, 1] to

�(x) := 2 + x

3

Proof It is straightforward. 	


3.2 �n(k): probability of success having inspected k different objects, with the
maximal having been inspected twice

We now calculate the probability of success when k different objects have been exam-
ined, with the maximal having been inspected twice, and following the strategy of
accepting the next nice candidate to be inspected. If we have inspected k different
objects and the maximal has been inspected twice, we can effectively consider that
2n − 2k objects remain in the urn: all the pairs of identical objects that have not been
inspected. Two scenarios now exist for the next inspection:

(A) The next new inspected object is maximal. This occurs with probability 1/(k +1)
and places us in the situation where the probability of success is �n(k + 1).

123

Author's personal copy



Journal of Combinatorial Optimization

(B) The next new inspected object is notmaximal. This occurswith probability k/(k+
1) and places us in the same situation but with one more inspected object; i.e. the
probability of success in this case will be: 	n(k + 1).

We thus have the recursive definition for 	n :

	n(k) = 1

k + 1
�n(k + 1) + k

k + 1
	n(k + 1)

The recursion is based on the fact that 	n(n) = 0, which is obviously true, since if all
the objects have been inspected and the maximal has already been examined twice,
the best object is this maximal and can no longer be selected. In other words, this is
effectively equivalent to the fact that there are no more objects in the urn and therefore
the player has failed.

Lemma 5 For all n ∈ N and 0 ≤ k ≤ n, the function 	n defined recursively above
satisfies

	n(k) = −2 k + 2 n − k H(k − 1) + k H(n − 1)

3 n

where H(m) := ∑m
i=1

1
i represents the mth harmonic number.

Proof By recursion backwards. It suffices to observe that it is true for k = n and that,
if it is true for k + 1, this means that it is also true for k. 	


Proposition 3 The sequence 	̂n(x) := 	n(�nx�) converges uniformly on [0, 1] to

	(x) := 2 − 2 x − x log(x)

3

Proof This is straightforward, bearing in mind that �n(x) := �nx�H(n−1)−H(�nx�−1)
n

converges uniformly on [0, 1] to �(x) := −x log(x) continuously extended to 0 by
means of �(0) := 0 	


Remark The optimal threshold, kn , can be determined by simply considering that,
when faced with a nice candidate, the decision to select this candidate or not is that the
probability of success is greater when doing so (kn/n) than the probability of success
when rejecting this candidate (	n(kn)); i.e. the optimal threshold, kn , will be the first
integer k that fulfills the condition k

n ≥ 	n(k). That is,

kn = min

{
k : 5 − 2n

k
≥

n−1∑
i=k

1

i

}
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The following will likewise be fulfilled:

	n

(
kn

n
n

)
= 	n(kn) ≤ kn

n

	n

(
kn − 1

n
n

)
= 	n(kn − 1) >

kn − 1

n

Thus, taking limits, we now obtain the asymptotic optimal threshold by solving the
equation 	(x) = x

x = 2 − 2 x − x log(x)

3
⇒ x = 2

W (2e5)
= 0.4709265...

So, we can already affirm that

lim
n→∞

kn

n
= 2

W (2e5)
= 0.4709265...

However, the asymptotic probability of success requires more effort.

3.3 7n(k): probability that themaximal has been inspected twice after inspecting
the kth different object for the first time

We denote by ϒn(k) the probability that when we inspect the kth different object for
the first time, the maximal has been inspected twice.When we inspect the kth different
object for the first time, we are starting out from two possible scenarios:

(A) In the first appearance of the (k − 1)th different object, the maximal has been
inspected twice. This occurs with probability ϒn(k − 1). In this situation, the
probability of the maximal being repeated is the probability that the new object
is not maximal; i.e. (k − 1)/k.

(B) In the first appearance of the (k − 1)th different object, the maximal has been
inspected only once. This occurs with probability 1− ϒn(k − 1). In this case, for
the kth different object to be inspected for the first time, with the maximal having
been inspected twice, the twin of the maximal must be inspected immediately,
which occurs with probability pn(k − 1) = 1

2n−2(k−1)+1 , and the kth different
object is not maximal (this occurs with probability (k − 1)/k).

This allows ϒn(k) to be defined recursively. The initial condition is obviously
ϒn(0) = 0.

ϒn(k) = (−1 + k)

k
(1 − ϒn(k − 1)) pn(k − 1) + (−1 + k)

k
ϒn(k − 1)

= 1 − k

k (−3 + 2 k − 2 n)
+ 2 (−1 + k) (−1 + k − n)

k (−3 + 2 k − 2 n)
ϒn(k − 1)

Although its justification falls outside the scope of this paper, the evolution of its
graph, as n increases, means it is reasonable to assume that the sequence ϒ̂n(x) :=
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Fig. 1 ϒ̂n(x) for n = 50, 100, 500 and 1000

ϒn(�xn�) converges uniformly on [0, 1] to a continuous and differentiable function
ϒ on [0, 1) (see Fig. 1 for n=50, 100, 500 and 1000). The graphical representation
also suggests that ϒ is not differentiable on 1, but this is not a problem.

Proposition 4 Assuming that the function ϒ̂n(x) := ϒn(�xn�) converges uniformly
on [0, 1] to a continuous and derivable function ϒ on [0, 1), then

ϒ(x) := 2 − 2
√
1 − x − x

x

Proof

ϒn(k) = Gn(k) + Hn(k)ϒn(k − 1)

where

Gn(k) = 1 − k

k (−3 + 2 k − 2 n)
; Hn(k) = 2 (−1 + k) (−1 + k − n)

k (−3 + 2 k − 2 n)

Making

hn(x) := n(1 − Hn(�nx�)) and gn(x) := nGn(�nx�)

we have that hn(x) converges on (0, 1) to

h(x) := −2 + x

2 (−1 + x) x

123

Author's personal copy



Journal of Combinatorial Optimization

and gn(x) converges on (0, 1) to

g(x) := 1

2 − 2 x

Now, considering 1, ϒ satisfies in (0, 1)

ϒ ′(x) = g(x) − h(x)ϒ(x) = 1

2 − 2 x
− (−2 + x) ϒ(x)

2 (−1 + x) x

Solving this differential equation, we now have that

ϒ(x) = 2 − 2 K
√
1 − x − x

x

And, given that ϒ(x) is continuous in 0 with ϒ(0) = 0, it follows that K = 1 	


3.4 �n(k): probability of success using the threshold k

Let us now see the probability of success using the threshold k; i.e. accept the first nice
candidate to appear after having inspected k different objects. When the kth different
object is inspected, two possible scenarios arise: the maximal has been inspected twice
or only once, which occurs with respective probabilities ϒn(k) and (1 − ϒn(k)). In
the former case, the probability of success is �n(k) and in the latter, 	n(k). Hence,

�n(k) = 	n(k)ϒn(k) + (1 − ϒn(k))�n(k)

Proposition 5 The sequence of functions �̂n(x) := �n(�nx�) converges uniformly on
[0, 1] to the function

�(x) := −4 + 6
√
1 − x + 4 x + (−2 + 2

√
1 − x + x

)
log(x)

3

Proof

�n(�nx�) = 	n(�nx�)ϒn(�nx�) + (1 − ϒn(�nx�))�n(�nx�)

and, employing the notations introduced above,

�̂n(x) = 	̂n(x)ϒ̂n(x) + (1 − ϒ̂n(x))�̂n(x)

where uniform convergence is clear and, passing to the limit, we have that

�(x) := lim
n

�̂n(x) = 	(x)ϒ(x) + (1 − ϒ(x))�(x)
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where, let us recall,

�(x) := 2 + x

3
;	(x) := 2 − 2 x − x log(x)

3
;ϒ(x) := 2 − 2

√
1 − x − x

x

	


Proposition 6 If kn is the optimal threshold; i.e. where �n reaches its maximum
value, then

lim
n

(
kn

n

)
= ϑ = 2

W (2e5)
= 0.4709265..

and denoting by Pn := �n(kn) the probability of success using the threshold kn

lim
n

Pn = �(ϑ) = 0.76797426...

Proof Weneed only consider Proposition 1 and thatϑ is where� reaches itsmaximum
value on [0, 1]. 	


Figure 2 compares the function �(x) and its counterpart in the classic secretary
problem, −x log(x).

Fig. 2 �(x) versus −x log(x)
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4 Exact calculation of kn and Pn

What was set forth in the previous section guarantees that kn ∼ ϑn, which means, in
virtue of Proposition 1, that for large values of n, this estimation is good enough if
one simply wishes for the error in the optimum success probability, Pn , to be small.

An interesting challenge in problems of this kind is to efficiently compute the exact
values of kn and Pn .

The exact calculation of kn , using kn = min{k : 5 − 2n
k ≥ ∑n−1

i=k
1
i }, requires a

number of operations of linear order, O(n), whereas �n(kn), using the formula

Pn = �n(kn) = 	n(kn)ϒn(kn) + (1 − ϒn(kn))�n(kn)

requires the calculation of�n(kn) and	n(kn) (closed formulas) and ofϒn(kn), whose
recursive calculation also requires requires a number of operations of order O(n). In
short, the calculation of �n(kn) has computational complexity O(n).

In contrast, the formula provided by Garrod et al. (2012)

Pn = 1

3n

⎛
⎝2n + kn −

(
kn −

kn−1∑
s=0

s∏
r=1

2(n − kn + r)

2(n − kn + r) + 1

) ⎛
⎝3 −

n−1∑
i=kn

1

i

⎞
⎠

⎞
⎠

requires a number of operations of order O(n2); this is due to the presence of the
nested sum and product.

Another very interesting challenge is to find closed formulas that yield the exact
value of the optimal threshold or that do so with very few exceptions.

In the case of the classic secretary problem, denoting by κn the optimal threshold
for n secretaries, we have the following expression

κ∗
n = − 1

2W
(
− e−(1+1/(2n)

2n

)

such that �κ∗
n � coincides with κn for all n > 3, with no known exceptions.

This expression can be deduced (see http://mathworld.wolfram.com/SultansDowry
Problem.html) from the condition

κn = min{k : H(k) ≥ H(n) − 1}

solving the equation

H(k) = H(n) − 1

Using a series expansion for H about infinity,

H(x) ≈ γ + 1

2x
+ log(x) + ...
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where γ is the Euler–Mascheroni constant, and using this approximation in the equa-
tion, we have that

1

2k
+ log(k) = 1

2n
+ log(n) − 1

Although �κ∗
n � seems to coincide without exceptions for n > 3 with the exact value

κn , without entering into technical details, it can only really be stated that κn ≈ κ∗
n ,

but this does not ensure the coincidence κn = �κ∗
n � ad infinitum.

Proceeding similarly in our problem, where the stopping rule is

kn = min

{
k : 5 − 2n

k
≥

n−1∑
i=k

1

i

}
= min

{
k : 5 − 2n

k
≥ H(n − 1) − H(k − 1)

}

we obtain the equation

5 − 2n

k
+ H(k) − 1

k
= H(n) − 1

n

Using a series expansion for H about infinity

5 − 2n

k
+ log(k) + 1

2k
− 1

k
= log(n) + 1

2n
− 1

n

and solving to k, we have the solution

k∗
n := 1 + 4 n

2 W

(
e5+

1
2 n

(
4+ 1

n

)
2

)

which, in fact gives �k∗
n� = kn for all n > 0 without any known exceptions. We

likewise have that, without any known exceptions, kn = �̂kn�, which is obtained from
the approximation k∗

n ≈ k̂n ,where

k̂n = nϑ + 3

2
(
1 + 2

ϑ

) − ϑ

2
= n · 0.470927... + 0.050417268...

5 The same problemwith different payoff functions

Wewill now see that the method proposed in this paper similarly allows the solution of
variants of the same problem when considering other payoff functions. For example,
it is easy to solve the problem considering interview costs, penalizing failure, etc. It
is only necessary to modify the construction of �n(k), substituting the probability
of success, k/n, when a nice candidate is accepted, for the expected payoff, which
we shall denote by En(k). Likewise, the final condition for �n must be substituted
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by �n(n) = En(n) and, finally, the final condition for 	n must be substituted by
	n(n) = , where  represents the payoff when the interviews end without having
selected any object. This is what occurs if n different objects are interviewed and the
maximal has already been interviewed twice. Accordingly, we will have that:

pn(k) := 1

1 − 2 k + 2 n
�n(k) = En(k)pn(k) + (1 − pn(k))�n(k + 1);�n(n) = En(n)

	n(k) = 1

k + 1
�n(k + 1) + k

k + 1
	n(k + 1);	n(n) = 

and the remaining functions, ϒn and �n , will keep their expression of the standard
version intact. Let us see the following three variants.

5.1 The wrong selection is penalized

If we consider that selecting an object without success is penalized in the same way as
success is rewarded (a monetary unit) and the lack of selection is not penalized, then
we have that the expected payoff when a nice candidate is selected, having inspected
k different objects, will be

En(k) = k

n
−

(
1 − k

n

)
= 2k

n
− 1.

We now have the following recursion for �n ,

�n(k) = En(k)pn(k) + (1 − pn(k))�n(k + 1)

= Gn(k) + �n(k + 1)Hn(k);�n(n) = 1

where

Gn(k) =
2 k
n − 1

1 − 2 k + 2 n
; Hn(k) = −2 k + 2 n

1 − 2 k + 2 n

Making

hn(x) := n(1 − Hn(�nx�)) and gn(x) := nGn(�nx�),

hn(x) converge on (0, 1) and uniformly on [a, b] for all 0 < a < b < 1 to

h(x) = 1

2 − 2 x
,

gn(x) converge on (0, 1) and uniformly on [a, b] for all 0 < a < b < 1 to

g(x) = 1 − 2 x

−2 + 2 x
.
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Assuming the uniform convergence of �̂n(x) := �n(�nx�) to �(x) in [0, 1], we
are now in the conditions of Theorem 2 and�(x)will be the solution of the differential
equation

y′(x) = 1 − 2 x + y(x)

2 − 2 x

and, together with the final condition, �(1) = 1, it may be concluded that

�(x) = 1 + 2 x

3

On the other hand,

	n(k) = 1

k + 1
�n(k + 1) + k

k + 1
	n(k + 1)

and, once again making use of Theorem 2 and omitting the details, we have that
	̂n(x) := 	n(�nx�) converge uniformly on [0, 1] to

	(x) = 1 − x − 2 x log(x)

3

We also have that

�(x) := 	(x)ϒ(x) + (1 − ϒ(x))�(x)

�(x) = −5 + 6
√
1 − x + 5 x + 2

(−2 + 2
√
1 − x + x

)
log(x)

3

We now have that the maximum value of F in [0, 1] is reached in

α := 2

W (2 e
7
2 )

= 0.65123...

Such that if kn is the optimal threshold, kn
n → α and the asymptotic expected payoff

used as the threshold, �nα�, is

�(α) = 0.64778...

5.2 Failure is penalized: incorrect selection or no selection

If we consider that selecting an object without success or not selecting is penalized
in the same way as success is rewarded (a monetary unit), then we have the expected
payoff when a nice candidate is selected, having inspected k different objects will be

En(k) = n

k
−

(
1 − n

k

)
= 2k

n
− 1.
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In this case, it is necessary tomodify the final status of the recursion of	n :	n(n) =
−1. Now, proceeding in a similar way to the previous case, we have that:

�(x) = 1 + 2 x

3
;	(x) = 1 − 4 x − 2 x log(x)

3

and, finally, that

�(x) = −11 + 12
√
1 − x + 8 x + 2

(−2 + 2
√
1 − x + x

)
log(x)

3

We now have that the maximum value of � in [0, 1] is reached in ϑ = 2
W (2 e5)

, as in

the standard problem. Hence, if kn is the optimal threshold, kn
n → ϑ , the asymptotic

expected payoff, using �nϑ� as the threshold, is

�(ϑ) = 0.535948...

5.3 Cost for interviews without any penalty for failure

If we consider that each inspection of a different object has a cost of 1/n, which
detracts from the payment for success (which is unitary) and failure is not penalized,
we will have that

En(k) = k

n

(
1 − k

n

)
;�n(n) = 0

Once again proceeding similarly, we have that

�(x) = (1 − x) (2 + 3 x)

15
;	(x) = 2 − 5 x + 3 x2 − x log(x)

15

and, finally, that

�(x) = (1 − x)
(−10 + 12

√
1 − x + 9 x

) + (−2 + 2
√
1 − x + x

)
log(x)

15

We now have that themaximum value of� in [0, 1] is reached in ζ = 0.127863637.....
Hence, if kn is the optimal threshold, kn

n → ζ , the asymptotic expected payoff using
the �nζ� as the threshold, is

�(ζ ) = 0.137662...

6 Considerations about the work and future perspectives

This paper has presented a novel technique for the Returning Secretary Problem that
can be applied to the study of variants of this same problem and which may be used
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more generally in the study of the asymptotic solution of optimal threshold problems
via the use of differential equations derived from the recursion of the problem of
underlying dynamic programming. We have also obtained a recursive formula that
allows the calculation in linear time, with respect to the number of objects, of the
exact probability of success.

A natural continuation of this paper is to consider that there are c copies of n objects
(candidates). This study has already been initiated by Garrod (the best c-tuplet) and by
ShaiVardi (the (c−1)-returning secretary problem), but, so far, not even the asymptotic
values are known in the case of c = 3. Also of interest is the true returning problem,
in which instead of n pairs of twin secretaries we have n secretaries who, after their
first interview return to a random place in the queue of candidates (to the urn), which,
obviously, is not the same as the problem posed in this paper. Another interesting
problem is that of considering that only one candidate, chosen by the player, returns
to a random place in the candidate queue after the first interview.

An interesting challenge in problems of this kind is to investigate the decreasing
nature of the probability of success with respect to the number of objects. The (non-
strict) decrease is quite reasonable: with a larger number of objects, there can be
no greater probability of success. However, the strict decrease of the probability is
more delicate. In the case of the classic secretary problem, the probability of success
with n secretaries, Pn , is strictly decreasing for n > 3 and P2 = P3 = 1/2. In the
Best-or-Worst variant (Bayón et al. 2017), we have that

Pn = � 1+n
2 �

2� 1+n
2 � − 1

so that Pn = Pn+1 for all odd n.
In the variant of the returning secretary problem, the probability of success for the

first values of n is shown in the following table: suggesting that, with the exception

n 1 2 3 4 5 6 7 8 9 10

Pn = 1 5
6

5
6

407
504

761
945

2837
3564

3001
3780

1138153
1441440

3102431
3938220

126193
160650

Pn ≈ 1. 0.833 0.833 0.807 0.805 0.796 0.793 0.789 0.787 0.785

of P2 = P3 = 5/6, the decrease in the probability of success is strict. However, this
is an open problem.
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