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Abstract We consider two variants of the secretary problem, the Best-or-Worst and
the Postdoc problems, which are closely related. First, we prove that both variants, in
their standard form with binary payoff 1 or 0, share the same optimal stopping rule.
We also consider additional cost/perquisites depending on the number of interviewed
candidates. In these situations the optimal strategies are very different. Finally, we also
focus on the Best-or-Worst variant with different payments depending on whether the
selected candidate is the best or the worst.
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1 Introduction

The secretary problem is one ofmany names for a famous problem of optimal stopping
theory. This problem can be stated as follows: an employer is willing to hire the best
secretary out of n rankable candidates. These candidates are interviewed one by one in
random order. A decision about each particular candidate is to be made immediately
after the interview. Once rejected, a candidate cannot be called back. During the
interview, the employer can rank the candidate among all the preceding ones, but he
is unaware of the quality of yet unseen candidates. The goal is then to determine the
optimal strategy that maximizes the probability of selecting the best candidate.

This problem has a very elegant solution. Dynkin (1963) and Lindley (1961) inde-
pendently proved that the best strategy consists in a so-called threshold strategy.
Namely, in rejecting roughly the first n/e (cutoff value) interviewed candidates and
then choosing the first one that is better than all the preceding ones. Following this
strategy, the probability of selecting the best candidate is at least 1/e, this being its
approximate value for large values of n. This well-known solution was later refined by
Gilbert andMosteller (1966) showing that

⌊
(n − 1

2 )e
−1 + 1

2

⌋
is a better approximation

than �n/e�, although the difference is never greater than 1.
This secretary problem has been addressed by many authors in different fields such

as applied probability, statistics or decision theory. In Ferguson (1989), Ferguson et al.
(1991) or Szajowski (2009) extensive bibliographies on the topic can be found. On
the other hand, different generalizations of this classical problem have been recently
considered in the framework of partially ordered objects (Freij and Wastlund 2010;
Garrod and Morris 2012; Georgiou et al. 2008) or matroids (Babaioff et al. 2007;
Soto 2011). It is also worth mentioning the work of Bearden (2006), where the author
considers a situation where the employer receives a payoff for selecting a candidate
equal to the “score” of the candidate (in the classical problem the payoff is 1 if the
candidate is really the best and 0 otherwise). In this situation, the optimal cutoff value
is roughly the square root of the number of candidates.

In this paper we focus on two closely related variants of the secretary problem.
The so-called Best-or-Worst and Postdoc variants. In the Best-or-Worst variant, the
classic secretary problem is modified so that the goal is to select either the best or the
worst candidate, indifferent between the two cases. This variant can only be found on
Ferguson (1992) as a multicriteria problem in the perfect negative dependence case.
Here we present it in greater detail. In the Postdoc variant, instead of selecting the best
candidate, the goal is to select the second best candidate. This problem was proposed
to Robert J. Vanderbei by Eugene Dynkin in 1980 with the following motivating story
that explains the name of the problem: we are trying to hire a Postdoc, since the best
candidatewill receive (and accept) anoffer fromHarvard,we are interested in hiring the
second best candidate. Vanderbei himself solved the problem in 1983 using dynamic
programming (Vanderbei 1983). However, he never published his work because he
learned that Rose had already published his own solution using different techniques
(Rose 1982). Moreover, Szajowski had already solved the problem of picking the k-th
better candidate for 2 ≤ k ≤ 5 (Szajowski 1982).

In the present paper, for these two variants, we study the standard problem (binary
payoff function 1 or 0), showing that both have the same optimal cutoff rule strat-
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egy and also the problems considering payoff functions that depend on the number
of performed interviews, showing that in this case they have very different optimal
strategies.

The paper is organized as follows: in Sect. 2, we present some technical results,
in Sect. 3, we revisit the classic secretary problem and also solve two new situations
with payoff functions that depend on the number of performed interviews. In Sect. 4
we focus on the Best-or-Worst variant, solving the problem for three different payoff
functions and also presenting a variant in which the choice of the best or the worst
candidate is no longer indifferent. In Sect. 5 we solve the three versions of the Postdoc
variant and, finally, we compare the obtained results in Sect. 6.

2 Two technical results

The following result can be widely applied in different optimal stopping problems and
it will be extensively used throughout the paper. For a sequence of continuous real
functions {Fn}n∈N defined on a closed interval, it determines the asymptotic behavior
of the sequence {M(n)}n∈N, where M(n) is the value for which the function Fn
reaches its maximum.

Proposition 1 Let {Fn} be a sequence of real functions with Fn ∈ C[0, n] and let
M(n) be the value for which the function Fn reaches its maximum. Assume that the
sequence of functions {gn}n∈N given by gn(x) := Fn(nx) converges uniformly on
[0, 1] to a function g and that θ is the only global maximum of g in [0, 1]. Then,
(i) limn M(n)/n = θ .
(ii) limn Fn(M(n)) = g(θ).
(iii) IfM(n) ∼ M(n) then limn Fn(M(n)) = g(θ).

Proof (i) Let us consider the sequence {M(n)/n} ⊂ [0, 1] and assume that
{M(sn)/sn} is a subsequence that converges to α. Then,

gsn (θ) = Fsn (snθ) ≤ Fsn (M(sn)) = Fsn

(M(sn)

sn
sn

)
= gsn

(M(sn)

sn

)
.

Consequently, since gn → g uniformly on [0, 1], if we take limits we get

g(θ) = lim
n

gsn (θ) ≤ lim
n

gsn

(M(sn)

sn

)
= g(α)

and since θ is the only global maximum of g, it follows that θ = α.
Thus, we have proved that every convergent subsequence of {M(n)/n} converges
to the same limit θ . Since {M(n)/n} is defined on a compact set this implies that
{M(n)/n} itself must also converge to θ .

(ii) It is enough to observe that

lim
n

Fn(M(n)) = lim
n

Fn

(M(n)

n
n

)
= lim

n
gn

(M(n)

n

)
= g(θ),

where the last equality holds because gn → g uniformly on [0, 1].
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(iii) If M(n) ∼ M(n), then it also holds that limn
M(n)
n = θ and we can reason as in

the previous point.
	


Remark The condition of uniform convergence is required to ensure, for instance, that

limn gsn
(M(sn)

sn

)
= g(α). In fact, it is easy to give counterexamples to Proposition 1

if convergence is not uniform.

Observe that Proposition 1 implies that that limn Fn(nθ) = g(θ). Moreover, it also
implies that limn Fn(nθ + o(n)) = g(θ). This means that nθ is a good estimate for
M(n) and that, for large values of n, the maximum value of Fn approaches g(θ).

Proposition 1 admits the following two-variable version that can be proved in the
same way.

Proposition 2 Let {Gn} be a sequence of two variable real functions with Gn ∈
C({(x, y) ∈ [0, n]2 : x ≤ y}) and let (M1(n),M2(n)) be a point for which
Gn reaches its maximum. Assume that the sequence {hn}n∈N given by hn(x, y) :=
Gn(nx, ny) converges uniformly on T := {(x, y) ∈ R

2 : 0 ≤ x ≤ y ≤ 1} to a
function h and that (θ1, θ2) is the only global maximum of h in T . Then,

(i) limn Mi (n)/n = θi for i = 1, 2.
(ii) limn Gn(M1(n),M2(n)) = h(θ1, θ2).

(iii) IfMi (n) ∼ Mi (n) for i = 1, 2, then limn Gn(M1(n),M2(n)) = h(θ1, θ2).

3 A new look at the classic secretary problem

In the classical secretary problem, let n be the number of candidates and let us consider
a cutoff value r ∈ (1, n). If k ∈ (r, n] is an integer, the probability of successfully
selecting the best candidate in the k-th interview is Pn,r (k) = r

n
1

k−1 . Thus, the prob-
ability function of succeeding in the classical secretary problem with n candidates
using r as cutoff value, is given by

Fn(r) :=
n∑

k=r+1

Pn,r (k) = r

n

n∑

k=r+1

1

k − 1
.

The goal is now to determine the value of r that maximizes this probability (i.e., to
determine the optimal cutoff value) and to compute this maximum probability. This
can be done using Proposition 1 in the following way. First, we extend Fn to a real
variable function by

Fn(r) = r

n
(ψ(n) − ψ(r)),

where ψ is the so-called digamma function. Then, it can be seen with little effort that
the sequence of functions {gn} defined by gn(x) := Fn(nx) converges uniformly on
[0, 1] to the function g(x) := −x log(x) and the remaining is just some elementary
calculus.

123

Author's personal copy



J Comb Optim (2018) 35:703–723 707

Remark In Ferguson (1989) the following rather lax reasoning showing thatM(n)/n
tends to 1/e is given. If we let n tend to infinity and write x as the limit of r/n, then
using t for j/n and dt for 1/n, the sum becomes a Riemann approximation to an
integral

Fn(r) → x
∫ 1

x

dt

t
= −x log(x).

Proposition 1 provides a more rigorous approach.

We introduce a more general situation. Let p : R → [0,+∞) be a function (payoff
function) and assume that a payoff of p(k) is received if the k-th candidate is selected.
In this setting, the expected payoff is

En(r) :=
n∑

k=r+1

p(k)Pn,r (k) = r

n

n∑

k=r+1

p(k)

k − 1
.

Note that in the classical situation

pB(k) =
{
1, if the k-th candidate is the seeked candidate;
0, otherwise.

(1)

and the expected payoff coincides with the probability of successfully selecting the
best candidate.

Now, let us modify the classical situation considering that performing each inter-
view has a constant cost of 1/n. Clearly, in this situation the payoff function is given
by

pC (k) =
{
1 − k/n, if the k-th candidate is the seeked candidate;
0, otherwise.

(2)

and the expected payoff is

EC
n (r) := r

n

n∑

k=r+1

1 − k
n

k − 1
.

The following result provides the optimal cutoff value and the maximum expected
payoff in this setting. In what follows, we denote by W the main branch of the so-
called Lambert-W function, defined by z = W (zez).

Proposition 3 Given an integer n > 1, let us consider the function

EC
n (r) := r

n

n∑

k=r+1

1 − k
n

k − 1

defined for every integer 1 ≤ r ≤ n − 1 and let M(n) be the value for which the
function EC

n reaches its maximum. Then,
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(i) limn M(n)/n = ρ := − 1
2W (−2e−2) = 0.20318 . . . .

(ii) limn EC
n (M(n)) = limn EC

n (�ρn�) = ρ(1 − ρ) = 0.16190 . . . .

Proof First, we extend EC
n to a real variable function by

EC
n (r) = r (−n + r + (−1 + n) ψ(n) − (−1 + n) ψ(r))

n2
.

Now, it can be seen that gn(x) := EC
n (nx) converges uniformly in [0, 1] to

g(x) := x (−1 + x − log(x)). To conclude the proof it is enough to apply Propo-
sition 1 together with some straightforward computations. 	


This result means that the optimal strategy in this setting consists in rejecting
roughly the first ρn interviewed candidates and then accepting the first candidate
which is better than all the preceding ones. Following this strategy, the maximum
expected payoff is asymptotically equal to ρ2 − ρ.

Remark The constant ρ = − 1
2W (−2e−2) = 0.20318786 . . . (A106533 in OEIS)

appears in Ferguson et al. (1991) (erroneously approximated as 0.20388) in the con-
text of the Best-Choice Duration Problem considering a payoff of (n − k + 1)/n.
Furthermore, as a noteworthy curiosity, it should be pointed out that this constant has
appeared in a completely different context from the one addressed here (the Daley-
Kendall model) and it is known as the rumour’s constant (Daley and Kendall 1965;
Lebensztayn et al. 2011).

Now, let us consider that performing each interview has an additional payoff of
1/n. Clearly, in this situation the payoff function is given by

pP (k) =
{
1 + k/n, if the k-th candidate is the seeked candidate;
0, otherwise.

(3)

and the expected payoff is

EP
n (r) := r

n

n∑

k=r+1

1 + k
n

k − 1
.

The following result provides the optimal cutoff value and the maximum expected
payoff in this setting.

Proposition 4 Given an integer n > 1, let us consider the function

E P
n (r) := r

n

n∑

k=r+1

1 + k
n

k − 1

defined for every integer 1 ≤ r ≤ n − 1 and let M(n) be the value for which the
function E P

n reaches its maximum. Then,
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(i) limn M(n)/n = μ := 1
2W (2) = 0.42630 . . . .

(ii) limn E P
n (M(n)) = limn E P

n (�μn�) = μ(1 + μ) = 0.608037 . . . .

Proof First, we extend EP
n to a real variable function by

EP
n (r) = r (n − r + (1 + n) ψ(n) − (1 + n) ψ(r))

n2
.

Now it can be seen that gn(x) := EP
n (nx) converges uniformly in [0, 1] to g(x) :=

−x (−1 + x + log(x)). To conclude the proof it is enough to apply Proposition 1
together with some straightforward computations. 	


This result means that the optimal strategy in this setting consists in rejecting
roughly the first μn interviewed candidates and then accepting the first candidate
which is better than all the preceding ones. Following this strategy, the maximum
expected payoff is asymptotically equal to μ2 + μ.

4 The Best-or-Worst variant

In this section we focus on the Best-or-Worst variant, as described in the introduction,
in which the goal is to select either the best or the worst candidate, indifferent between
the two cases. First of all we prove that, just like in the classic problem, the optimal
strategy is a threshold strategy.

Theorem 1 For the Best-or-Worst variant, if n is the number of objects, there exists
r(n) such that the following strategy is optimal:

(1) Reject the r(n) first interviewed candidates.
(2) After that, accept the first candidate which is either better or worse than all the

preceding ones.

Proof For the sake of brevity, a candidate which is either better or worse than all the
preceding ones will be called a nice candidate.

Since the game under consideration is finite, there must exist an optimal strategy (in
the sense that it maximizes the probability of success). Hence, we can define Prej (k) as
the probability of success following an optimal strategy when rejecting a candidate in
the k-th interview (regardless of its being a nice candidate or not). We can also define
Pacc(k) as the probability of success accepting a nice candidate in the k-th interview.
Any optimal strategy will reject any non-nice candidate since the probability of being
a successful choice will be 0.

Probability Pacc(k) is k/n, which increases with k. On the other hand, the function
Prej (k) is non-increasing because

Prej (k) = qk+1 · (max{Pacc(k + 1), Prej (k + 1)} + (1 − qk+1)Prej (k + 1)

≥ Prej (k + 1),

where qk = 2/k represents the probability that the k-th candidate is a nice candidate.
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Thus, since Pacc is increasing and Prej is non-increasing and given that Pacc(n) = 1
and Prej (n) = 0, there exists a natural number r(n) for which:

Pacc(k) < Prej (k) if k ≤ r(n),

Pacc(k) ≥ Prej (k) if k > r(n).

As a consequence of this fact, the following strategy must be optimal: for each k-th
interview with k ∈ {1, . . . , n} do the following:

• Reject the k-th candidate if k ≤ r(n) or if it is not a nice candidate.
• Accept the k-th candidate if k > r(n) and it is a nice candidate.

Note that the optimality of this strategy follows from the fact that, in each interview,
we are choosing the action with greatest probability of success. 	


Once that we have determined the optimal strategy, we focus on determining the
probability of success in the k-th interview. To do so, let n be the number of candidates
and let us consider a cutoff value r ∈ (1, n). If k ∈ (r, n] is an integer, the probability of
successfully selecting the best or theworst candidate in the k-th interview is PBW

n,r (k) =
2
n

(r2)

(k−1
2 )

. Thus, the probability function of succeeding in the Best-or-Worst variant with

n candidates using r as cutoff value, is given by

FBW
n (r) :=

n∑

k=r+1

PBW
n,r (k) = 2r(r − 1)

n

n∑

k=r+1

1

(k − 1)(k − 2)
= 2r(n − r)

n(n − 1)
,

where the last equality follows using telescopic sums.

Remark Note that for n > r ∈ {0, 1}, it is straightforward to see that the probability
of success is

FBW
n (0) = FBW

n (1) = 2

n
.

The goal is now to determine the value of r that maximizes the probability FBW
n

(i.e., to determine the optimal cutoff value) and to compute this maximum probability.
We do so in the following result.

Theorem 2 Given a positive integer n > 2, let us consider the function

F BW
n (r) = 2r(n − r)

n(n − 1)

defined for every integer 2 ≤ r ≤ n − 1 and let M(n) be the value for which the
function FBW

n reaches its maximum. Then,

(i) M(n) = �n/2�.
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(ii) The maximum value of F BW
n is:

F BW
n (M(n)) =

⌊ 1+n
2

⌋

2
⌊ 1+n

2

⌋ − 1
=

{
n

2(n−1) , if n is even;
n+1
2n , if n is odd.

Proof

(i) Since FBW
n (r) = − 2

n(n−1)r
2 + 2

(n−1)r is the equation of a parabola in the variable
r , it is clear that

M(n) = min
{
r ∈ [2, n − 1] : FBW

n (r) ≥ FBW
n (r + 1)

}
.

Now,

FBW
n (r + 1) − FBW

n (r) = 2

n(n − 1)
(n − 2r − 1)

so it follows that

FBW
n (r + 1) − FBW

n (r) ≤ 0 ⇔ (n − 2r − 1) ≤ 0 ⇔ r ≥ n − 1

2
.

Consequently,

M(n) = min

{
r ∈ [2, n − 1] : r ≥ n − 1

2

}
= �n/2�

as claimed.
(ii) It is enough to apply the previous result.

If n is even, then n = 2N and

FBW
n (M(n)) = FBW

n (N ) = 2N (n − N )

n(n − 1)
= 2N 2

2N (2N − 1)
= N

2N − 1
.

Moreover, in this case

⌊
1 + n

2

⌋
=

⌊
1 + 2N

2

⌋
= N

so it follows that

FBW
n (M(n)) = N

2N − 1
=

⌊ 1+n
2

⌋

2
⌊ 1+n

2

⌋ − 1

as claimed.
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Otherwise, if n is odd, then n = 2N + 1 and

FBW
n (M(n)) = FBW

n (N ) = 2N (n − N )

n(n − 1)
= 2N (2N + 1 − N )

(2N + 1)2N
= N + 1

2N + 1
.

In this case

⌊
1 + n

2

⌋
=

⌊
1 + 2N + 1

2

⌋
= N + 1

so we also have that

FBW
n (M(n)) = N + 1

2N + 1
=

⌊ 1+n
2

⌋

2
⌊ 1+n

2

⌋ − 1

and the proof is complete. 	

This result means that, for n > 2, the optimal strategy in this setting consists in

rejecting roughly the first � n
2 � interviewed candidates and then accepting the first

candidate which is either better or worse than all the preceding ones. Following this

strategy, the maximum probability of success is
� 1+n

2 �
2� 1+n

2 �−1
. In the cases n ∈ {1, 2}, it

is evident that an optimal cutoff value is r = 0, i.e., to accept the first candidate that
we consider The probability of success is 1 in both cases according to the fact that
FBW
1 (0) = FBW

2 (0) = 1.

Remark Unlike in the classic secretary problem, the probability of success in the Best-
or-Worst variant is not strictly increasing in n. In fact, we have that FBW

2n (M(2n)) =
FBW
2n−1(M(2n − 1)) for every n.

We are now going to consider the Best-or-Worst variant with the payoff function
pC given in (2); i.e., we assume that performing each interview has a constant cost
of 1/n. Under this assumption it can be proved that the optimal strategy is the same
threshold strategy given in Theorem 1. Moreover, in this setting, the expected payoff
with n candidates and cutoff value r is given by

EBW,C
n (r) :=

n∑

k=r+1

(
1 − k

n

)
PBW
n,r (k) = 2r(r − 1)

n2

n∑

k=r+1

n − k

(k − 1)(k − 2)
.

As usual, the goal is to determine the optimal cutoff value that maximizes the expected
payoff EBW,C

n and to compute this maximum expected payoff. We do so in the fol-
lowing result.

Theorem 3 Given an integer n > 1, let us consider the function EBW,C
n (r) defined

above for every integer 1 < r < n and let M(n) be the value for which the function

123

Author's personal copy



J Comb Optim (2018) 35:703–723 713

EBW,C
n reaches its maximum. Also, let

θ := − 1

2W−1

(
− 1

2
√
e

) = e
1
2+W−1

( −1
2

√
e

)

be the solution to the equation 2x log(x) = x − 1. Then, the following hold:

(i) limn M(n)/n = θ = 0.284668 . . . .
(ii) limn E

BW,C
n (M(n)) = limn E

BW,C
n (�nθ�) = θ(1 − θ) = 0.2036321 . . .

Proof First, observe that

EBW,C
n (r) = 2r(r − 1)

n2

n∑

k=r+1

(n − k)

(k − 1)(k − 2)

= 2r(r − 1)

n2

[
n − 2

r − 1
− n − 2

n − 1
−

n−1∑

i=r

1

i

]

= 2
r

n

(
1 − 2

n

)
− 2

r

n

(
r

n − 1
− 1

n − 1

)
− 2

r

n

(
r

n
− 1

n

) n−1∑

i=r

1

i
.

Now, we can extend EBW,C
n to a real variable function by

EBW,C
n (r) = 2

r

n

(
1 − 2

n

)
− 2

r

n

(
r

n − 1
− 1

n − 1

)

−2
r

n

(
r

n
− 1

n

)
(ψ(n) − ψ(r)).

Furthermore, it can be seen that the sequence of functions gn(x) := EBW,C
n (nx)

converges uniformly in [0, 1] to the function g(x) = 2x (1 − x + x log x).
To conclude the proof it is enough to apply Proposition 1 together with some

straightforward computations. 	

Remark The constant θ = − 1

2W−1(− 1
2
√
e
)

= 0.284668 . . . also appears related to

rumour theory (Daley and Kendall 1965; Lebensztayn et al. 2011) and to Gabriel’s
Horn (see A101314 in OEIS).

Now, let us consider the Best-or-Worst variant with the payoff function pP given
in (3); i.e., we assume that performing each interview has an additional payoff of 1/n.
Under this assumption, since the payoff increases with the number of interviews, it
can be proved that the optimal strategy is again the same threshold strategy given in
Theorem 1. Moreover, in this setting, the expected payoff with n candidates and cutoff
value r is given by

EBW,P
n (r) :=

n∑

k=r+1

(
1 + k

n

)
PBW
n,r (k) = 2r(r − 1)

n2

n∑

k=r+1

n + k

(k − 1)(k − 2)
.
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The optimal cutoff value that maximizes the expected payoff EBW,P
n and this maxi-

mum expected payoff are determined in following result.

Theorem 4 Given an integer n > 1, let us consider the function EBW,P
n (r) defined

above for every integer 1 < r < n and let M(n) be the value for which the function
EBW,P
n reaches its maximum. Also let

ϑ := 1

2W

(
e
3
2

2

) = 0.552001 . . .

be the solution to the equation 1 − 3 x − 2 x log(x) = 0. Then, the following hold:

(i) limn M(n)/n = ϑ .
(ii) lim

n
E BW,P
n (M(n)) = lim

n
E BW,P
n (�nϑ�) = ϑ(1 + ϑ) = 0.8567 . . .

Proof First, observe that

EBW,P
n (r) = 2r(r − 1)

n2

n∑

k=r+1

(n + k)

(k − 1)(k − 2)

= 2
r

n

(
1 + 2

n

)
− 2

r

n

r − 1

n

(
1 + 3

n − 1

)
− 2

r

n

r − 1

n

n−1∑

i=r

1

i
.

Now, we can extend EBW,P
n to a real variable function by

EBW,P
n (r) = 2

r

n

(
1 + 2

n

)
− 2

r

n

r − 1

n

(
1 + 3

n − 1

)

−2
r

n

r − 1

n
(ψ(n) − ψ(r)).

Furthermore, it can be seen that the sequence of functions gn(x) := EBW,P
n (nx)

converges uniformly on [0, 1] to g(x) = −2x (−1 + x + x log x).
To conclude the proof it is enough to apply Proposition 1 together with some

straightforward computations. 	

So far, we have considered the Best-or-Worst variant in which the goal is to select

either the best or the worst candidate, indifferent between the two cases. To finish
this section we are going to further modify the Best-or-Worst variant. In particular we
are going to consider different payoff depending on whether we select the best or the
worst candidate. In paticular we are going to consider the following payoff function,
with m < M .

pU (k) =

⎧
⎪⎨

⎪⎩

m, if the k-th candidate is the worst candidate;
M, if the k-th candidate is the best candidate;
0, otherwise.

(4)
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In this new setting the optimal strategy has two thresholds, as stated in the following
result, whose proof is analogue to that of Theorem 1.

Theorem 5 For the Best-or-Worst variant, if n is the number of candidates and the
payments for selecting the worst and the best candidates are, respectively, m < M,
there exist r(n) ≤ s(n), such that the following strategy is optimal:

(1) Reject the r(n) first interviewed candidates.
(2) Accept the first candidate which is better than all the preceding ones until reaching

the s(n)-th candidate.
(3) After that, accept the first candidate which is either better or worse than all the

preceding ones.

Now, let n be the number of candidates and let us consider cutoff values (r, s) with
1 < r < s < n for the best and the worst candidate, respectively. Then, if r < k < s,
the probability that the interviews do not stop before the k-th one and that this k-th
candidate is the best is

r

(k − 1)n

while, if k ≥ s, the probability that the interviews do not stop before the k-th one
(i.e., the interviews do not stop before the s-th one, the best candidate up to the k-th
interview is among the r first ones and the worst candidate among the s first ones) and
that this k-th candidate is the best is

r

(k − 1)

s − 1

(k − 2)

1

n

The same value is obtained in this latter case if we consider the worst candidate.
Thus, if k ∈ (r, n] is an integer, the probability of successfully selecting the best

candidate in the k-th interview is given by

PBW,U
n,r,s (k) =

{
r

(k−1)n , if r < k < s;
r

k−1
s−1
k−2

1
n , if k ≥ s.

On the other hand, if k ∈ (r, n] is an integer, the probability of successfully selecting
the best or the worst candidate in the k-th interview is given by

P
BW,U
n,r,s (k) =

{
0, if r < k < s;
r

k−1
s−1
k−2

1
n , if k ≥ s.

Because, according to the optimal strategy we can only select the worst candidate if
k ≥ s.
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Consequently, the expected payoff with n candidates and cutoff values r < s is
given by

EBW,U
n (r, s) :=

n∑

k=r+1

MPBW,U
n,r,s (k) + mP

BW,U
n,r,s (k)

=
s∑

k=r+1

M r

(k − 1) n
+

n∑

k=s+1

(M + m)
r(s − 1)

(k − 1)(k − 2)n
.

The following result determines the cutoff values as well as the corresponding
maximum expected payoff.

Theorem 6 Given a positive integer n > 2, let us consider the function EBW,U
n (r, s)

defined above for every pair of integers in the set {(r, s) ∈ Z
2 : 0 ≤ r ≤ s < n} and

let (M1(n),M2(n)) be the point for which EBW,U
n reaches its maximum. Then,

(i) limn
M1(n)

n = e−1+ n
M M

m+M .

(ii) limn
M2(n)

n = M
m+M .

(iii) limn E
BW,U
n (M1(n),M2(n)) = e−1+ n

M M2

m+M .

Proof Let us define the sequence of functions {hn} by hn(x, y) = EBW
n (nx, xy).

Then,

lim
n

hn(x, y) = h(x, y) =
{

(M + m)x − (M + m)xy + Mx log(y/x), if x, y �= 0;
0 otherwise.

and the convergence is uniform on T := {(x, y) ∈ R
2 : 0 ≤ x ≤ y ≤ 1}.

Hence, we can apply Proposition 2. To do so, observe that h is a concave function
on the convex set T with a negative definite hessian matrix. Since h has only one
critical point, namely

(
e−1+ m

M M

M + m
,

M

M + m

)

and

h

(
e−1+ m

M M

M + m
,

M

M + m

)

= e−1+ m
M M2

M + m

the result follows. 	

This result means that the optimal strategy in this setting consists in rejecting

roughly the first n
e−1+ m

M M

M + m
interviewed candidates, then accepting the first candi-

date which is better than all the preceding ones until reaching roughly the n
M

M + m
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candidate and, finally accepting the first candidate which is either better or worse
than all the preceding ones. Following this strategy, the maximum expected payoff is

asymptotically equal to e−1+ m
M M2

M+m .

Remark If m � M the cuttof values obtained in Theorem 6 are, approximately, ne−1

and n. This means that the optimal strategy ignores the objective of obtaining the
worst candidate and we recover the original secretary problem. In addition, ifm = M ,
then both cutoff values coincide with n/2 and we recover the original Best-or-Worst
variant.

5 The Postdoc variant

In this section we focus on the Postdoc variant, as described in the introduction, in
which the goal is to select the second best candidate. First of all we have to prove that,
just like in classic problem, the optimal strategy is a threshold strategy.

In this variant it is not obvious that the optimal strategy has only one threshold.
This is because the candidate considered in a given interview could be selected both
if it is better or the second better than all the preceding ones and in both cases it could
end up being the second best candidate. However, we are going to see that selecting
a candidate which is better than all the preceding ones is never preferable to waiting
for a candidate which is the second better than all the preceding ones.

Assume for a moment that we are following a threshold strategy. Let n be the
number of candidates and let us consider a cutoff value r ∈ (1, n). If k ∈ (r, n] is
an integer, the probability of successfully selecting the second best candidate in the

k-th interview is PPD
n,r (k) = r

k−1
1
k
(k2)
(n2)

. Thus, the probability function of succeeding

in the Postdoc variant with n candidates using r as cutoff value and provided we are
following a threshold strategy for the second best candidate, is given by

FPD
n (r) :=

n∑

k=r+1

PPD
n,r (k) =

n∑

k=r+1

r
(k
2

)

(−1 + k) k
(n
2

) .

Note that the following holds:

FPD
n (r) :=

n∑

k=r+1

r
(k
2

)

(−1 + k) k
(n
2

) = r
(r+1

2

)

(−1 + r + 1) (r + 1)
(n
2

)

+
n∑

k=r+2

r
(k
2

)

(−1 + k) k
(n
2

)

=
(r+1

2

)

(r + 1)
(n
2

) +
n∑

k=r+2

(r + 1)r
(k
2

)

(−1 + k) k (r + 1)
(n
2

)

=
(r+1

2

)

(r + 1)
(n
2

) + r

r + 1

n∑

k=r+2

(r + 1)
(k
2

)

(−1 + k) k
(n
2

)
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=
(r+1

2

)

(r + 1)
(n
2

) + r

r + 1
FPD
n (r + 1).

On the other hand, let us denote by Tn(r) the probability of success after the r -th
interview provided we have already selected a candidate which is better than all the
preceding ones. Then, the probability of finding the secondbest candidate in the (r+1)-
th interview is 1

r+1 and, furthermore, the probability of not finding a better candidate

among all the remaining interviews is (r+1
2 )

(n2)
. On the other hand, the probability of

not obtaining the second best candidate in the (r + 1)-th interview is r
r+1 and the

probability of success in this case will be Tn(r + 1). Hence,

Tn(r) = 1

r + 1

(r+1
2

)

(n
2

) + r

r + 1
Tn(r + 1).

Thus, we have seen that Tn(r) and FPD
n (r) both satisfy the same recurrence relation

in r . Moreover, it holds that Tn(n − 1) = FPD
n (n − 1) = 1/n so, consequently, we

obtain that Tn(r) = FPD
n (r) for every r < n.

Note that this means that the optimal strategy can neglect if a given candidate is
better than all the preceding ones and focus only onwhether the candidate is the second
better than all the preceding ones and thus the optimal strategy has only one threshold.

Theorem 7 For the Postdoc variant, if n is the number of candidates, there exists r(n)

such that the following strategy is optimal:

(1) Reject the r(n) first interviewed candidates.
(2) After that, accept the first candidate which is the second best until then.

Proof Just use the same ideas as in Theorem 1. 	

Thus, the probability function of succeeding in thePostdoc variantwithn candidates

using r as cutoff value, is given by

FPD
n (r) :=

n∑

k=r+1

PPD
n,r (k) = r(n − r)

n(n − 1)
.

Observe that we have obtained that FPD
n (r) = 1

2
FBW
n (r). Consequently, if we

follow the previous strategy, the optimal cutoff value is the same as in the Best-or-
Worst variant; i.e., � n

2 �) and the maximum probability of success is one half of the
maximum probability of success in the Best-or-Worst variant (see Theorem 2).

We are now going to consider the Postdoc variant with the payoff function pC given
in (2); i.e., we assume that performing each interview has a constant cost of 1/n. Under
this assumption it can be proved that the optimal strategy has two thresholds.

Theorem 8 For the Postdoc variant, if n is the number of candidates and if the payoff
function is given by (2), there exist r(n) ≤ s(n), such that the following strategy is
optimal:
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(1) Reject the r(n) first interviewed candidates.
(2) Accept the first candidate which is better than all the preceding ones until reaching

the s(n)-th candidate.
(3) After that, accept the first candidate which is either better or second better than

all the preceding ones.

Proof Proceed as in Theorem 1 with each threshold separately. 	

Now, let n be the number of candidates and let us consider cutoff values (r, s) with

1 < r < s < n for the best and the second best candidate, respectively. Then, if
r < k ≤ s, the probability of selecting the k-th candidate and that it is the second best
is

r(n − k)

n(n − 1)(k − 1)
,

which is obtained as the product of:

• The probability that the interviews do not stop before the k-th one (i.e., the best
candidate up to the k-th interview is among the r first ones): r/(k − 1).

• The probability of finding in the k-th interview a candidate who is better than all
the preceding ones: 1/k.

• The probability that this selected candidate turns out to be the second best in the
end: (n−k) k

n(n−1) .

On the other hand, if k > s, the probability of selecting the k-th candidate if it is
better than all the preceding ones and that it turns out to be the second best in the end
is

r

k − 1

s − 1

k − 2

1

k

(n − k) k

n (n − 1)
,

which is obtained as the product of:

• The probability that the interviews do not stop before the k-th one: r
k−1

s−1
k−2 .• The probability of finding in the k-th interview a candidate who is better than all

the preceding ones: 1/k.
• The probability that this selected candidate turns out to be the second best in the
end: (n−k) k

n(n−1) .

Also, if k > s, the probability of selecting the k-th candidate if it is the second
better than all the preceding one and that it turns out to be the second best in the end
is

r

k − 1

s − 1

k − 2

1

k

(n − k) k

n (n − 1)

which is obtained as the product of:

• The probability that the interviews do not stop before the k-th one: r
k−1

s−1
k−2 .

123

Author's personal copy



720 J Comb Optim (2018) 35:703–723

• The probability of finding in the k-th interview a candidate who is better than all
the preceding ones: 1/k.

• The probability that this selected candidate turns out to be the second best in the
end:

(k
2

)
/
(n
2

)
.

So, to sum up, if k > s the probability of successfully selecting the k-th candidate
is just

r(s − 1)

(k − 1)(k − 2)k

[
(n − k) k

n (n − 1)
+ k (k − 1)

n (n − 1)

]
= r(s − 1)(n − k)

n(n − 1)(k − 1)(k − 2)

+ r(s − 1)

n(n − 1)(k − 2)
.

Thus, under the strategy presented on Theorem 8, the probability of successfully
selecting the k-th candidate is given by the function

PPD,C
n,r,s (k) =

{
r(n−k)

n(n−1)(k−1) , if r < k < s;
r(s−1)(n−k)

n(n−1)(k−1)(k−2) + r(s−1)
n(n−1)(k−2) , if k ≥ s.

and, consequently, the expected payoff with n candidates and cutoff values r < s is
given by

EPD,C
n (r, s) =

n∑

k=r+1

(
1 − k

n

)
PPD,C
n,r,s (k).

In the following result we determine the optimal cutoff values and the maximum
expected payoff.

Theorem 9 Given a positive integer n > 2 let us consider the function E PD,C
n (r, s)

defined above for every (r, s) ∈ {(r, s) ∈ Z
2 : 0 ≤ r ≤ s < n} and let

(M1(n),M2(n)) be the point for which E PD,C
n reaches its maximum. Then,

(i) limn M1(n)/n = 0.17248 . . .

(ii) limn M2(n)/n = 0.39422 . . .

(iii) limn E
PD,C
n (M1(n),M2(n)) = 0.11811 . . .

Proof First of all, observe that

EPD,C
n (r, s) = r

n2

(
n + n − 1

s − 1
− s + (s − r) (3 − 4 n + r + s)

2 (n − 1)

)

+ r

n2
((1 − s) ψ(−1 + n) − (n − 1) ψ(r)

+ (n − 2 + s) ψ(s − 1)) .
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Thus, if we define the sequence of functions {hn} by hn(x, y) = EPD,C
n (nx, ny), it

follows that

lim
n

hn(x, y) = h(x, y) :=
{

x
(
2−6y+y2+4x−x2+2(1+y) log y−2 log x

)

2 , if x, y �= 0;
0, otherwise.

and the convergence is uniform on {(x, y) ∈ R
2 : 0 ≤ x ≤ y ≤ 1}.

Using elementary techniques we get that h reaches its absolute maximum at the
point (α, β) with β := 0.39422 . . . is the solution to −2 + 1

β
+ β + log(β) = 0 and

α := 0.1724844 . . . is the solution to 1 − 1
β

− 2 β − β2

2 + 4α − 3α2

2 − log(α) = 0.
The fact that h(α, β) = 0.11811 . . . concludes the proof. 	

Finally, let us consider the Postdoc variant with the payoff function pP given in

(3); i.e., we assume that performing each interview has an additional payoff of 1/n.
Under this assumption, it is clear that no optimal strategywill accept a candidate which
is better than all the preceding ones because, if the search continues, the probability
of success is the same and the payoff will be greater. Hence, we must only consider
strategies with one threshold for the second best candidate, as in Theorem 7, ignoring
if the interviewed candidate in better than the preceding ones. In this setting, the
expected payoff with n candidates and cutoff value r is given by

EPD,P
n (r) :=

n∑

k=r+1

(
1 + k

n

)
PPD
n,r (k) = r(n − r)(3n + 1 + r)

2n2(n − 1)
.

Theoptimal cutoff value thatmaximizes the expected payoff EPD,P
n and thismaximum

expected payoff are determined in the following result.

Theorem 10 Given an integer n > 1, let us consider the function E PD,P
n (r) defined

above for every integer 1 < r < n and let M(n) be the value for which the function
E PD,P
n reaches its maximum. Then, the following hold:

(i) limn
M(n)

n =
√
13−2
3 = 0.53518 . . .

(ii) limn E
PD,P
n (M(n)) = 13

√
13−35
27 = 0.4397 . . .

Proof Since EPD,P
n is a degree 3 polynomial, we can explicitly obtain the exact value

of M(n) by elementary methods. Namely,

M(n) = −1 − 2 n + √
1 + 7 n + 13 n2

3
.

The result follows immediately. 	

Remark Note that we can further refine the previous result by noting that M(n) =(√

13−2
3

)
n + 7−2

√
13

6
√
13

+ o(n). In this case, [M(n)] is the optimal cutoff value for all

n up to 10,000, without any exception.
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6 Conclusions

In this paper, we have analyzed two variants of the secretary problem which happen
to be closely related: the Postdoc and the Best-or-Worst variants. Both of them have
the same optimal threshold strategy and the mean payoff for the first one is twice as
for the second one.

We now show a comparative table of the asymptotic optimal cutoff value (ACV)
given by limn M(n)/n and the the asymptotic maximum expected payoff (AMP) in
the classical secretary problem, in the Best-or-Worst variant and in the Postdoc variant
with payoff functions pB , pC and pP . In the case of the Postdoc variant with payoff
function pC , in the cell corresponding toM(n)/n we show the two thresholds related
to the optimal strategy in that setting.

Payoff Classic Best-or-Worst Postdoc

ACV AMP ACV AMP ACV AMP

pB e−1 e−1 1/2 1/2 1/2 1/4
pC ρ �

0.2031
ρ − ρ2 �
0.1619

θ �
0.2846

θ − θ2 �
0.2036

0.1724,
0.3942

0.1181

pP η �
0.4263

η2 + η �
0.6080

ϑ �
0.5520

ϑ2 + ϑ �
0.8567

√
13−2
3 �

0.5351

13
√
13−35
27 �

0.4397
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