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a b s t r a c t

It is well-known that the congruence
∑n

i=1i
n

≡ 1 (mod n) has exactly five solutions:
{1, 2, 6, 42, 1806}. In this work, we characterize the solutions to the congruence 1n

+ 2n
+

· · · + nn
≡ p (mod n) for every prime p. This characterization leads to an algorithm for

computing all such solutions, when there is a finite number of them. More generally, our
algorithm enables computing all the solutions below amuch higher bound as compared to
what can be achieved by a naive exhaustive search.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There exist many Diophantine equations with ‘‘few’’ known solutions, whose search is hard both from the theoretical and
computational points of view.Oneof the best-knownexamples is givenby the Erdös–Moser equation

∑m−1
i=1 in = mn, forwhich

it has been proved [2] that there is only a trivial solution 11
+ 21

= 31 whenm < 1.485 · 109321155. Other famous examples
include Giuga’s conjecture [4] stating non-existence of composite numbers n such that

∑n−1
i=1 i

n
≡ −1 (mod n), which has

been verified [1] for n up to 1013800; and Lehmer’s totient problem asking for composite numbers n such that ϕ(n) | (n − 1),
which is shown to have no solutions below 1022 or with less than 14 prime divisors [3]. Among equations with ‘‘few’’ known
solutions, we can mention

∑
p|N

1
p −

1
N ∈ N with only 12 known solutions called Giuga numbers (sequence A007850 in the

OEIS [9]) and
∑

p|N
1
p +

1
N = 1 with only 8 known solutions (sequence A054377 in the OEIS [9]) called primary pseudoperfect

numbers [2].
In some cases, the search for new solutions to an equation only leads to the extension of the set of integers for which

no solution is known. In other cases, theoretical and computational effort succeed in finding all the solutions. This is the
case, for instance, for the equation 1n

+ 2n
+ · · · + nn

≡ 19 (mod n) that we will show to have exactly 8 solutions, namely
{1, 2, 6, 19, 38, 114, 798, 34314}.

For positive integers k, n, we define Sk(n) :=
∑n

i=1i
k. We will deal with congruences of the form

Sn(n) ≡ a (mod n), (1)
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Table 1
Values of a and the sequence indices corresponding to Ma that are currently present in the OEIS [9]. The stars indicate when Ma is known to be finite.
Finiteness of Mp for primes p ∈ {2, 3, 7, 19, 43, 79, 193} as well as for p satisfying Theorem 3 is established in the present work.

a 0⋆ 1⋆ 2⋆ 3⋆ 4 5 6

Index A005408 A014117 A226960 A226961 A226962 A226963 A226964

a 7⋆ 8 9 19⋆ 43⋆ 79⋆ 193⋆

Index A226965 A226966 A226967 A280041 A280043 A302343 A302344

which is equivalent to Sn(n − 1) ≡ a (mod n). The following lemma shows that congruences (1) is also equivalent to

n · Bn ≡ a (mod n), (2)

where Bn is the nth Bernoulli number. 1

Lemma 1. For any positive integer n,

Sn(n) ≡ n · Bn (mod n).

Proof. By Faulhaber’s formula, we have

Sn(n) =
1

n + 1

n∑
j=0

(−1)j ·
(
n + 1

j

)
· Bj · nn+1−j, (3)

where by convention B1 = −
1
2 . In particular, for j = 1, we have that the numerator of Bjnn+1−j

= −
nn
2 ≡ 0 (mod n). For

any odd j ̸= 1, we have Bj = 0, and thus the corresponding term in (3) is zero as well.
Consider an even j. The Von Staudt–Clausen theorem implies the denominator of Bj is square-free (in fact, it equals

the product of all primes p such that (p − 1) | j) [7]. It follows that the denominator of Bj · n is coprime to n, and thus
Bj · nn+1−j

≡ 0 (mod nn−j). Hence, Bj · nn+1−j
≡ 0 (mod n) for all j < n. Now reduction of (3) modulo n completes the

proof. □

Let Ma denote the set of positive n satisfying (1) and (2) (Table 1). From the Von Staudt–Clausen theorem, it is easy to
see that M0 consists of the odd positive integers. It is known [6,8] that M1 = {1, 2, 6, 42, 1806}.

In the present study, we focus on the case of a being prime and address the problem of computing Ma. We encounter
both aforementioned situations: in some cases, we are able to compute all the solutions to (1) (and thus prove the finiteness
of Ma), while in other cases, we find all solutions below certain large bounds (which are infeasible to reach by brute force).

The main contribution of our work is the characterization of the solutions to the congruence (1) and the development of
an algorithm for computing the possible prime divisors of the solutions. Then, if the set of possible prime divisors is finite,
the search for solutions can be restricted to products of these divisors and thus determine all the solutions. Furthermore, we
establish a connection of this problem to weak primary pseudoperfect numbers, which enables computing all the solutions
below 1030 with little computational effort.

2. Characterization of Mp

The following lemma will be useful in the sequel.

Lemma 2 ([5]). Let d, k, n, and t be positive integers.

(i) If d | n, then

Sk(n) ≡
n
d
Sk(d) (mod d).

(ii) If p > 2 is a prime, then

Sk(pt ) ≡

{
−pt−1 (mod pt ), if p − 1 | k;
0 (mod pt ), otherwise.

(iii) We have

Sk(2t ) ≡

⎧⎨⎩2t−1 (mod 2t ), if t = 1, or t > 1 and k > 1 is even;
−1 (mod 2t ), if t > 1 and k = 1;
0 (mod 2t ), if t > 1 and k > 1 is odd.

1 The congruence r1 ≡ r2 (mod n) for rational numbers r1 , r2 is understood as n divides the numerator of r1 − r2 .
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The following theorem gives a characterization of the set Mp in terms of the prime power factorization of its elements.

Theorem 1. Let p be a prime number. Then n ∈ Mp if and only if the following conditions hold:

(i) The prime power factorization of n has form n = psq1 · · · qr , where p, q1, . . . , qr are pairwise distinct primes and 0 ≤ s ≤ 2.
(ii) For every i ∈ {1, . . . , r}, (qi − 1) | n and n/qi + p ≡ 0 (mod qi).
(iii) If s = 1, then (p − 1) ∤ n.
(iv) If s = 2, then (p − 1) | n and n/p2 + 1 ≡ 0 (mod p).

Proof. We will work out the case of odd p; for p = 2, the proof is similar.
Let n = 2tpsqu11 · · · qurr be the prime power factorization of n. Then Sn(n) ≡ p (mod n) if and only if Sn(n) ≡ p (mod 2t ),

Sn(n) ≡ p (mod ps), and Sn(n) ≡ p (mod quii ) for all i ∈ {1, . . . , r}.
By Lemma 2, Sn(n) ≡

n
2t Sn(2

t ) (mod 2t ), so Sn(n) ≡ p (mod 2t ) if and only if t ≤ 1 with n/2 + p ≡ 0 (mod 2) if t = 1 by
Lemma 2(iii).

Furthermore, by Lemma 2(i), Sn(n) ≡
n
ps Sn(p

s) (mod ps), so Sn(n) ≡ p (mod ps) if and only if n
ps Sn(p

s) ≡ p (mod ps), and
we apply Lemma 2(ii) repeatedly. If s = 1, the latter congruence holds if and only if (p − 1) ∤ n. If s > 1, it holds if and only
if (p − 1) | n and n/p2 + 1 ≡ 0 (mod ps−1), with the latter congruence being possible only if s ≤ 2.

Finally, by Lemma 2(i) again, Sn(n) ≡
n
q
ui
i
Sn(q

ui
i ) (mod quii ) and hence, since p ̸= qi, it follows from Lemma 2(iii) that

Sn(n) ≡ p (mod quii ) if and only if (qi − 1) | n and n/qi + p ≡ 0 (mod quii ), with the latter congruence being possible only if
ui ≤ 1. □

Theorem 1 motivates us to consider a decomposition Mp = M(0)
p ∪ M(1)

p ∪ M(2)
p , where

M(0)
p = {n ∈ Mp : p ∤ n},

M(1)
p = {n ∈ Mp : p || n},

M(2)
p = {n ∈ Mp : p2 || n}.

We will now study each of these sets separately, using the following results.

Lemma 3 ([6]). Let P be a non-empty set of primes p such that

(i) p − 1 is square-free; and
(ii) if q is a prime divisor of p − 1, then q ∈ P .

Then P is one of the sets {2}, {2, 3}, {2, 3, 7}, or {2, 3, 7, 43}.

Lemma 4 ([6]). Let N be a set of positive integers ν such that

(i) ν is square-free, and
(ii) if p is a prime divisor of ν, then p − 1 divides ν.

Then N ⊆ {1, 2, 6, 42, 1806}.

Lemma 4 implies the following result concerning M(0)
p .

Lemma 5. Let p be a prime. Then M(0)
p ⊆ {1, 2, 6, 42, 1806} = M1.

Proof. Let n ∈ M(0)
p . Theorem 1(i) implies that n is square-free. Moreover, Theorem 1(ii) implies that if q is a prime divisor

of n, then q − 1 divides n. Hence, we can apply Lemma 4 and the result follows. □

The following result is straightforward and completely determines the set M(0)
p .

Lemma 6. Let p be a prime. Then M(0)
p = {n ∈ M1 : p ≡ 1 (mod n)}.

To study the set M(1)
p , we introduce the following set of primes associated with p.

Definition 1. For a prime p, we let Qp be the set of prime numbers such that q ∈ Qp if and only if the following conditions
hold:

(i) q − 1 is square-free;
(ii) (p − 1) ∤ (q − 1);
(iii) if t is a prime divisor of q − 1, then t = p or t ∈ Qp.

In addition, we define the following set of integers composed of primes in Qp:

Np := {n ∈ N : n is square-free, (p − 1) ∤ n, and for every prime q | n, q ∈ Qp}. (4)
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Corollary 1. Let p be a prime. Then M(1)
p ⊆ p · Np.

Proof. Let n ∈ M(1)
p . Theorem 1 implies that n/p ∈ Np completing the proof. □

Finally, let us analyze the set M(2)
p . We will see that this set is empty in most cases. To do so, we first need the following

lemma.

Lemma 7. Let n ∈ M(2)
p . If q < p is a prime such that q | n, then q ∈ {2, 3, 7, 43}.

Proof. Let us consider the set of primes {q : q < p and q | n for some n ∈ M(2)
p }. Theorem 1 implies that this set satisfies

the conditions of Lemma 3, completing the proof. □

Corollary 2. For any prime p ̸∈ {2, 3, 7, 43}, the set M(2)
p is empty.

Proof. Assume that n ∈ M(2)
p . Since Theorem 1 implies that n = p2q1 · · · qr and (p−1) | n, it follows that p−1 is square-free.

Moreover, for the set of primes S := {q : q | (p − 1)}, Lemma 7 implies that S ⊆ {2, 3, 7, 43}. Thus, p is a prime such that
p − 1 is square-free with prime divisors from the set {2, 3, 7, 43}. It is easy to see that the only such primes are precisely
{2, 3, 7, 43}. □

The following result shows that in the remaining cases (i.e., for p ∈ {2, 3, 7, 43}), the set M(2)
p is also finite.

Corollary 3. Let p ∈ {2, 3, 7, 43}. Then M(2)
p ⊆ p2 · M1.

Proof. Define the set of primes S := {q : q ̸= p, q | n for some n ∈ M(2)
p }. Theorem 1 implies that the set S ∪ {p} satisfies

the conditions of Lemma 3, and hence S ∪ {p} ⊆ {2, 3, 7, 43}, i.e., S ⊊ {2, 3, 7, 43}. Now, the statement follows from the fact
that every element in M(2)

p is of the form p2q1 · · · qr , where each qi ∈ S. □

Corollary 4. Let p be a prime. Then

Mp =

{
M(0)

p ∪ M(1)
p ⊆ M1 ∪ p · Np, if p ̸∈ {2, 3, 7, 43};

M(0)
p ∪ M(1)

p ∪ M(2)
p ⊆ M1 ∪ p · Np ∪ p2 · M1, otherwise.

In particular, if Np is finite, then so is Mp.

Corollary 5.

M7 = {1, 2, 6, 7, 14, 294, 12642},
M43 = {1, 2, 6, 42, 43, 86, 258, 77658}.

3. Algorithm for computing Qp and Mp

Although Theorem 1 gives a complete characterization of the set Mp for a prime p, from a practical point of view,
Corollary 4 ismore useful for effective computation of this set. In particular, Corollary 4 implies that in order to computeMp,
it is enough to compute the set of primes Qp. Below we propose Algorithm 1 that in the case of finite Qp constructs it in a
finite number of steps. Namely, for an input prime p, Algorithm 1 constructs a nested sequence of sets X1[p] ⊆ X2[p] ⊆ . . . . If
this sequence stabilizes, the algorithm returns the limiting set denotedX[p], which equalsQp∪{p} aswe show in Theorem 2.

In Algorithm 1, PrimeParts(S) is defined as the set of primes in the set

AllParts(S) := {1 + t : t =

∏
q∈T

q for some T ⊆ S, (p − 1) ∤ t}.

Algorithm 1 Computing the set X[p] for a given prime p.
1: Let X1[p] := {2, p}
2: for i = 1, 2, 3, . . . do
3: Xi+1[p] := Xi[p] ∪ PrimeParts(Xi[p])
4: if Xi+1[p] = Xi[p] then
5: return X[p] := Xi[p]
6: end if
7: end for
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Theorem 2. For every i ≥ 1, we have that Xi[p] ⊆ Qp ∪ {p}. Moreover, Algorithm 1 stops if and only if Qp is finite, in which case
X[p] = Qp ∪ {p}.

Proof. Let Q′
p = Qp ∪ {p}. Clearly, X1[p] ⊆ Q′

p. Let us assume that there exists an index i ≥ 2 such that Xi−1[p] ⊆ Q′
p,

but Xi[p] ̸⊆ Q′
p. Consider the minimum element q in Xi[p] \ Q′

p. Since q does not belong to Q′
p, but q − 1 is squarefree and

(p − 1) ∤ (q − 1), there exists a prime factor q1 of q − 1 that is not in Q′
p and thus not in Xi−1[p] either. This contradicts the

fact that every element of Xi[p] \ {2, p} is of the form 1 + p1 · · · pk with pj ∈ Xi−1[p]. Hence, Xi[p] ⊆ Q′
p for every i ≥ 1 as

claimed.
Now, Algorithm 1 constructs sets X1[p] ⊆ X2[p] ⊆ . . . , which are all subsets Q′

p. So, if Qp is finite (and so is Q′
p), the

algorithm stops and returns the limiting set X[p]. Let us show that X[p] = Q′
p. If X[p] ⊊ Q′

p, consider the minimum element
q inQ′

p \X[p]. Then q−1 = q1 · · · qr is squarefree, where qi ∈ Q′
p. Since each qi < q, the definition of q implies that qi ∈ X[p].

Hence, q = 1 + q1 · · · qr ∈ X[p], since otherwise Algorithm 1 would have not stopped. This contradicts the assumption of
Q′

p \ X[p] being nonempty, and thus completes the proof. □

Once the set Qp is obtained, one can easily compute Np = AllParts(Qp), and then use Corollary 4 to find Mp. Some
interesting examples computed with Algorithm 1 are given in the following table.

p Stop Qp Mp

19 i = 8 {2, 3, 7, 43, 4903, 168241543, 5773040306503} {1, 2, 6, 19, 38, 114, 798, 34314}
79 i = 5 {2, 3, 7, 43, 3319, 1573207} {1, 2, 6, 79, 158, 474, 3318, 142674}

193 i = 5 {2, 3, 7, 43, 348559} {1, 2, 6, 193, 386, 1158, 8106, 348558}

The following result establishes the finiteness of Qp (and hence of Mp) for a family of primes.

Theorem 3. Let A := {2, 6, 14, 42, 86, 258, 602, 1806} be the set of even divisors of 1806 = 2 · 3 · 7 · 43. If a prime p is such
that the set

{1 + αp : α ∈ A}

does not contain any prime, then Mp ⊆ M1 ∪ pM1, and thus Mp is finite.

Proof. It is easy to see that primes p ∈ {2, 3, 7, 43} do not satisfy the condition as numbers 1+ 2 · 2, 1+ 2 · 3, 1+ 6 · 7, and
1+1806 ·43 are prime. On the other hand, for a prime p ̸∈ {2, 3, 7, 43} satisfying the theorem condition, Algorithm 1 returns
X[p] = {2, 3, 7, 43, p}, implying that Qp = {2, 3, 7, 43}. Then the theorem statement follows from (4) and Corollary 4. □

There seem to existmanyprimes p satisfying the condition of Theorem3 (sequenceA302345 in theOEIS [9]). For example,
the only such primes below 1000 are

67, 97, 127, 163, 307, 317, 337, 349, 409, 521, 523, 547, 643, 709, 757, 811, 839, 857, 919, 967, 997.

We remark that there also exist primes p, for which Qp and Mp are finite but do not satisfy the condition of Theorem 3.
In particular, this holds for p ∈ {19, 79, 193} present in the table above.

Unfortunately, in some cases we cannot determine if Algorithm 1 stops due to the size of the involved sets of primes. For
instance, for p = 5, the set X5[p] contains 77 primes, and it seems infeasible to compute X6[p].

4. Connection between Mp and primary pseudoperfect numbers

WhenQp is infinite, Algorithm 1 never stops. Nevertheless, there is an easy result that allows us to compute the elements
of Mp below p · (8.49 × 1030) as explained below.

We recall that an integer n ≥ 1 is a weak primary pseudoperfect number [6] if it satisfies the congruence:∑
p|n

n
p

+ 1 ≡ 0 (mod n).

LetW be the set of all weak primary pseudoperfect numbers (sequence A230311 in the OEIS [9]). The only known elements
of W are

1, 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086.

It is not even known if W is finite.

Corollary 6. Let p be a prime. Then Mp ⊆ M1 ∪ p · W .

Proof. Let n ∈ Mp. If p ∤ n, then n ∈ M1 by Lemma 5. On the other hand, if p | n, [6, Corollary 1] states that n/p ∈ W . □
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Corollary 6 enables computing all the elements of Mp below p · maxW . It is enough to determine computationally if
Sn(n) ≡ p (mod n) for every element of M1 ∪ p · W , which currently has up to 14 known elements.

In some cases, it is possible to use ad hoc arguments to prove that Mp is finite and, hence, to compute its elements. This
is the case, e.g., for p = 2, 3. To see that bothM2 andM3 are finite, we need to recall some ideas from [6]. For every Q ∈ N,
we define

MQ := {n ∈ N : SnQ (nQ ) ≡ n (mod nQ )}.

IfMQ ̸= ∅, then Q ∈ W ([6, Corollary 1]), and furthermore we have the following statement.

Theorem 4 ([6, Proposition 3]). For a given weak primary pseudoperfect number Q , define the integer

nQ :=

⎧⎨⎩lcm
{

p − 1
gcd(p − 1,Q )

: prime p | Q
}

, if Q ̸= 1;

1, if Q = 1.

Then MQ = ∅ if and only if (q − 1) | nQQ for some prime q | nQ . Moreover, if MQ ̸= ∅, then nQ | n for every n ∈ MQ and, in
particular, nQ = minMQ .

The following lemma is straightforward.

Lemma 8. Let p be a prime. Then n ∈ M(1)
p ∪ M(2)

p if and only if n/p ∈ W and p ∈ Mn/p.

While it seems to be plausible that the setMp is finite for every prime p, there are many primes p for which Algorithm 1
fails to prove its finiteness. Nevertheless, in the previous setting, we can directly prove the finiteness ofMp for p = 2 and 3.

Corollary 7. If p ∈ {2, 3}, then Mp is finite.

Proof. By Lemma 5 and Corollary 4, it is enough to show thatM(1)
p ∪M(2)

p is finite. Let us assume that n ∈ M(1)
p ∪M(2)

p , and
observe that n/p ∈ W and p ∈ Mn/p by Lemma 8.

Let p = 2 with n/2 ∈ W and 2 ∈ Mn/2. Then Theorem 4 implies that nn/p | 2, i.e., nn/2 = 1 or 2. Now, if nn/2 = 2, Theorem 4
implies thatMn/2 = ∅, a contradiction. Hence, nn/2 = 1, which implies that (p− 1) | n/2 for every p | n/2, i.e., that n/2 ∈ M1 by
Lemma 4. Consequently, M(1)

p ∪ M(2)
p ⊆ 2 · M1 is finite and so is M2 ⊆ M1 ∪ 2 · M1.

Now, let p = 3with n/3 ∈ W and 3 ∈ Mn/3. Again, we obtain that nn/3 = 1 or 3. Since n ∈ Mp and 3 | n, if n ̸= 3, Theorem 1
implies that (q− 1) | n for every prime q | n/3. In particular, 2 | n and thus 2 | n/3, so Theorem 4 implies thatMn/3 = ∅, which
is a contradiction. Hence, nn/3 = 1 and M3 ⊆ M1 ∪ 3 · M1 is finite. □

As a consequence, it is easy to compute the elements of Mp for p = 2, 3.

Corollary 8.

M2 = {1, 4, 12, 84, 3612},
M3 = {1, 2, 3, 18, 126, 5418}.

In Corollary 5 and Corollary 8, we have established the finiteness and computed the elements of Mp for p = 2, 3, 7, 43.
Recall that these are precisely the cases when M(2)

p may be nonempty. In the remaining cases, Mp = M(0)
p ∪ M(1)

p . We will
conclude this section with a characterization of M(1)

p for p ̸= 2, 3, 7, 43.

Lemma 9. Let p ̸= 2, 3, 7, 43 be a prime. Then p · M1 = {p, 2p, 6p, 42p, 1806p} ⊂ M(1)
p .

Proof. The statement directly follows from Theorem 1 and the definition of M(1)
p . □

Corollary 9. Let p ̸= 2, 3, 7, 43 be a prime. Then n ∈ M(1)
p if and only if n/p ∈ W , nn/p | p, and (nn/p − 1) ∤ n/p.

Proof. Assume that n ∈ M(1)
p . By Lemma 8, n/p ∈ W and p ∈ Mn/p. Hence,Mn/p ̸= ∅. By Theorem 4, nn/p | p and (nn/p −1) ∤ n/p.

Conversely, assume that n/p ∈ W , nn/p | p, and (nn/p − 1) ∤ n/p. If nn/p = 1, then similarly to the second part of the proof of
Corollary 7, we obtain that n ∈ p · M1 ⊂ M(1)

p . On the other hand, if nn/p = p, then nn/p − 1 = p − 1 ∤ n/p, and Theorem 4
implies that p ∈ Mn/p. Then application of Lemma 8 completes the proof. □

Corollary 9 enables computing (with little effort) all the elements of Mp below the product of p and the largest known
weak primary pseudoperfect number, which today gives the bound p · 8.49 × 1030. It just remains to check if Sn(n) ≡

p (mod n) for every element of pW ∪ M1. Implementing this idea, we obtain the following result.
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Corollary 10. For every prime p ̸= 5, we have that

[1, p · 8.49 × 1030
] ∩ Mp ⊆ M1 ∪ pM1.

The prime p = 5 is exceptional, since it is the only known prime p for which there exist weak primary pseudoperfect
numbers Q satisfying nQ = p. Namely, we have n47058 = n2214502422 = 5. For prime p = 5, we obtain the following result:

Corollary 11.

M5 ∩ [1, 1031
] = {1, 2, 5, 10, 30, 210, 9030, 235290, 11072512110}.

So, unless new weak primary pseudoperfect numbers are found, it is impossible to find more than 10 solutions to the
congruence Sn(n) ≡ p (mod n) with prime p. In otherwords, for a prime p ̸= 5, finding a solution not from the setM1∪pM1
is equivalent to finding a new weak primary pseudoperfect number.

5. Further work

A natural extension of this work is, of course, to have a closer look atMm with compositem. In this general case, we have
the following analogue of Theorem 1.

Theorem 5. Let m = pr11 · · · prss be an integer, where p1, . . . , ps are pairwise distinct primes, r1, . . . , rs are positive integers. A
positive integer n belongs to Mm if and only if the following conditions hold:

(i) The prime power factorization of n is given by n = q1 · · · qrp
t1
1 · · · ptss , where q1, . . . , qr are pairwise distinct primes not

from {p1, . . . , ps}.
(ii) For every j ∈ {1, . . . , r}, (qj − 1) | n and n/qj + m ≡ 0 (mod qj).
(iii) For every i ∈ {1, . . . , s}, we have ti ∈ {0, ri, ri + 1}. Furthermore, if ti = ri, then (pi − 1) ∤ n; and if ti = ri + 1, then

(pi − 1) | n and n/p
ri+1
i + 1 ≡ 0 (mod pi).

Proof. Clearly, n ∈ Mm if and only if Sn(n) ≡ m (mod qj) for every j ∈ {1, . . . , r} and Sn(n) ≡ m (mod ptii ) for very
i ∈ {1, . . . , s}. It remains to apply Lemma 2 and argue just like in the proof of Theorem 1. □

Theorem 5 enables construction of the set Mm for some particular values of m as well as developing algorithms for
computing the possible prime divisors of the elements ofMm (similarly to howwe have done so in the prime case), but they
are not operative. New ideas will have to be developed in order to attack this general situation. In any case, the following
conjecture seems plausible.

Conjecture 1. For every m ∈ N the set of solutions to the congruence Sn(n) ≡ m (mod n) is finite.
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