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a b s t r a c t

There are n independent Bernoulli random variables Ik with parameters pk that are
observed sequentially. We consider an extension of the last-success-problem with
reward wk if the player predicts correctly at step k that Ik = 1 is the last success. We
establish the optimal strategy for a payoff-function generalizing the last-success 0 − 1
payoff by using the dynamical programming method. In particular we show that this
method is intuitive and very efficient for general payoffs.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The Last-Success-Problem is the problem of maximizing the probability of stopping on the last success in a finite
sequence of Bernoulli trials. The framework is as follows. There are n Bernoulli random variables which are observed
sequentially. The problem is to find a stopping rule to maximize the probability of stopping on the last ‘‘1’’. We restrict
ourselves here to the case in which the random variables are independent. This problem has been studied by Hill and
Krengel (1992) in the context of the secretary problem and was simply and elegantly solved by Franz Thomas Bruss
in Bruss (2000) with the following famous result.

Theorem 1 (Odds-Theorem, Bruss, 2000). Let I1, I2, . . . , In be n independent Bernoulli random variables with known n. We
denote by (i = 1, . . . , n) pi, the parameter of Ii; i.e. (pi = P(Ii = 1)). Let qi = 1 − pi and ri = pi/qi. We define the index

s =

⎧⎪⎨⎪⎩max{1 ≤ k ≤ n :

n∑
j=k

rj ≥ 1}, if
n∑

i=1

ri ≥ 1;

1, otherwise

To maximize the probability of stopping on the last ‘‘1’’ of the sequence, it is optimal to stop on the first ‘‘1’’ we encounter
among the variables Is, Is+1, . . . , In.
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The optimal win probability is given by

V(p1, . . . , pn) :=

⎛⎝ n∏
j=s

qj

⎞⎠( n∑
i=s

ri

)
.

Bruss subsequently presented an addendum (Bruss, 2003) with the following result for the case in which
∑n

j=1 rj ≥ 1.

Theorem 2. If
∑n

j=1
pj

1−pj
≥ 1 then

V(p1, . . . , pn) >
1
e
.

The Odds-Theorem was extended by Ferguson (see Ferguson, 2011) in several ways. First, by also including an infinite
number of Bernoulli variables. Second, the payoff for not stopping is allowed to be different from the payoff for stopping
on a success that is not the last success. Third, the Bernoulli variables are allowed to be dependent.

In this paper, we present an extensión of the Last-Success-Problem, considering a positive payoff, wk, if the player stops
on the last success and this occurs at the kth event. We establish the optimal strategy and the expected profit by using
the dynamical programming method. In particular we show that this method is intuitive and very efficient for general
payoffs.

2. Threshold strategies

In this section, we shall show that, under certain conditions, the optimal strategy is a threshold strategy. Dynamic
programming provides the probability of winning and the optimal strategy in a simple way. In what follows, we shall
take into account the following definitions.

Definition 1. Let us define the following functions.

• EStop(k) is the expected profit if we stop at the kth event given that Ik = 1:

EStop(n) = wn

and for k = n − 1, n − 2, . . . , 1

EStop(k) := wk

n∏
i=k+1

(1 − pi).

• Econt(k) is the expected profit after observing the kth event and continuing (not stopping) in order to adopt the
optimal strategy later on. The dynamic program that defines it by recurrence is:

Econt(n) = 0

and for k = n − 1, n − 2, . . . , 0

Econt(k) = pk+1 · max
{
EStop(k + 1),Econt(k + 1)

}
+ (1 − pk+1) · Econt(k + 1).

Proposition 1. With the above definitions, it is obvious that the following strategy is optimal:
⋄ Stop if Ik = 1 and EStop(k) > Econt(k) and continue otherwise.
In addition, using this strategy, the expected profit is Econt(0).

Definition 2. We denote by the stopping set the set of indices in which the decision to stop is optimal if the corresponding
event is successful. That is:

Υn := {k : EStop(k) > Econt(k)}

Example 1. Let us consider 9 random Bernoulli variables with the following parameters, pi, and payoffs, wi:

{p1 =
1
6
, p2 =

1
10

, p3 =
1
12

, p4 =
1
3
, p5 =

1
12

, p6 =
1
10

, p7 =
1
5
, p8 =

1
10

, p9 =
1
12

}

{w1 = 7, w2 = 4, w3 = 9, w4 = 10, w5 = 6, w6 = 3, w7 = 9, w8 = 9, w9 = 1}

The corresponding dynamic program returns:

ExpectedProfit = Econt(0) =
6721
2000
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and the stopping set

StoppingSet = {4, 5, 7, 8, 9}

Definition 3. If the stopping set has a single stopping island, Υn = {k : k ≥ k}, we shall say that the optimal strategy is
a threshold strategy and, in this case, k := minΥn is the optimal threshold. We also state that the problem is a monotone
problem, which is not the case in the aforementioned example.

Remark. Note that, for the optimal threshold, we have that

k = min{k : EStop(k) > Econt(k)} = 1 + max{k : EStop(k) ≤ Econt(k)}

The following two easy results characterize monotone problems.

Proposition 2. The problem is monotone if and only if for all 0 < k < n

EStop(k) > Econt(k) ⇒ EStop(k + 1) > Econt(k + 1)

Proposition 3. The problem is monotone if and only if for all 0 < k ≤ n

EStop(k) − Econt(k)

change sign at the most once.

With the following result, we present a sufficient condition for the problem to be monotone. In particular, when the
payment function, wk, is non-decreasing, the problem is monotone.

Proposition 4. If wk+1 ≥ (1 − pk+1)wk for all k ∈ {1, . . . , n − 1}, then the problem is monotone.

Proof. If we take into account the associated dynamic program, we see that Econt(k) is non-increasing

Econt(k) = pk+1 max
{
EStop(k + 1),Econt(k + 1)

}
+ (1 − pk+1)Econt(k + 1) ≥ Econt(k + 1).

On the other hand, EStop is non-decreasing since

EStop(k + 1)
EStop(k)

=
wk+1

∏n
i=k+2(1 − pi)

wk
∏n

i=k+1(1 − pi)
=

wk+1

wk(1 − pk+1)
≥ 1.

As a consequence, given that EStop is non-decreasing and Econt is non-increasing,

EStop(k) ≥ Econt(k) ⇒ EStop(k + 1) ≥ Econt(k + 1)

and we are able to use Proposition 2. □

With Proposition 2, it became evident that for the problem to be monotone, it is sufficient for EStop(r) to be non-
decreasing. However, this is not a necessary condition. Actually, the problem is monotone if and only if the difference
EStop(k)−Econt(k) presents one change of sign at the most. However, the verification of this statement presents difficulties
as the dynamic program does not allow us to know an explicit expression of Econt(r). We shall see how to overcome this
difficulty below.

Definition 4. Let us denote by Econt(k) the expected profit after observing the kth event and continuing in order to stop
on the next success to be found.

Econt(k) :=

n∑
i=k+1

⎛⎝ i−1∏
j=k+1

(1 − pj)

⎞⎠ · pi · EStop(i)

In other words, Econt(k) is the expected profit using the strategy of stopping on the first success after the kth event.

It is clear from the definition itself that Econt(k) ≤ Econt(k).

Lemma 1. Let r0 be such that EStop(r) > Econt(r) for every r > r0. Then, EStop(r) > Econt(r) for every r > r0.

Proof. Given r0, let us consider the set S = {r > r0 : EStop(r) ≤ Econt(r)}. It is necessary to prove that S = ∅. Let us
assume that S is nonempty and let r ′ be its maximum. This means that EStop(r ′) ≤ Econt(r ′) and EStop(r ′) > Econt(r ′),
while EStop(r′) > Econt(r′) for all r′ > r ′; but this is a contradiction. This is because if EStop(r′) > Econt(r′) for all r′ > r ′,
then Econt(r ′) = Econt(r ′). □
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Using this lemma, it is possible to reformulate Propositions 2 and 3 in terms of Econt(r), which we can know explicitly.

Proposition 5. If for all 0 < r < n the following is true

EStop(r) > Econt(r) ⇒ EStop(r + 1) > Econt(r + 1)

then the problem is monotone.

Proof. Let r0 be the minimum of the stopping set. EStop(r0) > Econt(r0) and using the hypothesis inductively, we have that
EStop(r) > Econt(r) for all r ≥ r0. We thus find ourselves within the conditions of Lemma 1 and hence EStop(r) > Econt(r)
for all r ≥ r0.

Proposition 6. The problem is monotone if and only if for all 0 < k ≤ n

EStop(k) − Econt(k)

change sign at the most once. □

Proposition 7. If the problem is monotone and k is the optimal threshold, then

EStop(r) > Econt(r) ⇐⇒ EStop(r) > Econt(r)

Econt(r) =

{
Econt(r), if r ≥ k;

Econt(k − 1), if r < k

3. The extended Odds-Theorem

Theorem 3. Let I1, I2, . . . , In be n independent Bernoulli random variables with parameter pi. Let wi be real positive numbers
that represent the payments a player receives for indicating the last ‘‘1’’ in the variable Ii. We define the index (with auxiliary
w0 := 0)

s = max

⎧⎨⎩k :

n∑
j=k

wj · pj
1 − pj

≥ wk−1

⎫⎬⎭
If the problem is monotone, then s is the optimal threshold. That is, to maximize the expected profit, it is optimal to stop on
the first ‘‘1’’ we encounter among the variables Is, . . . , In. Furthermore, with this strategy, the expected profit is:

E =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎝ n∏
j=s

(1 − pj)

⎞⎠ n∑
i=s

wi · pi
1 − pi

, if ps < 1;

ws ·

n∏
j=s+1

(1 − pj), if ps = 1.

Proof. Recall that the optimal threshold is

k = 1 + max{k : EStop(k) ≤ Econt(k)} = max{k : EStop(k − 1) ≤ Econt(k − 1)}.

We shall first assume that pk < 1 and hence pk < 1 for all k > k. Bear in mind that if pk = 1 for some k > k, then
EStop(k) = 0, which would be a contradiction. We shall first prove that s = k.

k = max{k : EStop(k − 1) ≤

n∑
i=k

⎛⎝ i−1∏
j=k

(1 − pj)

⎞⎠ · pi · EStop(i)}

as

EStop(i) = wi

n∏
t=i+1

(1 − pt )

k = max

⎧⎨⎩k : wk−1

n∏
t=k

(1 − pt ) ≤

n∑
i=k

⎛⎝ i−1∏
j=k

(1 − pj)

⎞⎠ · pi · wi

n∏
t=i+1

(1 − pt )

⎫⎬⎭
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k = max

⎧⎨⎩k : wk−1

n∏
t=k

(1 − pt ) ≤

n∑
i=k

⎛⎝ n∏
j=k

(1 − pj)

⎞⎠ ·
pi

1 − pi
· wi

⎫⎬⎭
k = max

{
k : wk−1 ≤

n∑
i=k

pi
1 − pi

· wi

}
= s

As to the value of the expected profit, which is in fact Econt(s − 1), we have

Econt(s − 1) =

n∑
i=s

⎛⎝⎛⎝ i−1∏
j=s

(1 − pj)

⎞⎠ pi · EStop(i)

⎞⎠

Econt(s − 1) =

n∑
i=s

⎛⎝⎛⎝ i−1∏
j=s

(1 − pj)

⎞⎠ pi · wi

n∏
t=i+1

(1 − pt )

⎞⎠
and, carrying out the same operations as before, we have that

E = Econt(s − 1) =

⎛⎝ n∏
j=s

(1 − pj)

⎞⎠ n∑
i=s

wi · pi
1 − pi

If pk = 1, the proof that s = k is the same. As for the expected profit, bearing in mind that we shall stop at the sth
variable with probability 1, then

E = Econt(s − 1) = EStop(s) = ws ·

⎛⎝ n∏
j=k+1

(1 − pj)

⎞⎠ . □

The previous theorem has as its particular case the famous Odds-Theorem (Theorem 1) when considering wi = 1.

4. Some application examples

4.1. The Best-choice Duration Problem

Let us consider the secretary problem with a payment wk = (n − k + 1) for selecting the best secretary in the kth
interview. Within the context of this paper, we have n independent Bernoulli random variables with parameters pk = 1/k
and payoffs wk. It is not difficult (although not straightforward) to see that the problem is monotone. In this case, its proof
requires using Proposition 6.

sn = max

⎧⎨⎩k :

n∑
j=k

wj · pj
1 − pj

≥ wk−1

⎫⎬⎭ = max

⎧⎨⎩k :

n∑
j=k

(n − j + 1) ·
1
j

1 −
1
j

≥ n − j + 2

⎫⎬⎭
sn = max

{
k :

2n − 2k + 3
n

≤

n−1∑
k−2

1
i

}
from which it is can easily be seen that sn/n tends to rumour’s constant, which is the solution to the equation 2 − 2 x +

log(x) = 0

ϑ := −
1
2
W (−2e−2) = 0.203187869.... (A106533 in OEIS)

and the asymptotic expected profit is En ∼ n · ϑ(1 − ϑ) = n · 0.161902...

Remark. Ferguson et al. in Ferguson et al. (1992), within the context of the Best-choice Duration Problem, consider a
payoff of (n − k + 1)/n and find the above asymptotic values erroneously approximated as 0.20388... and 0.1618....

Remark. If we consider wk := 1 − k/n and pk = 1/k, the problem is equivalent to the secretary problem considering a
cost of 1/n for each interview and a payment of 1 for success. The asymptotic values are the same as in the example and
can be calculated in another way in Bayón et al. (2018).
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4.2. The Best-choice and Minimal Duration Problem

To the best of our knowledge, there is no study in the literature of this problem, which consists in considering in the
secretary problem a payment for success equal to the number of interviews carried out. In the terms of this paper, we
shall have n independent Bernoulli random variables with parameters pk = 1/k and payoffs wk = k. In this case, it is
clear that the problem is monotone (optimal threshold strategy) as wk is increasing.

sn = max

⎧⎨⎩k :

n∑
j=k

wj · pj
1 − pj

≥ wk−1

⎫⎬⎭ = max

⎧⎨⎩k :

n∑
j=k

j · 1
j

1 −
1
j

≥ k − 1

⎫⎬⎭
Denoting by H(k) the kth harmonic number, we have

n∑
i=k

i 1i
1 −

1
i

= 1 − k + n + (H(n − 1) − H(k − 2)) = 1 − k + n +

n−1∑
k−2

1
i

sn = max

{
k : 1 − k + n +

n−1∑
k−2

1
i

≥ k − 1

}
= max

{
k :

n−1∑
k−2

1
i

≥ 2k − n − 2

}
from which it can easily be seen that sn/n tends to 1/2 and the asymptotic expected profit is

En ∼
n
4

4.3. n Bernoulli variables with the same parameter pk = 1/n and wk = k

Let us consider n independent Bernoulli random variables with parameters pk = 1/k and payoffs wk = k. The problem
is monotone, as wk is increasing.

sn = max

⎧⎨⎩k :

n∑
j=k

(1 − k + n) (k + n)
2 (−1 + n)

≥ k − 1

⎫⎬⎭
sn =

⌊
3 − 2 n +

√
1 + 8 n2

2

⌋
≈

3
2

+

(
−1 +

√
2
)

n

En ∼ n
(
−1 +

√
2
)

e−2+
√
2

= n · 0.230579...

4.4. n Bernoulli variables with the same parameter pk = p and wk = n − k + 1

Let us consider n independent Bernoulli random variables with parameters pk = p and payoffs wk = n− k+ 1. In this
case, the problem is monotone as

EStop(k) = (1 − k + n) (1 − p)−k+n

Econt(k) =
(−1 + k − n) (k − n) (1 − p)−1−k+n p

2
and EStop(k) − Econt(k) change sign at the most once.

Making

Ωn :=

⎧⎨⎩k :

n∑
j=k

− ((−2 + k − n) (−1 + k − n) p)
2 (−1 + p)

≥ n − k + 2

⎫⎬⎭
sn =

{
maxΩn, if Ωn ̸= ∅;

1, if Ωn = ∅

sn =

⎧⎪⎪⎨⎪⎪⎩
⌊
3 + n −

2
p

⌋
, if n >

2 (1 − p)
p

;

1, if n ≤
2 (1 − p)

p
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En =

⎧⎪⎪⎨⎪⎪⎩
(1 − p)−3+⌊2/p⌋ p (−2 + ⌊2/p⌋) (−1 + ⌊2/p⌋)

2
, if n >

2 (1 − p)
p

;

n (1 + n) (1 − p)−1+n p
2

, if n ≤
2 (1 − p)

p
.
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