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Abstract
There are n independent Bernoulli random variables with parameters pi that are observed
sequentially. We consider the following sequential two-person zero-sum game. Two players,
A and B, act in turns starting with player A. The game has n stages, at stage k, if Ik = 1, then
the player having the turn can choose either to keep the turn or to pass it to the other player.
If the Ik = 0, then the player with the turn is forced to keep it. The aim of the game is not to
have the turn after the last stage: that is, the player having the turn at stage n wins if In = 1
and, otherwise, he loses. We determine the optimal strategy for the player whose turn it is
and establish the necessary and sufficient condition for player A to have a greater probability
of winning than player B. We find that, in the case of n Bernoulli random variables with
parameters 1/n, the probability of player A winning is decreasing with n toward its limit
1
2 − 1

2 e2
= 0.4323323 . . .. We also study the game when the parameters are the results of

uniform random variables, U[0, 1].

Keywords Last-success-problem · Odds-theorem · Optimal stopping · Optimal threshold
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1 Introduction

The last-success-problem (LSP) is the problem of maximizing the probability of stopping
on the last success in a finite sequence of Bernoulli trials. There are n Bernoulli random
variables which are observed sequentially. The problem is to find a stopping rule to maximize
the probability of stopping at the last “1.” This problem has been studied by Hill and Krengel
[3] and Hsiau and Yang [4] for the case in which the random variables are independent and
was simply and elegantly solved by T.F. Bruss in [1] with the following famous result.

Theorem 1 (Odds-Theorem, T.F. Bruss [1]) Let I1, I2, . . . , In be n independent Bernoulli
random variables with known n. We denote by (i = 1, . . . , n) pi the parameter of Ii ; i.e.,
(pi = P(Ii = 1)). Let qi = 1 − pi and ri = pi/qi . We define the index
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s =
{
max

{
1 ≤ k ≤ n : ∑n

j=k r j ≥ 1
}

, if
∑n

i=1 ri ≥ 1 ;
1, otherwise.

To maximize the probability of stopping on the last “1” in the sequence, it is optimal to
stop on the first “1” that we encounter among the variables Is, Is+1, . . . , In.

The optimal win probability is given by

V (p1, . . . , pn) :=
⎛
⎝ n∏

j=s

q j

⎞
⎠

(
n∑

i=s

ri

)
.

In this paper, we propose a turn-based game related to this problem. There are n inde-
pendent Bernoulli random variables Ii with parameters pi that are observed sequentially.
We consider the following sequential two-person zero-sum game. Two players, A and B,
act in turns starting with player A. The game has n stages, at stage k, if Ik = 1, then the
player having the turn can choose either to keep the turn or to pass it to the other player. If
the Ik = 0, then the player with the turn is forced to keep it. The aim of the game is not to
have the turn after the last stage: that is, the player having the turn at stage n wins if In = 1
(because he passes the turn to the other player and there are no more stages) and, otherwise,
he loses. This is reminiscent of the hot potato game in which the goal is not to be holding the
hot potato at the end of the game, with the rule of being able to pass it on (if one so wishes)
to one’s opponent when Ik = 1. The relationship of this game with the last-success-problem
lies in the fact that the player whose turn it is after the last success loses; in other words, the
player who manages to give up his turn to his opponent on observing the last success wins.

Let us denote by Vk the winning probability of the player whose turn it is when we are
about to observe the variable Ik . In particular, the probability of player A winning is V1;
hence, the probability of player B winning is 1−V1. Likewise, on observing the last random
variable, the player whose turn it is will win with probability pk , i.e., Vn = pn .

The dynamic program to find the optimal strategy is straightforward. After observing the
variable Ik , if Ik = 0, which occurs with probability 1− pk , the player then irrevocably goes
on to observe the variable Ik+1 without giving up his turn. If Ik = 1, the optimal strategy of
the player whose turn it is will consist in passing his turn to his opponent if Vk+1 < 1

2 and
in continuing with his turn if Vk+1 ≥ 1

2 . We shall then have the following recurrence.

Vk = pk · max {Vk+1, 1 − Vk+1} + (1 − pk) · Vk+1;Vn = pn .

2 Optimal Strategy

We shall see that the optimal strategy is extremely simple and that it is also very easy to
determine which of the two players has the greatest probability of winning. Another matter
altogether is the exact calculationof this probability,whichgenerally requires the computation
of recurrence or calculations of the equivalent cost.

Proposition 1 If for all k ∈ [r , n], pk < 1
2 , then for all k ∈ [r , n] the following is fulfilled:

pn = Vn < Vk+1 < Vk <
1

2
.

Proof It is evident that Vn = pn < 1
2 . We proceed by backward induction. We assume that

the proposition is true for all i ∈ [k + 1, n] and shall prove that it also holds for i = k.
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From the induction hypothesis, Vk+1 < 1
2 ; therefore, 1−Vk+1 > 1

2 > Vk+1, and hence,

Vk = pk(1 − Vk+1) + (1 − pk)Vk+1 > pkVk+1 + (1 − pk)Vk+1 = Vk+1.

On the other hand, considering that

if x, y ∈ [0, 1/2) then x(1 − y) + (1 − x)y <
1

2
,

it turns out that

Vk = pk(1 − Vk+1) + (1 − pk)Vk+1 <
1

2
.

��
Proposition 2 If pr > 1

2 and for all k ∈ [r + 1, n], pk < 1
2 , then:

V1 = · · · = Vr−1 = Vr >
1

2
.

Proof We will take into account that

If x ∈ (1/2, 1] and y ∈ [0, 1/2) then x(1 − y) + (1 − x)y >
1

2
.

By Proposition 1, Vr+1 < 1
2 , so

Vr = pr · max {Vr+1, 1 − Vr+1} + (1 − pr ) · Vr+1

= pr · (1 − Vr+1) + (1 − pr ) · Vr+1 >
1

2

Now, since Vr > 1
2 , it is immediately followed by the dynamic program that

V1 = · · · = Vr−1 = Vr .

��
Proposition 3 If pr = 1

2 and for all k ∈ [r + 1, n], pk < 1
2 , then:

V1 = · · · = Vr−1 = Vr = 1

2
.

Proof By Proposition 1, Vr+1 < 1
2 , so

Vr = 1

2
· max{Vr+1, 1 − Vr+1} +

(
1 − 1

2

)
· Vr+1 = 1

2

Now, since Vr = 1
2 , it follows immediately from the dynamic program that

V1 = · · · = Vr−1 = Vr . ��
From the previous propositions, the following result is followed without difficulty.

Proposition 4 Let �r := {k ∈ [r , n] : pk ≥ 1
2 } and considering

ur :=
{
max�r , if �r �= ∅ ;
r , if �r = ∅.

The optimal strategy for the player whose turn it is when observing the variable Ir is not to
give up his turn before stage ur and to do so when he may starting from ur . In addition, the
following is true.
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• If �r = ∅, then Vr < 1
2 .

• If �r �= ∅ and pur = 1
2 , then Vr = 1

2 .
• If �r �= ∅ and pur > 1

2 , then Vr > 1
2 .

Let us denote by u the optimal threshold of the first player in his first turn, u := u1 (the
last Bernoulli event with parameter ≥ 1

2 ). The optimal strategy of the first player consists
in continuing with his turn until reaching the uth event and thereafter giving up his turn
whenever possible. Obviously, player B will do the same in his optimal game because, when
his turn comes, he will be in the same situation as player A. In short, we have the following
result.

Theorem 2 The optimal strategy for both players is to give up their turn when (and only
when) there are no random variables left to observe whose parameter is greater than or
equal to 1

2 .

In fact, when played optimally by both players, the game can be seen as a game of solitaire
played by player A assuming his opponent uses the optimal strategy. Thus, the probability
of player A winning, the optimal threshold being u, is the probability that the number of 1′s
starting from the u resulting from the random variants is odd; that is to say:

V1 = P

(
n∑

i=u

Ii = odd

)

This allows establishing a (somewhat coarse) lower bound for the probability of player A
winning. Bear in mind that the win probability in this game is greater than the probability of
winning in the LSP. In fact, if player A uses the optimal stop strategy of the LSP (suboptimal
strategy in this game), giving up his turn to his opponent at the first success that occurs after
the threshold established in the odds-theorem, he will win, at least, whenever he manages
to give up his turn to his opponent on observing the last success (which will occur with the
probability of winning in the LSP, V (p1, . . . , pn) ).

Proposition 5 If
n∑

i=1

pi
1 − pi

≥ 1, then

V1 ≥ V (p1, . . . , pn) >
1

e
.

Proof It suffices to keep in mind that the probability of winning in the LSP under these
conditions is greater than 1/e (see [2]). ��

3 All the RandomVariables have the Same Parameter

In this section, we study the particular case that all the Bernoulli random variables have the
same parameter.

Proposition 6 If pi = p for all i = 1, . . . , n, then the probability of player A winning is
strictly increasing with n always below its limit as n tends to infinity

V1 = 1 − (1 − 2 p)n

2
<

1

2
.
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Proof If n is even, we have

V1 =
n
2 −1∑
i=0

(1 − p)−1−2 i+n p1+2 i
(

n

1 + 2i

)
= 1 − (1 − 2 p)n

2
.

Similarly, if n is odd, we have

V1 =
n−1
2∑

i=0

(1 − p)−1−2 i+n p1+2 i
(

n

1 + 2i

)
= 1 − (1 − 2 p)n

2
.

��
Proposition 7 If we have n Bernoulli random variables with pi = 1

n , the probability of player
A winning is decreasing and is always greater that its limit as n tends to infinity, namely

1

2
− 1

2 e2
= 0.4323323 . . .

Proof If n = 1 then V1 = 1. If n = 2 then V2 = 1
2 . If n > 3, the optimal strategy for both

players is to give up their turn whenever possible. Hence, player A will win if the number of
1′s resulting from the random variables is odd.

If n is even

V1 =
n
2 −1∑
i=0

(
1 − 1

n

)−1−2 i+n (
1

n

)1+2 i (
n

1 + 2i

)

=
(−1+n

n

)n (
−

(−2+n
−1+n

)n +
(

n
−1+n

)n)
2

Similarly, if n is odd

V1 =
n−1
2∑

i=0

(
1 − 1

n

)−1−2 i+n (
1

n

)1+2 i (
n

1 + 2i

)

=
(−1+n

n

)n (
−

(−2+n
−1+n

)n +
(

n
−1+n

)n)
2

lim
n→∞V1 = 1

2
− 1

2 e2
= 0.4323323 . . .

��
Proposition 8 If we have n Bernoulli random variables with pi ≥ 1

n , the probability of player
A winning is greater than

1

2
− 1

2 e2
= 0.4323323 . . .

Proof If pi ≥ 1
2 for some i , then V1 ≥ 1

2 . Otherwise, think of the auxiliar game with all the
parameters equal to 1/n in which the probability is greater than 1

2 − 1
2 e2

. Now, there is no
more to considering successive modifications of this game, as in Lemma 1 (see below), with
which the win probability increases, until reaching the game considered. ��
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Proposition 9 If we have n Bernoulli random variables, of which there are m with pi ≥ 1
m ,

the probability of player A winning is greater than

1

2
− 1

2 e2
= 0.4323323 . . .

Proof It can easily be seen that if pi < 1
2 for all i , then the probability of player A winning

is greater than the probability that he would have in the game resulting from excluding some
random variable. Consequently, it suffices to observe that the value, 1

2 − 1
2 e2

, is exceeded in
the auxiliary game resulting from excluding some random variables. In fact, if we have m
variables with pi < 1/m for all of these variables, considering the game in which the other
variables are excluded, then we are able to use the previous proposition. ��
Lemma 1 Let us consider the game with parameters pi < 1

2 and denote byVi the probability
of a player winning when it is his turn after observing the variable Ii in the resulting auxiliary
game when changing pk to pk > pk . Hence,

For all i ∈ [k + 1, n],Vi = Vi

For all i ∈ [1, k],Vi > Vi

In other words, if we increase the value of the parameter of one of the Bernoulli random
variables in a game, then the player’s probability of winning on his turn increases.

Proof Let us recall that Vi and Vi , respectively, denote the player’s probability of winning
on his turn at stage i in the original game and in the auxiliary game.

• For all i > k, it is evident that Vi = Vi as we are in a subsequent stage to the modified
variable and the process “has no memory” and therefore does not affect.

• For all i ≤ k, we will proceed by induction backwards. Let us first see that it is true for
i = k.

Vk = pk(1 − Vk+1) + (1 − pk)Vk+1

Vk = pk(1 − Vk+1) + (1 − pk)Vk+1

Vk − Vk = (pk − pk)(1 − Vk+1) − (pk − pk)Vk+1 = (pk − pk)(1 − 2Vk+1) > 0

We now assume that the proposal is fulfilled for i + 1 and shall prove that it is fulfilled
for i

Vi = pi (1 − Vi+1) + (1 − pi )Vi+1

Vi = pi (1 − Vi+1) + (1 − pi )Vi+1

Vi − Vi = pi (Vi+1 − Vi+1) − (1 − pi )(Vi+1 − Vi+1) = (2pi − 1)(Vi+1 − Vi+1) > 0

��

4 Random Parameters for the Bernoulli Variables

Wefinally determine the probability of player Awinning (mean probability) when the param-
eters are the results of uniform random variables, U[0, 1]. That is to say, before holding the
competition, the parameters of the Bernoulli variables are drawn via random trials of a uni-
form random variable U[0, 1] and these parameters are revealed to the players.
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Lemma 2 If the last k variables {Ii }ni=n−k+1 have parameters pi , which are the results of the

uniform random variables U[0, 1
2 ], then the win probability of the player whose turn it is at

stage n − k + 1 is

Vn−k+1 = 2−1−k
(
−1 + 2k

)
In particular, if k = n

V1 = 2−1−n (−1 + 2n
)

Proof We denote by Xi the win probability of player whose turn it is at stage n − i + 1.
Bearing in mind that t = pn−k+1 is the result of a uniform random variable, U[0, 1

2 ]
Xi = E(t Xi−1 + (1 − t)(1 − Xi−1))

Xi = 2
∫ 1

2

0
(t Xi−1 + (1 − t)(1 − Xi−1)) dt = 1

4
(1 + 2Xi−1)

and solving with X0 = 0 gives

Xk = 2−1−k
(
−1 + 2k

)
��

Lemma 3 If we have k − 1 end variables with parameters pi that are the result of uniform
random variables, U[0, 1

2 ], and pk is the result of a uniform random variable, U[ 12 , 1], then
the probability of player A winning is

Jk := 1 + 2−k

2

Proof We denote by Jk the win probability of the player whose turn it is after n − k + 1.
Reasoning similar to above

Jk = E(t Xk−1 + (1 − t)(1 − Xk−1)

Jk = 2
∫ 1

1
2

(t Xk−1 + (1 − t)(1 − Xk−1)) dt

= 2
∫ 1

1
2

2−1−k
(
−2 + 2k + 4 x

)
dt = 1

2
(1 + 2−k)

��

Lemma 4 If all the parameters pi are the result of uniform random variables, U[0, 1
2 ], then

player A’s probability of winning is

Jk := 1 + 2−k

2

Proposition 10 If we have a game with n variables whose parameters are the result of the n
uniform random variables, U[0, 1], player A’s probability of winning is

2
(
1 − 4−n

)
3

.
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Proof The probability that the last parameter greater than or equal to 1
2 will be the kth is

2−n+k−1 and the probability that all the parameters are less than 1
2 will be 2−n .

E(n) = 2−1−n (−1 + 2n
) · 2−n +

n∑
k=1

Jk2
−k = 2

(
1 − 4−n

)
3

��

5 Conclusions and Future Challenges

The proposed adversarial version of the last-success-problem has a very simple optimal
game strategy that does not require any calculation. It only requires identifying the last
variable whose parameter is greater than 1

2 and, as from that point on, always giving up
one’s turn to one’s opponent. It seems interesting to pose the problem with non-independent
random variables. The last-success-problem with dependent Bernoulli random variables was
addressed by Tamaki in [5], who considered that I1, . . . , In constitute a Markov chain with
transition probabilities

α j = P(I j+1 = 1|I j = 0)

β j = P(I j+1 = 0|I j = 1)

and established an optimal stopping rule with aMarkov version of the odds-theorem.
We predict that the adversarial versionwith dependent variableswill also be simple and the

optimal strategy will most likely consist in adopting, at each kth stage, the optimal strategy
while assuming that the remaining variables are independent Îk+1, . . . , În with parameters
(computable by recurrence)

p̂i = P(Ii = 1|Ik = 1)

In short, we conjecture the following.

Conjecture 1 Let I1, I2, . . . , In be n dependent Bernoulli random variables. Let pi,k :=
P(Ii = 1|Ik = 1). Then, the optimal strategy for the player whose turn it is after observing
the variable Ik = 1 is to give up his turn to his opponent if and only if pi,k < 1

2 for all i > k.

Itmay also be interesting to pose the gamewithmore than 2 players, inwhich case different
types of payment could be considered. For any version, it is normal to consider the loser to
be the player whose turn it is after the last Bernoulli trial, but several types of payment may
be considered for the other players. If we consider that the players who do not lose each
receive the same payment, we have the simplest version. In this respect, we conclude by
posing the challenge to determine the limit with m players, when n tends to infinity, of the
loss probability of each player, considering n independent Bernoulli random variables with
parameters 1/n. In fact, for 3 players, it is no longer a trivial problem, as only the limit for
the probability of the first player losing is exactly calculable in a relatively straightforward
way. Using theMathematica symbolic calculation package, we obtained the following limit
for the probability of the first player losing:

loss1 = 1

3
+

2 cos
(√

3
2

)
3e

3
2

= 0.42970463 . . .

However, it is no longer viable to find the exact limit of the probability of the other two
players losing via this path. Computing for large values of n allows an approximation, but
only that. Specifically, we have that:
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loss2 ≈ 0.383 and loss3 ≈ 0.187

In all the above calculations, we have assumed that the optimal strategy for both players is
to give up their turn whenever possible. Of course, this will undoubtedly be true in this case.
In general, however, there will be an optimal strategy that does not always consist in passing
one’s turn to the following player.
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