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Abstract
In this work, the Homotopy Perturbation method is used for the first time to solve
an irreversible linear pathway with enzyme kinetics. The enzymatic system has
Michaelis–Menten kinetics and is modeled by a system of nonlinear ordinary differen-
tial equations. The analytical solution obtained with the method allow us to optimize
several objectives: minimal time to reach a certain percent of final product, minimal
amount of enzymes employed in the process, or even multiple objective optimization
via Pareto front. We present an example to demonstrate the results.

Keywords Enzymatic kinetics · Michaelis–Menten model · Ordinary differential
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1 Introduction

Enzyme kinetics is nowadays an emerging research field due to the incorporation of
novel techniques of applied mathematics. Several problems in biology and chemistry
(both theoretical and experimental) involve the solution of reaction equations, includ-
ing nonlinear chemical kinetics. See the book by Rajendran et al. [1] for an excellent
summary with special emphasis on the mathematical resolution.

It is well known that the rate of chemical reactions is accelerated by enzymes. In
enzymatic processes, one obtains a product after a series of stages: the enzymatic
mechanism, of which There are two different types: single and multiple substrate
mechanisms [2]. Differential equations are used to model the enzyme kinetics. The
single case is one of themost powerful kinds of kinetic reaction.Michaelis andMenten
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in 1913 were pioneers in explaining the enzyme reaction model; their model was later
developed by Briggs and Haldane in 1925. They reported the free enzyme binding to
the reactant, which produced an enzyme-reactant complex in the standard two-step
model. Catalyzed reactions like these lead to a set of non-linear coupled differential
equations.

TheMichaelis–Menten (MM)model [3] assumes that the concentration of enzyme-
substrate complex remains approximately constant over a considerable time interval
after a short transient. This is commonly known as the quasi-steady-state approxima-
tion (QSSA). In [4], several features ofQSSA are discussed: one is led to believe, along
with many authors, that the standard QSSA (s–QSSA) is valid only when the enzyme
concentration is small, though the range of validity of the MM region is widened. On
the other hand, a number of studies considered moderate-to-large enzyme substrate
ratios and found QSSA regions there too, under specific circumstances. Without any
restriction on substrate enzyme ratios, the so-called total QSSA (t–QSSA) applies.
Borghans et al. [5] distinguished s–QSSA from t–QSSA, and also pointed out what
they called QSSA (r–QSSA), which applies when the enzyme–substrate ratio is large.

Kasserra and Laidler [6] put forward certain conditions for the applicability of
QSSA and suggest that an excess of initial enzyme concentration is necessary to
guarantee that the reaction followsfirst-order kinetics. Schnell et al. [7] have shown that
the criterion for validity of the reactant stationary assumption, to study the Michaelis–
Menten reaction, does not require the restrictive condition of choosing a substrate
concentration that is much higher than the enzyme concentration.

Despite using the QSSA simplified model, the complexity of the ensuing system
is such that the development of new mathematical techniques is essential. This prob-
lem is discussed in [2], where they use He’s variational iteration method is used to
give approximate and analytical solutions. In [8] and [9], they employ the Homotopy
Perturbation Method (HPM) to solve the non-linear reaction equation in a 1-stage
system: one substrate and one product. In [10], the authors study kinetic models of
reversible enzyme reactions and compare two techniques for analytic approximate
solutions of the model: the Homotopy Perturbation Method (HPM) and the Simple
Iteration Method (SIM). Finally, in [11], the multistep differential transform method
is first employed to solve a enzyme kinetics.

However, to the best of our knowledge, there were no analytical results available to
date for an irreversible linear chain of enzymatic reactions. The objective of the present
work is to obtain asymptotic approximate analytic expressions for the substrates,
products, enzymes and enzyme-substrates concentrations in an n-stage system (n
substrates and n products), with an unbranched scheme, by applying HPM. Following
[12], we assume that the optimal profile follows a pattern matching the topology of
the pathway, reflecting the fact that the enzymes are activated sequentially.

The analytic solution we obtain allows us to optimize several objectives. In the
present work we deal with three cases: the minimal time required to reach a certain
percent of the final product; the minimal amount of enzymes used in the process; and,
finally, a multiple objective optimization is presented using the well-known Pareto
front. We present an example to demonstrate the results.
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2 The homotopy perturbationmethod

In this section, we present the homotopy perturbation method (HPM) as a tool for
solving non-linear ordinary differential equations with initial conditions. The HPM
was proposed first by He [13] for solving differential and integral equations, both
linear and nonlinear. This method provides an approximate solution to a wide range of
nonlinear problems, expressed as the summation of an infinite series. The HPM can be
considered as combination of the classical perturbation technique and the well-known
topological concept of homotopy [14].

Consider a general nonlinear equation in the form:

A(y) − f (x) = 0, x ∈ Ω (1)

with boundary conditions:

B

(
y,

∂ y

∂n

)
= 0, x ∈ Γ (2)

where A is any differential operator, B a boundary operator, f (x) a known analytic
function and Γ the boundary of the domain Ω .

The operator A can be separated into a linear part L and a nonlinear one N , so that
(1) can be rewritten as:

L(y) + N (y) − f (x) = 0 (3)

The method consists in constructing a homotopy u : Ω × [0, 1] → R satisfying:

H(u, p) = (1 − p)[L(u(x, p)) − L(y0(x))] + p[L(u(x, p))

+N (u(x, p)) − f (x)] = 0 (4)

or:

H(u, p) = L(u(x, p)) − L(y0(x)) + pL(y0(x)) + p[N (u(x, p)) − f (x)] = 0

(5)

where p ∈ [0, 1] is a homotopy parameter, x ∈ Ω, and y0(x) is the initial approx-
imation to the solution of Eq. (1) that satisfies the boundary conditions if any. The
variation of p from 0 to 1 provides that of u(x, p) from y0(x) to y(x).

The HPM uses the homotopy parameter p as a “small parameter”, and assumes that
the solutions of Eq. (4) can be written as a power series in p:

u(x, p) =
∞∑
i=0

piui (x) = u0 + pu1 + p2u2 + p3u3 + · · · (6)
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where u0, u1, u2, . . . are unknown functions to be determined. Substituting (6) into
(4) and matching identical powers of p terms, provides the values of the sequence
u0, u1, u2, . . . iteratively. Then, When p → 1, the solution of (1) is given by:

y(x) = lim
p→1

u(x, p) =
∞∑
i=0

ui (x) = u0 + u1 + u2 + u3 + · · · (7)

as long as the power series converges for p → 1.
We are going to apply this method to solve a non-linear system of 2 ordinary

differential equations with initial values.
We shall not delve into convergence issues in this work, as it is out of the scope of

this work.

3 Mathematical formulation of the problem

3.1 The 1-stage system

The Michaelis–Menten mechanism is the simplest chemical network which models
the formation of a product through an enzymatic catalysis of a substrate (for more
details on the enzyme dynamics, see [15] or [16] and the references therein). Consider
the following single enzyme reaction:

E + S
k1←→
k−1

ES
k2→ E + P (8)

where S is the substrate, P the product, E is the free enzyme and ES is the enzyme-
substrate complex. In this reaction k1, k−1 and k2 are positive rate constants denoting
the reaction rates of the three processes. The equation shows clearly that the substrate
binding is reversible but the product release is not.

Equation (8) illustrates the Michaelis–Menten kinetics proposed in 1913 [17], in
which the enzyme-substrate complex is formed after the enzyme is combined with
the substrate. It means that there is an equilibrium between [E], [S] and [ES] to
produce [P] and [E]. Schnell and Maini [18] have shown that, under the condition
[E0] >> [S0], the appropriate framework to study the Michaelis–Menten reaction
(8) is the so-called reverse quasi-steady-state approximation (rQSSA) or equilibrium
approximation.

The concentration of the reactants in (8) will be denoted by:

s = [S], e = [E], c = [ES], p = [P] (9)

By the law of mass action, Eq. (8) can be described in terms of a system of four
non-linear ordinary differential equations (ODEs):

ds

dt
= − k1es + k−1c (10)
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de

dt
= − k1es + (k−1 + k2)c (11)

dc

dt
= k1es − (k−1 + k2)c (12)

dp

dt
= k2c (13)

with initial conditions:

s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0 (14)

Adding Eqs. (11) and (12), it is evident that:

de

dt
+ dc

dt
= 0; e(0) = e0, c(0) = 0 (15)

from where:

e(t) + c(t) = e0 (16)

Using this relation, the system of four ODEs can be reduced to just three:

ds

dt
= − k1e0s + (k1s + k−1)c (17)

dc

dt
= k1e0s − (k1s + k−1 + k2)c (18)

dp

dt
= k2c (19)

with initial conditions:

s(0) = s0, c(0) = 0, p(0) = 0 (20)

Notice that the product p can be easily obtained from c using (19), so that the third
equation is actually uncoupled.

Introduce the auxiliary parameters:

u(τ ) = s(t)

s0
; v(τ) = c(t)

e0
; w(τ) = p(t)

e0
(21)

τ = k1e0t

ε
; λ = k2

k1s0
; κ = k−1 + k2

k1s0
; ε = e0

s0
(22)

where KS = k−1/k1 is called the equilibrium dissociation constant, K = k2/k1 is
called the Van Slyke–Cullen constant, and KM , given by:

KM = KS + K = k−1 + k2
k1

= κ

s0
(23)
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is know as the Michaelis–Menten constant. Using these parameters (21) and (22), the
system (17), (18), and (19) can be represented in dimensionless form as follows:

du

dτ
= − εu + ε(u + κ − λ)v; u(0) = 1 (24)

dv

dτ
= u − (u + κ)v; v(0) = 0 (25)

dw

dτ
= λv; w(0) = 0 (26)

where ε, κ , and λ are now dimensionless parameters. This is the system of non-linear
equations which we are going to solve analytically in a simple and closed form using
the Homotopy Perturbation Method (HPM). Actually, as (26) is uncoupled, we are
going to solve the system given by (24) and (25).

3.2 The n-stage system

Now we state the problem of an unbranched metabolic pathway composed of n irre-
versible reactions converting an initial substrate S1 into the product P . We have not
found this type of problem analytically solved in the literature; only in some cases like
[19], the authors use commercial software like Mathematica™ to compute approxi-
mate solutions to the ODEs which describe them.

Let s1(t) denote the substrate concentration at time t , p(t) the concentration of the
final product, si (t), (i = 2, . . . , n) the concentration of the intermediate compounds,
and ei (t), (i = 1, . . . , n) the concentration of the enzyme catalyzing the i th reaction.

S1
E1→ S2

E2→ S3
E3→ · · · → Sn−1

En−1→ Sn
En→ P (27)

Each of these stages comprises a reaction equation of the form (8), so that there are
ci (t), (i = 1, . . . , n) enzyme-substrate complexes.

The optimal profile follows a pattern matching the topology of the pathway (27),
reflecting the fact that the enzymes are activated sequentially; this implies that there
exist n times: t1, t2, ..., tn , as many as enzymes (we set t0 = 0 and tn = t f ).

Denote by u ji (τ ), v j i (τ ) and w j i (τ ) (for i, j = 1, . . . , n) the optimal j th concen-
tration, in the i th interval [τi−1, τi ] of the dimensionless parameters u(τ ), v(τ ) and
w(τ) respectively. Following reasoning like the one in the previous section, derived
from (24), (25) and (26), it is easy to obtain the following sequence of systems of
differential equations (one for each interval):

(1) Interval: [0, τ1].

⎧⎨
⎩
u̇1 = −ε1u1 + ε1(u1 + κ1 − λ1)v1 u1(0) = 1 ⇒ u11(τ )

v̇1 = u1 − (u1 + κ1)v1 v1(0) = 0 ⇒ v11(τ )

ẇ1 = λ1v1 w1(0) = 0 ⇒ w11(τ )

(28)
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(2) Interval: [τ1, τ2].

⎧⎪⎪⎨
⎪⎪⎩

u̇2 = λ1v11(τ )−
−ε2u2 + ε2(u2 + κ2 − λ2)v2

u2(τ1) = w11(τ1) ⇒ u22(τ )

v̇2 = u2 − (u2 + κ2)v2 v2(τ1) = 0 ⇒ v22(τ )

ẇ2 = λ2v2 w2(τ1) = 0 ⇒ w22(τ )

(29)

with:

u12(τ ) = u11(τ ); v12(τ ) = v11(τ ),∀τ ∈ [τ1, τ2]

The values for each successive interval are similarly obtained, by concatenating the
solutions. So in general:

(i) Interval:
[
τi−1, τi

]
.

⎧⎪⎪⎨
⎪⎪⎩

u̇i = λi−1vi−1i−1(τ )−
−εi ui + εi (ui + κi − λi )vi

ui (τi−1) = wi−1i−1(τi−1) ⇒ uii (τ )

v̇i = ui − (ui + κi )vi vi (τi−1) = 0 ⇒ vi i (τ )

ẇi = λivi wi (τi−1) = 0 ⇒ wi i (τ )

(30)

with:

u ji (τ ) = u j j (τ ), v j i (τ ) = v j j (τ ),∀τ ∈ [
τi−1, τi

]

and so on for i + 1, . . . , n. Notice how the coupling between intervals takes place in
two ways: on one side, the product wi−1(τ ) must match the intermediate compound
ui (τ ) of the next interval; on the other side, the value vi−1(τ ) of the enzyme-substrate
complex is what allows the production of the intermediate compound ui (τ ) in the next
interval.

The solution of the complete system can be described on each interval, taking into
account that there are 3 laws governing the concentrations on the i th interval, [τi−1, τi ]
(for i = 2, . . . , n − 1):

(a) For any j = 1, . . . , i − 1, the dimensionless parameters u(τ ) and v(τ) satisfy:

u ji (τ ) = u j j (τ ); and v j i (τ ) = v j j (τ ) (31)

(b) The dimensionless parameters u(τ ), v(τ ) and w(τ) follow the laws given by (30)
on the i−th interval.

(c) The dimensionless parameters u(τ ), v(τ ) and w(τ) have not been activated yet
(so that their value is zero) for j > i :

u ji (τ ) = v j i (τ ) = w j i (τ ) = 0 for j = i + 1, . . . , n (32)
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4 Solution of the problem

Schematically, we proceed by intervals, as follows:
(1) Interval: [0, τ1].
In the first interval, we solve the system of ODEs with initial conditions (28) this

way: as the third equation ẇ1 = λ1v1 is uncoupled, we only need to solve the first
two. We seek functions u(p, τ ) and v(p, τ ) of the form:

u(p, τ ) = u0(τ ) + pu1(τ ) + p2u2(τ ) + p3u3(τ ) + . . . (33)

v(p, τ ) = v0(τ ) + pv1(τ ) + p2v2(τ ) + p3v3(τ ) + . . . (34)

so that two homotopies u(τ, p) : Ω × [0, 1] → R, v(τ, p) : Ω × [0, 1] → R can be
constructed:

H(u, p) = (1 − p)
(
ε1u(τ ) + u′(τ )

)
+p

(−ε1v(τ) (κ1 − λ1 + u(τ )) + ε1u(τ ) + u′(τ )
)

(35)

H(v, p) = (1 − p)
(
κ1v(τ) + v′(τ )

) + p
(
κ1v(τ) + u(τ )v(τ ) − u(τ ) + v′(τ )

)
(36)

By substituting Eqs. (33) and (34) into (35) and (36), and matching terms of the same
power of p, we can compute the functions u0, u1, u2, . . . and v0, v1, v2, . . .. We obtain
the following explicitly solvable sequence of ODEs. For (35):

p0 : ε1u0(τ ) + u′
0(τ ) = 0 (37)

p1 : − ε1κ1v0(τ ) + ε1λ1v0(τ ) − ε1u0(τ )v0(τ ) + ε1u1(τ ) + u′
1(τ ) = 0

p2 : − ε1κ1v1(τ ) + ε1λ1v1(τ ) − ε1u1(τ )v0(τ ) − (38)

ε1u0(τ )v1(τ ) + ε1u2(τ ) + u′
2(τ ) = 0

p3 : − ε1κ1v2(τ ) + ε1λ1v2(τ ) − ε1u2(τ )v0(τ ) − ε1u1(τ )v1(τ ) −
ε1u0(τ )v2(τ ) + ε1u3(τ ) + u′

3(τ ) = 0 (39)

For (36):

p0 : κ1v0(τ ) + v′
0(τ ) = 0

p1 : κ1v1(τ ) + u0(τ )v0(τ ) − u0(τ ) + v′
1(τ ) = 0

p2 : κ1v2(τ ) + u1(τ )v0(τ ) + u0(τ )v1(τ ) − u1(τ ) + v′
2(τ ) = 0

p3 : κ1v3(τ ) + u2(τ )v0(τ ) + u1(τ )v1(τ ) + u0(τ )v2(τ ) − u2(τ ) + v′
3(τ ) = 0

(40)

Solving these EDOs, and using the boundary conditions of (28), we obtain the follow-
ing results:

u0(τ ) = eε1(−τ) (41)
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u1(τ ) = 0

u2(τ ) = − e−2ε1τ

κ1 (ε1 − κ1)
2 [ε21κ2

1λ1τe
ε1τ − ε21κ1λ1τe

ε1τ − ε1κ1λ1e
ε1τ +

ε1κ1λ1e
τ(ε1−κ1)+ε1τ + +ε1κ

3
1 τ

(−eε1τ
) − κ2

1 e
ε1τ + ε21κ

2
1 τeε1τ + ε1κ

2
1e

ε1τ

− ε1κ
2
1e

τ(ε1−κ1)+ε1τ + 2ε1κ1e
ε1τ − ε1κ1e

τ(ε1−κ1) + ε21e
τ(ε1−κ1)

− ε1κ1 − ε21e
ε1τ + κ2

1 ]
· · · (42)

and

v0(τ ) = 0

v1(τ ) = − e−τ(ε1−κ1)−k1τ
(
eτ(ε1−κ1) − 1

)
κ1 − ε1

v2(τ ) = − e−2ε1τ−κ1τ
(
ε1eε1τ + κ1eε1τ − κ1e2ε1τ − 2ε1eε1τ + ε1e2ε1τ

)
ε1 (κ1 − 2ε1) (κ1 − ε1)

· · · (43)

Using (7), we get:

u(τ ) = u0 + u1 + u2 + u3 + · · ·
v(τ) = v0 + v1 + v2 + v3 + · · · (44)

And, as ẇ1 = λ1v1; w1(0) = 0, we can compute:

w(τ) = λ1

∫ τ

0
v(τ)dτ (45)

We only need to revert the change of variable:

u(τ ) = s(t)

s0
; v(τ) = c(t)

e0
; w(τ) = p(t)

e0
(46)

s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0 (47)

in order to, starting from u11(τ ), v11(τ ) and w11(τ ), obtain s11(t), c11(t) and p11(t).
Recalling that:

e(t) + c(t) = e0 (48)

c(t) = e0v(τ) (49)

we have:

e(t) = e0(1 − v(τ)) (50)

which gives e11(t).
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(2) Interval: [τ1, τ2].
In the second stage, the system to be solved is (29):

⎧⎪⎪⎨
⎪⎪⎩

u̇2 = λ1v11(τ )−
−ε2u2 + ε2(u2 + κ2 − λ2)v2

u2(τ1) = w11(τ1) ⇒ u22(τ )

v̇2 = u2 − (u2 + κ2)v2 v2(τ1) = 0 ⇒ v22(τ )

ẇ2 = λ2v2 w2(τ1) = 0 ⇒ w22(τ )

(51)

And we apply HPM as previously. Write:

u(p, τ ) = u0(τ ) + pu1(τ ) + p2u2(τ ) + p3u3(τ ) + . . . (52)

v(p, τ ) = v0(τ ) + pv1(τ ) + p2v2(τ ) + p3v3(τ ) + . . . (53)

And write the corresponding homotopies:

H(u, p) = (1 − p)
(
ε2u(τ ) + u′(τ )

)
+ p

(−ε2v(τ) (κ2 − λ2 + u(τ )) + ε2u(τ ) + u′(τ ) − λ1v11(τ )
)

(54)

H(v, p) = (1 − p)
(
κ2v(τ) + v′(τ )

) + p
(
κ2v(τ) + u(τ )v(τ ) − u(τ ) + v′(τ )

)
(55)

The same argument as above provides s22(t), c22(t), p22(t) and e22(t).
Analogously, one computes the remaining functions sii (t), cii (t), pii (t) and eii (t)

on the intervals i = 3, . . . , n − 1.

5 Numerical example

We are going to solve a numerical example in order to illustrate the preceding theo-
retical results. It is inspired on the 1-stage case of [9]. The pathway consists of two
reactions each of which is catalyzed by a specific enzyme (Ei ); S1 corresponds to the
substrate, S2 is the intermediate metabolite and P denotes the product.

S1
E1→ S2

E2→ P (56)

We are going to study three optimization problems, each with a different objective:
(1) minimization of the time needed to reach a % of product. (2) Minimization of the
amount of enzymes used. (3) Combined optimization of both previous variables.

Inspired by [9] we take: ε1 = 6; κ1 = λ1 = 0.98; ε2 = 6; κ2 = λ2 = 0.98. We

shall assume, in both reactions, that: s0 = 1; e0 = 6 (so that ε = e0
s0
). Thus, once we

compute using HPM the values, u(τ ), v(τ ) yw(τ) one can recover s(t), c(t) and p(t)
simply recalling that:

s(t) = s0u(τ ); c(t) = e0v(τ); p(t) = e0w(τ) (57)

123



Journal of Mathematical Chemistry

Fig. 1 Total reaction time t f as a
function of the switching time τ1

and one also gets e(t) because:

e(t) = e0(1 − v(τ)) (58)

5.1 Case (1)

The single aim of this case is to minimize the time t2 = t f needed to transform the
substrate s1(t) into a fixed amount C f (0 < C f < 1) of product p(t). We must take
into account that, after normalization, the following equality holds for all t :

s1(t) + c1(t) + s2(t) + c2(t) + p(t) = s0 (59)

As we are considering a linear pathway, we define two intervals [0, τ1], and [τ1, τ2] ,
where τ1 is the time when the second enzymatic reaction must begin. We are going
to compute the value of τ1 minimizing the total time t f required to reach a specific %
of the product p. We fix this value in 90% (i.e. C f = 0.9). We assume an exhaustible
initial substrate s1 (i.e. the substrate is consumed during the process) and we obtain:

s1(t f ) + c1(t f ) + s2(t f ) + c2(t f ) = s0
(
1 − C f

) ⇔ p(t f ) = s0C f (60)

Using the analytical expressions of the solutions of (28) found in the previous section,
for each of the compounds, we can solve, fast and easily, by brute-force, with the
desired discretization, the cases shown in Fig. 1. In this case, the optimal solution
happens for τ1 = 0, which gives a final time t∗f = 4.34. This means that the optimum
implies starting both reactions at the same time. The optimal profiles for all the species
present are shown in Fig. 2.

5.2 Case (2)

The objective now is to minimize the amount of enzymes required to transform the
substrate s1(t) into a fixed rate C f (0 < C f < 1) of the product p. Recall that:

e(t) = e0(1 − v(τ)) (61)
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Fig. 2 Optimal profiles in case (1)

Fig. 3 Enzyme use as a function
of the switching time τ1

So that, once we compute, for each value of τ1, the time t f required to reach p(t f ) =
C f , and the profiles e1(t), e2(t), the function to be minimized in this case is:

Ae(τ1) =
∫ t f

0
e1(t)dt +

∫ t f

0
e2(t)dt

Using again (28) and its solutions found in the previous sections, solving for different
values of τ1, we obtain the plot in Fig. 3.

The optimal solution consists in taking τ1 = 1.55(s). As we saw in Fig. 1, this value
does not minimize the final time t f but the combined amount of required enzymes,
which takes the value Ae = 44.80. Thus, in this case, the optimal solution requires
delaying the start of the second enzymatic reaction. The new optimal profiles are
shown in Fig. 4.

5.3 Case (3)

In this last case we set as objective the combined optimization of both the two pre-
vious factors. That is, we have a multi-objective optimization problem (MOP) with
non-commensurable and contradictory objectives. There is actually no single optimal
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Fig. 4 Optimal profiles case (2)

solution because the exact preference or “ weight” of each objective is unknown. We
use the well-known Pareto optimal solution approach.

A general MOP consists of a number of objectives N to be optimized simultane-
ously:

min Fi (x), i = 1, . . . , N (62)

In a minimization problem, a solution x1 dominates x2 if the following two conditions
are satisfied:

∀i ∈ {1, . . . , N } : Fi (x1) ≤ Fi (x2)

∃ j ∈ {1, . . . , N } : Fj (x1) < Fj (x2) (63)

If x1 dominates x2, then x1 is called the nondominated solution within the set {x1, x2}.
The solutions that are nondominatedwithin the entire search space constitute thePareto
optimal set. When optimizing all objectives simultaneously, Pareto optimal solutions
show the trade-offs between conflicting objective functions.

Diverse methods of generating Pareto sets exist: random sampling, the weighted
sum method, the distance method, goal programming, the Pareto genetic algorith-
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Fig. 5 Pareto front

m…The weighted sum method [20] was shown to work well with convex problems
and converts the MOP into a single function optimization problem selecting scalar
weights Wi and minimizing the following composite objective function:

U =
N∑
i=1

Wi Fi (x) (64)

Figure 5 presents the set of compromise solutions (known as the Pareto optimal solu-
tions set) for our two objectives: the time t f and the total amount of enzymes Ae.

6 Notes on convergence

From the purely theoretical point of view, one should prove that the power series
u(p, τ ) and v(p, τ ) have a radius of convergence in p strictly greater than 1 in order
to obtain, at p = 1, the solutions u(1, τ ) and v(1, τ ). Focusing ourselves on the first
stage, a careful development of the system (35), (36) provides the following recursive
sequence of differential equations:

{
u′
0(τ ) = −ε1u0(τ ), u0(0) = 1

v′
0(τ ) = −κ1v0(τ ), v0(0) = 0

(65)

and, assuming ui (τ ), vi (τ ) are defined for i = 0, . . . , k − 1, then:

{
u′
k(τ ) = − ε1uk(τ ) + ε1(κ1 − λ1)uk−1(τ ) + ε1

∑k−1
j=0 u j (τ )vk−1− j (τ )

v′
k(τ ) = − κ1vk(τ ) + uk−1(τ ) − ∑k−1

j=0 u j (τ )vk−1− j (τ )
(66)

with initial conditions uk(0) = vk(0) = 0 for k > 0. This might provide a way to
study the radius of convergence.

Notice that He [13] indicates two required conditions for convergence (in the one-
dimensional case), without proof: that the second derivative of the nonlinear operator
N with respect to u must be small and that the norm of L−1∂N/∂u must be smaller
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than one. These do not translate clearly to the two-dimensional case and, furthermore,
our linear part is non-inversible

( −ε 0
1 0

)
.

In [21], the authors state a result (Theorem 3.2) which provides a condition for
convergence. However, it is just the definition of radius of convergence less than 1 for
a power series, so that it is practically useless.

When dealing with convergence, each problem is usually studied case by case,
without recourse to a general argument. For example, He in [13], studies the Lighthill
equation or the Duffing equation and does not provide a strict proof of convergence
in the second case (the first one gives the solution trivially) and proceeds similarly in
[14]. The same can be said of Ayati and Biazar’s study of the Lane–Emdem equation
in [21].

Returning to our study, we have been unable to obtain a definitive result using
the recursion given by (65) and (66). However, we have carried out explicit numerical
computations for both the first and second stages and obtained a reasonable suggestion
of convergence for uk and vk . Specifically, for case (2) (i.e. Sect. 5.2), and computing,
for the interval τ ∈ [0, 6] the maximum values of M1,k = max(|u1,k(τ )|), N1,k =
max(|v1,k(τ )|) for the first stage, and M2,k = max(|u2,k(τ )|), N2,k = max(|v2,k(τ )|)
for τ ∈ [1.55, 6] for the second stage, we obtain the following numerical recursion
for k > 20 (up to k = 50) (see Annex I for a complete dataset):

M1,k−1/M1,k > 2, N1,k−1/N1,k > 2
M2,k−1/M2,k > 2, N2,k−1/N2,k > 2.

(67)

which is a strong evidence supporting that the radius of convergence is strictly greater
than 1.

7 Conclusions

Due to the difficulties in solving the nonlinear differential equations that appear in
enzyme kinetics, some recent advanced analytical techniques are being used. The
most popular and useful model is the Michaelis–Menten form. In this paper we obtain
an analytic approximate solution using the Homotopy Perturbation Method, which
presents important features for solving engineering problems: applicability, accuracy,
efficiency. It is very effective and simple and, in this case, only a few iterations are
needed to find an approximate solution. Our main contribution is the generalization
of previous works to the case of a linear pathway of multiple reactions. We show how,
using this technique, we can solve problems with different objectives and avoid some
of the deficiencies of the weighted sum method for generating Pareto sets.

8 Annex I: dataset

Table 1 shows, as explained in Eq. (67), the list of the maxima M1,k = max |u1,k(τ )|,
N1,k = |v1,k(τ )|, for τ ∈ [0, 6], corresponding to the first stage of case (2) (i.e.
Sect. 5.2).
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Table 1 Convergence for the first stage of reaction (2)

k M1,k M1,k/M1,k+1 N1,k N1,k/N1,k+1

1 0. 0. 0.117011 13.9644

2 0.0246043 20.2154 −0.00837922 1.04485

3 −0.00121711 0.451725 0.00801958 5.63712

4 0.00269435 8.00936 −0.00142264 1.31365

5 −0.000336401 0.854245 0.00108297 3.87805

6 0.000393799 4.92861 −0.000279256 1.54625

7 −0.0000799005 1.19953 0.000180602 3.11263

8 0.0000666097 3.65603 −0.0000580222 1.72591

9 −0.0000182191 1.4721 0.0000336183 2.70605

10 0.0000123763 3.0128 −0.0000124234 1.85098

11 − 4.10791 × 10−6 1.67325 6.71179 × 10−6 2.47233

12 2.45504 × 10−6 2.64462 − 2.71476 × 10−6 1.93899

13 − 9.28318 × 10−7 1.80455 1.40009 × 10−6 2.28468

14 5.14432 × 10−7 2.44277 − 6.12817 × 10−7 1.98186

15 − 2.10594 × 10−7 1.90129 3.09214 × 10−7 2.32739

16 1.10764 × 10−7 2.30036 − 1.32859 × 10−7 2.16034

17 − 4.81506 × 10−8 1.96221 6.14988 × 10−8 2.18003

18 2.4539 × 10−8 2.21224 − 2.82101 × 10−8 2.03218

19 − 1.10923 × 10−8 2.00275 1.38817 × 10−8 2.1167

20 5.53855 × 10−9 2.1556 − 6.55815 × 10−9 2.03023

21 − 2.56938 × 10−9 2.02538 3.23026 × 10−9 2.08341

22 1.26859 × 10−9 2.12009 − 1.55046 × 10−9 2.03139

23 − 5.98368 × 10−10 2.04016 7.63252 × 10−10 2.06613

24 2.93295 × 10−10 2.09733 − 3.69411 × 10−10 2.03463

25 − 1.39842 × 10−10 2.04731 1.81562 × 10−10 2.05704

26 6.83054 × 10−11 2.08076 − 8.82637 × 10−11 2.0383

27 − 3.28271 × 10−11 2.0496 4.33027 × 10−11 2.05225

28 1.60163 × 10−11 2.06957 − 2.11001 × 10−11 2.04139

29 − 7.73899 × 10−12 2.05015 1.03362 × 10−11 2.04977

30 3.77484 × 10−12 2.06154 − 5.0426 × 10−12 2.0436

31 − 1.83107 × 10−12 2.049 2.46751 × 10−12 2.04844

32 8.93645 × 10−13 2.05472 − 1.20458 × 10−12 2.04495

33 − 4.34923 × 10−13 2.0465 5.89049 × 10−13 2.04761

34 2.12521 × 10−13 2.04848 − 2.87676 × 10−13 2.04555

35 − 1.03745 × 10−13 2.04316 1.40635 × 10−13 2.04691

36 5.0777 × 10−14 2.04438 − 6.87061 × 10−14 2.04562

37 − 2.48373 × 10−14 2.04028 3.35869 × 10−14 2.04622

38 1.21735 × 10−14 2.04041 − 1.64141 × 10−14 2.04536
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Table 1 continued

k M1,k M1,k/M1,k+1 N1,k N1,k/N1,k+1

39 − 5.96618 × 10−15 2.03725 8.02507 × 10−15 2.04551

40 2.92855 × 10−15 2.03651 − 3.92327 × 10−15 2.04485

41 − 1.43802 × 10−15 2.03382 1.91861 × 10−15 2.04474

42 7.07055 × 10−16 2.03289 − 9.38312 × 10−16 2.04419

43 − 3.47808 × 10−16 2.03083 4.59015 × 10−16 2.04392

44 1.71264 × 10−16 2.02986 − 2.24576 × 10−16 2.04339

45 − 8.43722 × 10−17 2.02819 1.09904 × 10−16 2.04303

46 4.15997 × 10−17 2.02719 − 5.37944 × 10−17 2.04252

47 − 2.05208 × 10−17 2.02576 2.63373 × 10−17 2.04209

48 1.013 × 10−17 2.02473 − 1.28972 × 10−17 2.04158

49 − 5.00311 × 10−18 2.02342 6.31729 × 10−18 2.04111

Table 2 shows the same data for the second stage of the same reaction, M2,k =
max |u2,k(τ )|, N2,k = |v2,k(τ )|, for τ ∈ [1.55, 6].

Table 2 Convergence for the first stage of reaction (2)

k M2,k M2,k/M2,k+1 N2,k N2,k/N2,k+1

1 0.0304882 2.29952 0.0858949 6.24724

2 0.0132585 5.46158 0.0137492 4.43821

3 0.0024276 2.2808 0.00309793 4.12129

4 0.00106436 3.7561 0.000751689 2.5851

5 0.00028337 2.48966 0.000290778 3.85704

6 0.000113819 3.00331 0.0000753888 2.17118

7 0.0000378976 2.64415 0.0000347225 3.2215

8 0.0000143326 2.68294 0.0000107784 2.44195

9 5.34213 × 10−6 2.66912 4.41384 × 10−6 2.75776

10 2.00146 × 10−6 2.56392 1.60051 × 10−6 2.57003

11 7.80625 × 10−7 2.63821 6.22761 × 10−7 2.60893

12 2.95892 × 10−7 2.53795 2.38704 × 10−7 2.70646

13 1.16587 × 10−7 2.58961 8.81979 × 10−8 2.4843

14 4.50212 × 10−8 2.53047 3.55021 × 10−8 2.50592

15 1.77916 × 10−8 2.55744 1.41673 × 10−8 2.59194

16 6.95679 × 10−9 2.51678 5.4659 × 10−9 2.50813

17 2.76416 × 10−9 2.53826 2.17927 × 10−9 2.5365

18 1.089 × 10−9 2.50728 8.59162 × 10−10 2.5098

19 4.34336 × 10−10 2.51983 3.42322 × 10−10 2.51753
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Table 2 continued

k M2,k M2,k/M2,k+1 N2,k N2,k/N2,k+1

20 1.72367 × 10−10 2.50101 1.35976 × 10−10 2.49795

21 6.8919 × 10−11 2.50515 5.44347 × 10−11 2.49685

22 2.7511 × 10−11 2.49285 2.18013 × 10−11 2.48612

23 1.1036 × 10−11 2.49493 8.76923 × 10−12 2.49188

24 4.42336 × 10−12 2.48568 3.51912 × 10−12 2.47829

25 1.77954 × 10−12 2.4856 1.41998 × 10−12 2.4803

26 7.15939 × 10−13 2.47946 5.72501 × 10−13 2.47226

27 2.88748 × 10−13 2.47912 2.3157 × 10−13 2.46889

28 1.16472 × 10−13 2.47422 9.3795 × 10−14 2.46142

29 4.70741 × 10−14 2.4727 3.81061 × 10−14 2.45846

30 1.90375 × 10−14 2.46938 1.55 × 10−14 2.45322

31 7.70943 × 10−15 2.46821 6.31822 × 10−15 2.45152

32 3.12349 × 10−15 2.46574 2.57727 × 10−15 2.44807

33 1.26675 × 10−15 2.46391 1.05278 × 10−15 2.44678

34 5.14122 × 10−16 2.46151 4.3027 × 10−16 2.44471

35 2.08864 × 10−16 2.4601 1.76001 × 10−16 2.44385

36 8.49008 × 10−17 2.45839 7.20179 × 10−17 2.44256

37 3.45351 × 10−17 2.45717 2.94846 × 10−17 2.44206

38 1.40548 × 10−17 2.45541 1.20737 × 10−17 2.44131

39 5.72401 × 10−18 2.45376 4.94557 × 10−18 2.60063

40 2.33275 × 10−18 2.45218 1.90168 × 10−18 2.28549

41 9.51297 × 10−19 2.45092 8.32069 × 10−19 2.44293

42 3.88139 × 10−19 2.44966 3.40604 × 10−19 2.62942

43 1.58446 × 10−19 2.44855 1.29535 × 10−19 2.42252

44 6.47103 × 10−20 2.4435 5.34713 × 10−20 2.27777

45 2.64826 × 10−20 2.43642 2.34753 × 10−20 2.46555

46 1.08695 × 10−20 2.4495 9.52131 × 10−21 2.43885

47 4.43742 × 10−21 2.41733 3.90402 × 10−21 2.60246

48 1.83567 × 10−21 2.43314 1.50013 × 10−21 2.27885

49 7.54443 × 10−22 2.45961 6.58281 × 10−22 2.44056
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