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Abstract
We present a Lucasian type primality test, not explicitly based on Lucas sequences,
for numbers written in the form N = 4Kpn − 1. This test is a generalization of
the classical Lucas–Lehmer test for Mersenne numbers using as underlying group
GN := {z ∈ (Z/NZ)[i] : zz ≡ 1 (mod N )}.
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1 Introduction

The Lucas–Lehmer test for Mersenne numbers given in Theorem 1 is the primality
test most often used to locate large primes. This search has been successful in locating
many of the largest primes known to date [7].
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Theorem 1 Let Mp = 2p − 1 be the Mersenne number with p an odd prime and let
be the following sequence S0 = 4, Sn = S2n−1 − 2 mod Mp.

Mp is prime if and only if Sp−2 ≡ 0 (mod Mp)

Many authors, including Lucas [13] and Lehmer [11], have developed so-called
Lucasian type primality tests; i.e., primality criteria for numbers written in a specific
form and based on the use of a recursive sequence.

For example, for numbers written in the form N = k2n − 1 with 2n > k, Riesel
test [14] states that N is prime if and only if Sn−2 ≡ 0 (mod N ), with Si = S2i−1 − 2
and a particular S0 which depends on n and k (if k = 3 and n ≡ 0 or 3 (mod 4), then
S0 = 5778; if k ≡ 1 or 5 (mod 6) and3 � n, thenwe take S0 = (2+√

3)k+(2−√
3)k).

For numberswritten in the form N = k2n−1,we can also cite theworks byStechkin
[19], Rödseth [15], Berrizbeitia and Berry [2], Sun [21] or Deng and Huang [6]. If we
consider numbers written in the form N = k3n −1, Williams and Zarnke [24], Bosma
[3] or Berrizbeitia and Berry [1] have proposed Lucasian type primality tests. There
are also some other generalizations for numbers written in the form N = kpn −1 with
p = 5, 7 and even general p prime [5,17,20,22].

For all the aforementioned Lucasian type primality tests for numbers written in the
form N = kpn − 1, the initial value S0 in the sequence depends on N and, more
specifically, on particular properties of k and n. In general, there is no S0 valid for all
N in the considered family.

It is natural to ponder if it is really important to have a necessary and sufficient
primality condition. An alternative would be to avoid the necessity in order to obtain
a laxer sufficient condition independent of k and n, assuming a small risk of having
to repeat the test in the unlikely case that it could not confirm or discard primality.
This idea was already successfully explored in [8] for numbers written in the form
N = Kpn + 1, with the following result:

Proposition 1 Let N = Kpn + 1 where p is a prime number. Let us consider the
sequence S0 = 2K and Si = S p

i−1 for all i ≥ 1. If for some j > 1
2 (logp(K ) + n) it

holds that gcd(S j−1 − 1, N ) = 1 and S j ≡ 1 (mod N ), then N is prime.

In this work, we present a similar result regarding numbers written in the form
N = K2n − 1 and, more generally, in the form N = 4Kpn − 1. The setting for this
work is the group GN := {z ∈ (Z/NZ)[i] : zz ≡ 1 (mod N )}, whose properties were
analyzed in [9]. Other authors have addressed primality tests for particular types of
numbers (including the ones we deal with in this work) that include the explicit use of
Lucas sequences [16]. Our treatment is quite similar in the background, but we adopt
a novel and original presentation.

2 A generalization of Miller–Rabin primality test

Given a positive integer N , we consider the group

GN := {a + bi ∈ (Z/NZ)[i] : a2 + b2 ≡ 1 (mod N )}.
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Note that GN is the unit circle modulo N over the Gaussian integers and is a very
special case of the so called Pell Conics [12]. In [9] some number-theoretical concepts
and properties related to these groups were introduced and studied. In particular, if
p ≡ 3 (mod 4) is a prime; i.e., if p remains prime in the ring of Gaussian integers,
then |Gp| = p + 1 and the following result holds [9, Proposition 3.1]

Proposition 2 Let p ≡ 3 (mod 4) be a prime number and let z be a Gaussian integer
such that p is coprime with zz. Then, (z/z)p+1 ≡ 1 (mod p).

This proposition can be seen as a compositeness test for integers. Given a positive
integer N ≡ 3 (mod 4), if we find a Gaussian integer z with gcd(N , zz) = 1 and such
that (z/z)N+1 �≡ 1 (mod N ) then N is a composite number. Nevertheless, like in the
classical setting, the converse is not always true. This fact motivates the following
definition.

Definition 1 A composite integer N ≡ 3 (mod 4) is called a Gaussian Fermat pseu-
doprime (GFP) with respect to the base z ∈ Z[i] if gcd(N , zz) = 1 and (z/z)N+1 ≡ 1
(mod N ).

As we have shown in [9], there is no number N = 4k + 3 < 1018 such that N
is simultaneously a Fermat pseudoprime with respect to the base 2 and a GFP with
respect to the base z = 1 + 2i .

Miller–Rabin probabilistic primality test applies to integers written in the form
N = K2n +1. It is based on Fermat’s little theorem and on the fact that, if p is prime,
the only solutions to x2 ≡ 1 (mod p) are x ≡ ±1. In our Gaussian setting, if we use
Proposition 2 instead of Fermat’s little theorem, this idea can be easily extended to
integers written in the form N = K2n − 1. In fact, the next theorem easily follows (it
is interesting to compare it with [4, Theorem 3.5.1.]).

Theorem 2 Let N = K2n − 1 be a prime number with n > 1 and K odd. If z is a
Gaussian integer such that gcd(N , zz) = 1, then one of the following holds:

(i) (z/z)K ≡ 1 (mod N ).
(ii) There exists 0 ≤ j < n such that (z/z)K2 j ≡ −1 (mod N ).

In the same way, we can further extend this result to integers written in the form
N = 4Kpn − 1 in order to obtain a result similar to [8, Theorem 3.2]

Theorem 3 Let N = 4Kpn − 1 be a prime with p an odd prime number and n ≥ 1.
If z ∈ Z[i] is a Gaussian integer such that gcd(N , zz) = 1, then one of the following
holds:

(i) (z/z)4K ≡ 1 (mod N ).
(ii) There exists 0 ≤ j < n such that �p((z/z)4Kp j

) ≡ 0 (mod N ).

These results can be seen as probabilistic primality tests and they lead to the fol-
lowing definition which generalizes, in this Gaussian setting, Definition 3.3 from [8].
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Definition 2 Given a prime p, n ≥ 1 and K odd, the number N = 4Kpn − 1 (N =
K2n −1, n ≥ 2, in the case p = 2) is a p-Gaussian strong probable prime to base z if
it satisfies conditions (i) or (ii) of Theorem 3 (of Theorem 2, in the case p = 2) above.
If, in addition, it is a composite number, then it is a p-Gaussian strong pseudoprime
to base z.

As in the classical setting, every p-Gaussian strong pseudoprime to base z is also
a Gaussian Fermat pseudoprime with respect to the same base z. For instance, up to
106, there are eighteen 2-Gaussian strong pseudoprimes to base 1+2i while there are
seventy five Gaussian Fermat pseudoprimes. On the other hand, in comparison with
its classical counterpart, this notion is less restrictive. For instance, up to 106, there are
only 3 (resp. 9, 6, 6) strong pseudoprimes of the form K2n − 1, n ≥ 2, with respect
to the base 2 (resp. 3, 5 or 7).

3 Primality test for numbers written in the form 4Kpn − 1

In what follows we will use the notation from the previous section. Given an integer
written in the form N = 4Kpn − 1 and w ∈ GN , Definition 2 states that N is a
p-Gaussian strong probable prime to base w if either the finite sequence

w4K , w4Kp, w4Kp2 , . . . , w4Kpn

is constantly 1 modulo N or its last element different from 1 is a root of the cyclotomic
polynomial �p modulo N . Now, we establish a condition over the index in which this
holds in order to certify the primality of N .

Proposition 3 Let N = 4Kpn − 1 be an integer with p an odd prime and let w be a
Gaussian integer such that w ∈ GN . Assume that there exists 1 ≤ j ≤ n such that:

(i) �p(w
4Kp j−1

) ≡ 0 (mod N ),
(ii) 2 j ≥ logp(4K ) + n.

Then, N is prime.

Proof Put X = w4K , then �p(X p j−1
) ≡ 0 (mod N ). Suppose N is composite and

let q be a prime divisor of N with q ≤ √
N . Then �p(X p j−1

) ≡ 0 (mod q) and

X p j ≡ 1 (mod q). Thus, the order of X in Gq is a divisor of p j , but if X ps ≡ 1

(mod q) with s < j it would imply that p = �p(1) ≡ �p(X ps ) ≡ �p(X p j−1
) ≡ 0

(mod q) which is clearly a contradiction. Consequently, since X ∈ Gq , it follows that
p j divides |Gq | = q±1 (depending on whether q ≡ ∓1 (mod 4), see [9, Proposition
2.1]). Since p, q are odd primes, it is not possible that p j = q or p j = q + 1. Hence,
it must be p j < q ≤ √

N from which it follows that p2 j < N = 4Kpn − 1. But, in
this case, 2 j < logp(4K ) + n. This is a contradiction with the size of j . 	

Remark 1 Note that condition 2 j ≥ logp(4K ) + n holds only if 4K ≤ pn . Hence,
the previous result can certify primality only if 4K ≤ pn . Also, since we know that

123



A primality test for 4Kpn − 1 numbers

�p(x)(x − 1) = x p − 1, condition (i) in the previous proposition can be replaced by

w4Kp j ≡ 1 (mod N ) and gcd(w4Kp j−1 − 1, N ) = 1.

In the case p = 2, Proposition 3 must be slightly modified since �2(X) = X + 1
but the proof is similar.

Proposition 4 Let N = K2n − 1 ≥ 6 (n > 1 and K odd) be an integer and let w be
a Gaussian integer such that w ∈ GN . Assume that there exists 1 ≤ j ≤ n such that:

(i) wK2 j−1 ≡ −1 (mod N ),
(ii) 2 j ≥ log2(K ) + n + 1.

Then, N is prime.

Remark 2 In this case, Proposition 4 can be used to certify primality only if K ≤ 2n−1.

Propositions 3 and 4 can be restated in a more algorithmic fashion. The case p = 2
(Corollary 2) provides a Gaussian analogue of the classical Lucas–Lehmer–Riesel
test.

Corollary 1 Let N = 4Kpn − 1 with p an odd prime and n ≥ 1 and let K be an
odd integer with 4K ≤ pn. Also, w ∈ GN and consider the recursive sequence
defined by: S0 = w4K and Si = S p

i−1 (mod N ) for every i ≥ 1. If for some j with
1
2 (logp(4K )+n) ≤ j ≤ n it holds that gcd(S j−1 −1, N ) = 1 and S j ≡ 1 (mod N ),
then N is prime.

Corollary 2 Let N = K2n −1with n ≥ 2, and let K be an odd integer with K ≤ 2n−1.
Also, let w ∈ GN and consider the recursive sequence defined by: S0 = wK and
Si = S2i−1 (mod N ) for every i ≥ 1. If for some j with 1

2 (log2(K ) + n − 1) ≤ j < n
it holds that S j ≡ −1 (mod N ), then N is prime.

4 Algorithm and computational complexity

Using Corollary 1, we can design an algorithm to test the primality of numbers written
in the form N = 4Kpn − 1 which requires just one modular exponentiation over the
Gaussian integers (for numbers N = K2n − 1 we must consider Corollary 2 and
modify some indices). A pseudo code for this algorithm would be as follows.
1: INPUT: K , p, n, z ∈ Z[i]. Let N := 4Kpn − 1.
2: if gcd(|z|, N ) = 1 then Let w = z2

|z| (mod N ); S0 := w4K .
3: else return N is composite.
4: end if
5: if S0 ≡ 1 (mod N ) then
6: return N is a p-Gaussian strong probable prime to base w.

7: end if
8: for i = 1, 2, 3, . . . , n do
9: Si := S p

i−1 (mod N )

10: if Si ≡ 1 (mod N ) and gcd(Si−1 − 1, N ) = 1 then GoTo 17.
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11: else
12: if Si ≡ 1 (mod N ) and gcd(Si−1 − 1, N ) �= 1 then
13: return N is composite
14: end if
15: end if
16: end for return N is composite
17: if 2i < logp 4K + n then
18: return N is a p-Gaussian strong probable prime to base w

19: else return N is PRIME.
20: end if

Remark 3 Given a Gaussian integer w, in order to compute wk , we must compute
Ak and Bk such that wk = Ak + Bki . If w = a + bi , it is easy to see that 2Ak =
vk(2a, a2 + b2) and Bk = buk(2a, a2 + b2), where uk and vk are the Lucas functions
defined in [16, p. 516]. Computing remote terms of Lucas sequences is discussed in
[23, Section 4.4]. However, all these computations can be performed in a natural way
in this Gaussian setting without the explicit use of Lucas sequences.

Now, the complexity of this algorithm is given in the following result.

Proposition 5 For N = 4Kpn − 1 with fixed K and p, the computational complexity
of the algorithm above is ˜O(log2 N ).

Proof Only the for loop in lines 8 to 16 cause complexity, the rest is obviously irrele-
vant. Note thatw is a Gaussian integer and amodular exponentiation can be performed
using the Schoenhage–Strassen algorithm [18] with complexity ˜O(log N ). In fact, we
could even use a dedicated algorithm, like the LSEG proposed by Koval [10] for
Gaussian integer exponentiation. In line 9, we must do at most n modular exponenti-
ations with the same complexity. Since n = logp(

N−1
4K ), the complexity for this task

is ˜O(log2(N )). Finally, in line 12, we test whether gcd(Si − 1, N ) = 1. Since this has
computational complexity O(log(N )) the result follows. 	


With the notation of the previous algorithm, let us consider an integer N written in
the form 4Kpn − 1 with 4K < pn . Also, given w ∈ GN , let us define SJ := w4KpJ

with J :=
⌊

logp(4K )+n
2

⌋

. It is easy to see that if SJ �≡ 1 (mod N ), then the algorithm

always certifies the primality or compositeness of N .
We will now see that, for moderately big values of n, the probability that the

algorithm does not certify the primality of a prime N = 4Kpn − 1 without choosing
more that one base is extremely small and that it decreases with p. To do so, we first
need the following lemma.

Lemma 1 let N = 4Kpn −1 be a prime number. The number of ps-th powers modulo
N in GN is 4Kpn−s .

Proof It is enough to recall [9, Proposition 2.1] that, if N is prime, GN is the cyclic
group CN+1 because N ≡ 3 (mod 4). 	


Using this result, we can prove the following proposition.
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Proposition 6 Let N be a prime number written in the form 4Kpn −1 with 4K < pn.
Given a random basew ∈ GN , the probability that the algorithm returns “p-Gaussian
strong probable prime” is:

4Kp

⌊ logp (4K )+n
2

⌋

− 1

4Kpn − 1
.

Proof The algorithm returns “N is p-Gaussian strong probable prime” when J :=
⌊

logp(4K )+n
2

⌋

satisfies that w4KpJ ≡ 1 (mod N ). That is, when the order of w ∈ GN

divides 4KpJ . Since GN is cyclic, it is equivalent to w being a residual power of order
pn−J modulo N . But, by the previous lemma, this happens with probability:

4KpJ − 1

|GN | − 1
= 4Kp

⌊ logp (4K )+n
2

⌋

− 1

4Kpn − 1
.

	

Note that, if N = 4Kpn − 1 is prime and K is “much smaller” that pn , then a

random choice of w will most likely determine the primality of N . In particular, so it
happens when K is fixed and n increases (which is usually the case when searching
for primes of this form) and Proposition 6 above implies that, for big values of n, the
probability that a prime of the form N = 4Kpn − 1 is certified as p-strong probable
prime is about p−n/2. However, if pn−1 ≤ K < pn and N is prime, then the test will
give “p-strong probable prime” with probability approximately equal to 1/p which is
not really good. For numbers of the form N = K2n − 1 with n ≥ 2 and K ≤ 2n−1 an
odd number, these results can be easily adapted just modifying the value of J .

5 Conclusions and future work

The importance of our work relies on the fact that we certify primality of 4Kpn − 1
numbers using a non-explicit Lucasianmethod. The required computations have a cost
equivalent to that of amodular exponentiation,wN+1, carriedout byn (and, sometimes,
much less than n) modular exponentiations of order p. Unlike other methods, ours do
not require to choose an adequate base, since it is independent from both the prime p
and the integer K . Also, while other methods usually require several tries in the choice
of the Lucas sequence, the failure probability of our test with a random choice of the
base w is extremely small for moderately big values of n. For instance, if K = 1,
p = 7 and n > 50 Proposition 6 implies that this probability is smaller than 10−21.

So, even if we cannot state that our results certify the primality of any inte-
ger for which the known primality results fail, we can state that any prime written
in the form N = 4Kpn − 1 with moderately big n will be certified as such
with extremely high probability. On the other hand, there are composite num-
bers (apparently very few of them) that the algorithm certifies as “p-Gaussian
strong probable prime”. This is the case, for instance, of 223154201663 =
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4 · 16 · 320 − 1 196016715864599725050097459121423 = 4 · 1156 · 360 − 1
117674194072847310863 = 4·196·336−1. It is noteworthy that these three examples
are obtained as the product of twin primes which are Gaussian Carmichael numbers
[9]; i.e., numbers N satisfying that (w/w)N+1 ≡ 1 (mod N ) for all w Gaussian
integer such that N is coprime to ww.

As future development related to the ideas that we have presented in this work
and to those that were used in [8] for numbers written in the form Kpn + 1, we may
mention the study of algorithms aimed at certifying the primality of numbers of the
form n!± 1, �n± 1, 2pnqm ± 1 (and, in general, of numbers such that either N + 1 or
N − 1 are easily factored) requiring only one modular exponentiation of a randomly
chosen integer or Gaussian base.
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