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1 Introduction

Numerical and computational techniques in Economics [1–5] are nowadays of
foremost importance both in general policy development and in firms’ finan-
cial planning. Real Options, which have become an essential tool in the last
years for firms facing major investments [6,7], are especially suited to multi-
staged scenarios in which information on the costs, benefits and opportunities
is complete (in a rough sense). They are modeled as processes in which signif-
icant investments take place discretely and where decisions to invest can be
delayed (or definitely disregarded) and, stochastically, they tend to require a
Poisson processes (in contrast to the classical Financial Options theory where
just Brownian motion is the basic theoretical tool [8–10]).

As shown by Arikan et al. [11], the Real Options logic is unsuitable for
single-investment events of the type “winner-takes-all”, which are becoming
frequent in modern disruptive economies (v.gr. choosing between Google or
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2 L. Bayón et al.

the other different search engines in the late 1990s, or the buy of Whatsapp by
Facebook in 2014) or in the development of pharmaceutical compounds, where
costs are so high that starting research on one may prevent the development
of a different one.

In this regard, [11] presents a model broadly derived from the well-known
“Secretary Problem”, in which an actor has to choose the best among n differ-
ent items presented to him sequentially and at each step he has information
only on the items already presented. This problem has a very elegant solution:
Dynkin [12] and Lindley [13] independently proved that the best strategy is a
so-called threshold strategy. The secretary problem has been studied by many
authors in different contexts: applied probability, statistics, decision theory….
Extensive bibliographies on the topic can be found in [14], [15] and [16].

In this paper we state a related problem: an Investing Firm (IF) with an
available capital is sequentially presented with a different investment opportu-
nity and its aim is to choose the best among them and the optimal investment
to make. The IF can only either reject the present opportunity or choose it
(rejected ones are discarded for ever) and no more investments are made after
choosing one. One of the main features of this model is that if the chosen
opportunity is the very best overall, then the IF will receive a return based
upon its investment, but it will receive 0 otherwise and the invested capital is
lost.

In contrast to [11], we study in depth the problem for different utility func-
tions, showing how there is a decision threshold (discarding n opportunities
and then choosing the first one which is the overall best after that threshold)
which changes depending on the utility function. We also study the asymptotic
properties of our model.

2 Statement of the problem

The investing problem we shall study is properly described as follows (IF is
the investment firm):

– The IF is faced with a sequence of n > 0 pairwise independent investment
opportunities (IO).

– The IF can invest in only one IO.
– The IOs are presented to the IF in a random order.
– The IF has a capital w (wealth) to invest. After normalization, we may

assume w = 1.
– The IF can only know the relative rank of each IO at the time it is pre-

sented.
– The IOs can be ordered without ties.
– The decision to choose a specific IO is based only on the relative ranks of

the IOs considered so far.
– A rejected IO cannot be recalled later.
– The initial information of the IF is only the number n of IOs.
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– The IF must decide whether to invest a certain amount x in the chosen
opportunity, keeping 1− x to itself, or not to invest at all.

– If after all projects are observed, the chosen opportunity is the overall best,
then the return on the investment is given by y = Rx; where R > 0 is a
known rate of return. Otherwise, the IF loses the invested capital x (so
that y = 0).

– No interest accrues on uninvested capital.
– There is a fixed and equal cost for each IO analyzed.

The aim of the IF is to maximize the utility U(x) (not just the final wealth):
we shall study several utility functions (instead of simply dealing with the
capital gain).

3 Preliminary results

The stated problem is an optimal stopping problem (OSP) whose payoff de-
pends on observing the relative ranks (and not the actual values) of the IOs.
It has the following solution: there is an integer r ≥ 1 such that the IF must
reject the first r − 1 IOs. Afterwards, the IF must chose the next IO which is
relatively better than all the previous ones. However, r depends on the util-
ity function. We also study the asymptotic properties of the solution when
n → ∞.

3.1 Asymptotic results

The following are some technical results which we shall use extensively in
forthcoming sections.

Proposition 1 Let {Fn}n∈N be a sequence of real functions such that Fn(k) ∈
{0, . . . , n}. Let M(n) be the minimum value for which Fn is maximum. Assume
that the sequence of functions {fn}n∈N given by fn(x) := Fn(bnxc) converges
uniformly on [0, 1] to a function f continuous in [0, 1] having a single global
maximum θ ∈ [0, 1]. Then:

1. lim
n

M(n)/n = θ.

2. lim
n

Fn(M(n)) = f(θ).

3. If M(n) ∼ M(n) then lim
n

Fn(M(n)) = f(θ).

Proof The proof is straightforward and analogous to that presented in [17] for
functions Fn of a real variable and domain [0, n] and fn(x) = Fn(nx).

Under the assumption of the uniform convergence of the sequence {fn} to
a continuous function, the following result shows that the limit function f can
be easily found provided that the functions Fn are defined by a backwards
recursion.
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Theorem 1 Let sn → s be a convergent sequence of real numbers. Let a
sequence of functions Fn : [sn, n] ∩ Z → R, be defined recursively by the
conditions:

Fn(k) = Gn(k) +Hn(k)Fn(k + 1) and Fn(n) = µ

Set fn(x) := Fn(bnxc), hn(x) := n(1 − Hn(bnxc)) and gn(x) := nGn(bnxc).
If both hn(x) and gn(x) converge on (s, 1) and uniformly on [s+ ε, ε′] for all
0 < ε < ε′ < 1 to functions h(x) and g(x) (resp.), both continuous in (s, 1),
and fn(x) → f(x) uniformly on [s, 1] with f ∈ C[s, 1], then f(1) = µ and the
following equality holds in (s, 1)

f ′(x) = f(x)h(x)− g(x).

Proof Just proceed as in [18].

4 The Solution

Let U : R 7→ R be the utility function of the IF. We fix an investable normalized
capital w = 1, part of which can be invested on an IO with success probability
p, which in case of success yields an return rate R > 0 (as a consequence,
there is a probability 1− p of losing all the invested capital). If the IF invests
x ∈ [0, 1], the expected utility is:

Up(x) = p · U(1 +Rx) + (1− p) · U(1− x)

Given R, define m(p) as the optimal investment (when it is unique) for each
value of p as:

m(p) := arg max
x∈[0,1]

Up(x)

Thus, the expected utility after the optimal investment (assuming it is unique)
is:

Ψ(p) := Up(m(p)) = max
x∈[0,1]

Up(x)

Remark 1 If U ′′(x) > 0 for all x, then U ′′
p (x) > 0 and m(p) ∈ {0, 1}: that is,

the IF invests either all or nothing. This is what happens under risk-neutrality
or risk-affection.

Taking into account that choosing the r-th opportunity which is better
than the previous ones, the probability that it is the best overall is r/n, the
dynamic equation of the problem is:

Un(r) =
1

r + 1
·max

[
Ψ

(
r + 1

n

)
,Un(r + 1)

]
+

r

r + 1
·Un(r+1); Un(n) = U(1)

where Un(r) is the final expected utility after rejecting the r-th opportunity.
The expected utility is Un(0). The optimal strategy consists in rejecting each
opportunity as long as it is better to pass on to the next one than to invest in
the present one, that is:

Ψ
( r
n

)
< Un(r + 1)
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Proposition 2 If n is the number of opportunities, there exists kn such that
the following strategy is optimal:

1. Reject the first kn opportunities.
2. After that, choose the first which is better than all the previous ones.

It is natural to ask what the asymptotic thresholds kn and utilities are. To
this end, it is worth using an auxiliary function U(r) representing the expected
utility when r is taken as threshold. This function is defined by the following
recurrence:

Un(r) =
1

r + 1
· Ψ
(
r + 1

n

)
+

r

r + 1
· Un(r + 1); Un(n) = U(1)

For the sake of clarity, let us pose a simplified example, where the utility
function is the identity U(x) = x. This gives a variant of the secretary problem
where the payback is R in case of success, −1 in case of error and 0 when no
opportunities are chosen.

Example. Take U(x) = x as the utility function. Using the previous The-
orem and Proposition, we can compute the optimal threshold solving the dif-
ferential equation:

−1−R+
y(x)

x
= y′(x); y(1) = 1

whose solution is:

y(x) := − (x (−1 + (1 +R) log(x)))

so that if rn is the optimal threshold, then:

lim
n→∞

rn
n

= ϑ

where ϑ = e−(
R

1+R ) is the maximum value of y(x) in [0, 1].
The expected utility is:

y(ϑ) = e−1+ 1
1+R (1 +R)

In particular, for R = 1:

ϑ =
1√
e
= 0.6065..; y(ϑ) =

2√
e
= 1.21306...

which means that the optimal strategy for a large number of opportunities
consists in rejecting each of them until the 60.65% has been seen and, af-
terwards, choosing the first which is relatively better than all the preceding
ones.

With this strategy, the expected final capital is 1.21306... or, what amounts
to the same, there is an expected benefit of 21.30%.
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5 Utility Functions

We study at this point the optimal strategy under different utility functions.
Notice that at some points we assume that some functions Un(x) converge to
some other like in Theorem 1. Numerical computations lead us to conclude
that this assumption is reasonable despite our inability (up to date) to prove
it formally.

5.1 The Square Root Utility Function

First, we consider the square root:

U(x) =
√
x

Under the conditions of our problem, the expected utility after investing a
(normalized) capital x is:

Up(x) = p ·
√
1 +Rx+ (1− p) ·

√
1− x

The optimal investment m(p) is unique and is given by:

m(p) =


−1 + 2 p− p2 + p2 R2

R (1− 2 p+ p2 + p2 R)
if p ∈ [ 1

1+R , 1]

0 if p ∈ [0, 1
1+R ]

Using both expressions, we get the expected utility for the optimal investment
for p > 1

1+R :

Ψ(p) := Up(m(p)) = (1− p)

√
(−1 + p)

2
(1 +R)

R (1 + p (−2 + p+ pR))
+p

√
p2 R (1 +R)

1 + p (−2 + p+ pR)

whereas for p < 1
1+R the optimal behavior is not to invest at all. Using now

the recursive equation defining the expected utility for threshold r:

Un(r) =
1

r + 1
· Ψ
(
r + 1

n

)
+

r

r + 1
· Un(r + 1); Un(n) = U(1)

and assuming that the functions Un(x) := Un(bnxc) converge uniformly on[
1

1+R , 1
]

to the continuous and derivable function y(x) on
(

1
1+R , 1

)
with:

Gn(r) =
1

r + 1
Ψ

(
r + 1

n

)
and Hn(r) =

r

r + 1

taking
hn(x) := n(1−Hn(bnxc)) and gn(x) := nGn(bnxc)
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we have that the functions gn(x) converge on
(

1
R+1 , 1

)
to:

g(x) := (−1 + x)

√
1 +R

R− 2Rx+R (1 +R) x2
+

(1− x)
√

1+R
R−2Rx+R (1+R) x2

x

+ x

√
R (1 +R)

1 + x (−2 + x+Rx)

and the hn(x) converge on
(

1
R+1 , 1

)
to:

h(x) :=
1

x

By Theorem 1, y(x) satisfies in
(

1
R+1 , 1

)
the following differential equation:

y′(x) = y(x)h(x)− g(x)

with the condition y(1) = U(1). The solution of this differential equation gives:

y(x) = x−
√
1 +Rx+

√
1 +R

R
A+

√
1 +R

R
x log

(
−
√
Rx

−1 + x−A

)

+
(1 +R)√

R
x log

(
R
√
1 +R+

√
R (1 +R)√

1 +R (−1 + (1 +R) x) + (1 +R) A

)
where:

A =
√
1− 2x+ (1 +R) x2

Now, using Proposition 1, we can compute the asymptotic values of the optimal
threshold and expected utility. If rn is that optimal threshold, then:

lim
n→∞

rn
n

= ϑ

where ϑ is the maximum value of y(x) in [ 1
1+R , 1] and y(ϑ) the expected utility.

Table I shows the values of the optimal threshold and expected utility for
different rates R.

Table I. Square root utility function.
R ϑR y(ϑR)
1/2 0.76873644 1.02317255
3/4 0.71688191 1.04230022
1 0.68012743 1.06291277
3/2 0.63081156 1.10542974
5/3 0.61874166 1.11959040
2 0.59874122 1.14760013
106 0.36824710 368.24782757
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When the number of opportunities is large, the optimal strategy consists in
rejecting each one until having seen 100 · ϑR% of the total number n. Af-
terwards, the IF chooses the first one which is relatively better than all the
previous ones. The expected utility is y(ϑR). For instance, for R = 1, the ex-
pected utility is 1.06291277 whereas for R = 2 it is 1.14760013. Notice that
for extremely large values of R, the threshold approaches 1/e, which is the
threshold in the standard Secretary Problem.

5.2 The Logarithmic Utility Function

We consider now the natural logarithm as a utility function:

U(x) = log(1 + x)

The expected utility after an investment of capital x is:

Up(x) = p · log(2 +Rx) + (1− p) · log(2− x)

so that the optimal investment m(p) is unique and is given by:

m(p) =


2(−1 + p+ pR)

R
if p ∈ [ 1

1+R , 1]

0 if p ∈ [0, 1
1+R ]

For values p < 1
1+R the optimal investment is not to invest. For p > 1

1+R , the
expected utility is:

Ψ(p) := Up(m(p)) = p log(2 p (1 +R))− (−1 + p) log(
−2 (−1 + p) (1 +R)

R
)

The recursive equation for the expected utility using threshold r is:

Un(r) =
1

r + 1
· Ψ
(
r + 1

n

)
+

r

r + 1
· Un(r + 1); Un(n) = U(1)

Assuming that Un(x) := Un(bnxc) converges uniformly on
[

1
1+R , 1

]
to a con-

tinuous and differentiable function y(x) on
(

1
1+R , 1

)
and proceeding as in the

previous section, we get that gn(x) converges on
(

1
R+1 , 1

)
to:

g(x) :=

(
−1 +

1

x

)
log(

2 (1 +R) (1− x)

R
) + log(2 (1 +R) x)

and hn(x) converges on
(

1
R+1 , 1

)
to:

h(x) :=
1

x
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Theorem 1, guarantees that y(x) satisfies, in
(

1
R+1 , 1

)
, the following differen-

tial equation:
y′(x) = y(x)h(x)− g(x)

with y(1) = U(1). From these conditions, it follows that:

y(x) =
1

6
(π2 x+ 6x log(2) + 3x log(2)

2
+ 6x log(2) log(1 +R) + 3x log(1 +R)

2

− 6x log(
2 (1 +R)

R
) + 6x log(x)− 6x log(1− x) (1 + log(x))− 3x log(2 (1 +R) x)

2

+ 6 log(
2 (1 +R) (1− x)

R
) (1 + x log(x))− 6xPolyLog(2, x))

where:
PolyLog(2, x) =

∫ x

0

− log(1− t)

t
dt

The computation of the optimal threshold ϑ and the maximum expected util-
ity, y(ϑ) is carried out using Proposition 1; ϑ is the maximum value of y(x)
en [ 1

1+R , 1]. Table II provides their values for some values of R.

Table II. Logarithmic utility function.
R ϑR y(ϑR)
1/2 0.78149444 0.72505881
3/4 0.73327571 0.74952131
1 0.69900717 0.77459118
3/2 0.65280685 0.82297146
5/3 0.64145138 0.83824206

Considering that the if the IF does not invest anything at all, it ends up with
the starting capital w (i.e. an expected utility of log(2) = 0.69314718...), we
remark how, following the optimal strategy, if the number of opportunities is
large, the IF would obtain for R = 1/2 an expected utility of 0.72505881, while
for R = 1 it would be 0.77459118 and for R = 5/3, 0.83824206. Notice how
the increase in the expected utility with respect to R is larger than that of the
previous utility function.

5.3 The Exponential Utility Function

Consider the utility function given by:

U(x) = 1− e−tx

For this U(x), we have

Up(x) = p ·
(
1− e−t(1+Rx)

)
+ (1− p) ·

(
1− e−t(1−x)

)
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and the optimal investment m(p) is unique and is given by:

m(p) =


− 1

(1 +R) t
log

(
t− p t

pR t

)
if p ∈ [ 1

1+R , 1]

0 if p ∈ [0, 1
1+R ]

The expected utility of the optimal investment for p > 1
1+R is:

Ψ(p) := Up(m(p)) = 1 +
(−1 + p) (1 +R)

et
(

1−p
pR

) 1
1+R

R

And the recurrence equation for the expected utility using threshold r is:

Un(r) =
1

r + 1
· Ψ
(
r + 1

n

)
+

r

r + 1
· Un(r + 1); Un(n) = U(1)

Using Theorem 1 as before, we obtain gn(x), g(x), hn(x), h(x) and y(x) such
that

– gn(x) converge in
(

1
R+1 , 1

)
to:

g(x) :=
R+ e−t (1 +R) (−1 + x)

(
1−x
Rx

)− 1
1+R

Rx

– hn(x) converge in
(

1
R+1 , 1

)
to:

h(x) :=
1

x

– y(x) satisfies in
(

1
R+1 , 1

)
the following differential equation:

y′(x) = y(x)h(x)− g(x)

together with y(1) = U(1).

Solving the differential equation, we obtain:

y(x) =
(1 +R)

(
x

R
1+R (Rx)

1
1+R Beta(x,−1 + 1

1+R , 2− 1
1+R ) + π R

1
1+R x csc( π

1+R )
)

et R

+
R (et − x)

et R

Using Proposition 1, we can compute the optimal threshold ϑ (as ϑ is the
maximum value of y(x) in [ 1

1+R , 1]), and the value of the maximum expected
utility, y(ϑ).
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Table III gives a sample of values for the threshold and the expected utility
for different values of R and the parameter t.

Table III. Exponential utility function.
R ϑR,t y(ϑR,t)

t = 1

1/2
1
3/2
2

0.53848590
0.70729857
0.65423520
0.61767078

0.644381
0.665228
0.678225
0.688099

t = 2

1/2
1
3/2
2

0.53848590
0.70729857
0.65423520
0.61767078

0.869175
0.876844
0.881625
0.885258

t = 5

1/2
1
3/2
2

0.53848590
0.70729857
0.65423520
0.61767078

0.993487
0.993868
0.994106
0.994287

t = 10

1/2
1
3/2
2

0.53848590
0.70729857
0.65423520
0.61767078

0.999956
0.999959
0.99996
0.999962

Notice how the optimum threshold is the same for fixed R, regardless of t.

5.3.1 The Iso-Elastic Utility Function

Finally, we consider the isoelastic utility function, the only class of utility
functions with constant risk aversion.

U(x) =
{

xt−1
t for t < 1, t 6= 0

log(x) the limiting case for t = 0

Notice that both the square root function (t = 1/2) and the logarithmic func-
tion, already covered, are members of this class. Isoelasticity models constant
relative risk aversion (i.e. decision making is unaffected by scale). We assume
t 6= 0 because we have already studied the logarithmic function.

The expected utility for an investment x is:

Up(x) =
(1− p)

(
−1 + (1− x)

t
)

t
+

p
(
−1 + (1 +Rx)

t
)

t

The corresponding recurrence using threshold r is:

Un(r) =
1

r + 1
· Ψ
(
r + 1

n

)
+

r

r + 1
· Un(r + 1); Un(n) = U(1)
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and, with the same notation and arguments as before, gn(x) converge on(
1

R+1 , 1
)

to:

g(x) :=
1

t x

−1 +
(1 +R)

t
(
(1− x)

1
1−t + (Rt x)

1
1−t

)
(
R (1− x)

1
1−t + (Rx)

1
1−t

)t


and hn(x) converge on
(

1
R+1 , 1

)
to:

h(x) :=
1

x

By Theorem 1, y(x) satisfies in
(

1
R+1 , 1

)
the following differential equation:

y′(x) = y(x)h(x)− g(x)

and also y(1) = U(1).
Using Proposition 1, we obtain ϑ and y(ϑ). However, the complexity of the

differential equation for arbitrary values of R and t prevents the computation
of an explicit general solution. For the sake of simplicity, we show, in Table
IV, the values of ϑR,t, and y(ϑR,t), for some t and R, which we have computed
numerically:

Table IV. Iso-elastic utility function.
R ϑR,t y(ϑR,t)

t = 1/2

1/2
1
3/2
2

0.76873644
0.68012743
0.63081156
0.59874122

0.0463451
0.125826
0.210859
0.2952

t = −1

1/2
1
3/2
2

0.78910101
0.70729857
0.65972046
0.62763302

0.019017
0.0449975
0.0677138
0.086757

t = −3

1/2
1
3/2
2

0.79241027
0.70881244
0.65877942
0.62447039

0.0102646
0.0228918
0.0331175
0.0412309

t = −5

1/2
1
3/2
2

0.79325493
0.70865098
0.65761090
0.62250601

0.0069856
0.0152329
0.0217446
0.0268276

As remarked above, for t = 1/2 the function is just an affine translation of
√
x

so that we get the same results (after the suitable scaling) as in Subsection
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4.1. Isoelasticity guarantees that the optimal ratio of investment x is the same
for all levels of wealth.

We finish remarking that the optimal investment, m(p) is:

m(p) =


−(1− p)

1
1−t + (pR)

1
1−t

(1− p)
1

1−t R+ (pR)
1

1−t

if p ∈ [ 1
1+R , 1]

0 if p ∈ [0, 1
1+R ]

and its associated expected utility for p > 1
1+R is:

Ψ(p) : = Up(m(p)) =
1

t

(1− p)

−1 +

(
1 +R

R+ (1− p)
1

−1+t (pR)
1

1−t

)t


+p

−1 +

(
1 +R

1 + (1− p)
1

1−t R (pR)
1

−1+t

)t


6 Conclusions

Real options has limited applicability in disruptive technological investments
and its logic is not applicable in the case of technological investment strate-
gies that generate radical innovations. In this case, the optimal decisions are
better represented with the decision model that proposed in this paper. It is
broadly derived from the well-known “Secretary Problem”; the decision to ac-
cept or reject an option among a sequence is based only on the relative ranks
of those investment opportunities considered so far. We present the optimal
strategies for several utility functions, also obtaining the optimal amount of
capital that the firm must invest. The asymptotic properties of all the models
is also considered. As far as we know it is the first study of its kind in the
literature.
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