

A **Carrollian** perspective on Celestial holography

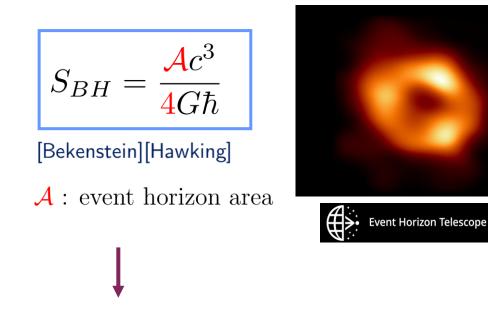
Laura Donnay

SISSA, Trieste

EuroStrings 2023, Gijón 24 - 28 April 2023

Holographic description of quantum gravity in 4d asymptotically flat spacetimes ($\Lambda = 0$)?

→ These spacetimes are relevant from collider physics ... to astrophysics (< cosmological scales)



Holography beyond Anti-de Sitter/CFT?

 $\Lambda < 0$

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Early attempts: [Susskind '99][Polchinski '99][Giddings '99] [de Boer, Solodukhin '03][Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06]...

...and even earlier [Penrose '76][Newman '76]

aimed at a reconstruction of the bulk spacetime from quantities defined only at null infinity *S* General Relativity and Gravitation, Vol. 7, No. 1 (1976), pp. 107-111

Heaven and Its Properties

EZRA T. NEWMAN

Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213

A Carrollian perspective on celestial holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Early attempts: [Susskind '99][Polchinski '99][Giddings '99] Minkowski AdS [de Boer, Solodukhin '03][Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06]... Main obstructions/difficulties: t The boundary is a **null** hypersurface u = t - rtimet There are **fluxes** leaking out $\operatorname{space} r$ Quantum gravity the boundary 'in a **box**'

A Carrollian perspective on celestial holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

--> <u>Road map</u>: symmetries

What are the symmetries of asymptotically flat spacetimes?

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

---> <u>Road map</u>: symmetries

What are the symmetries of asymptotically flat spacetimes?

what was expected

what was found

Bondi-Metzner-Sachs ('62)

Poincaré

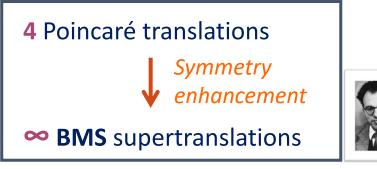
A Carrollian perspective on celestial holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

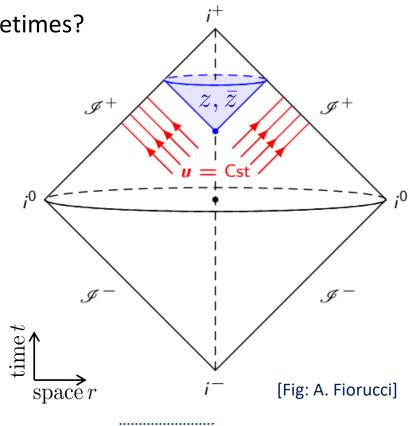
---> <u>Road map</u>: symmetries

What are the symmetries of asymptotically flat spacetimes?

infinite-dimensional extension of Poincaré!



[Bondi, van der Burg, Metzner '62] [Sachs '62]



$$\xi = \mathcal{T}(z,\bar{z})\partial_u + \cdots$$

arbitrary function on the celestial sphere

A Carrollian perspective on celestial holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

--> <u>Road map</u>: symmetries

What are the symmetries of asymptotically flat spacetimes?

→ infinite-dimensional extension of Poincaré!

While BMS symmetries were originally disregarded, it was realized (50 years later) that they

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

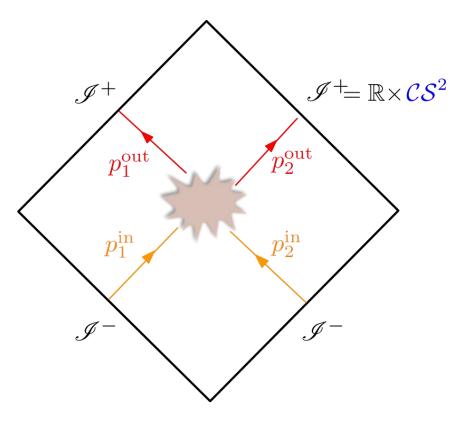
- -> <u>Road map</u>: symmetries

What are the symmetries of asymptotically flat spacetimes?

infinite-dimensional extension of Poincaré!

While BMS symmetries were originally disregarded, it was realized (50 years later) that they

constrain the gravitational S-matrix



Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

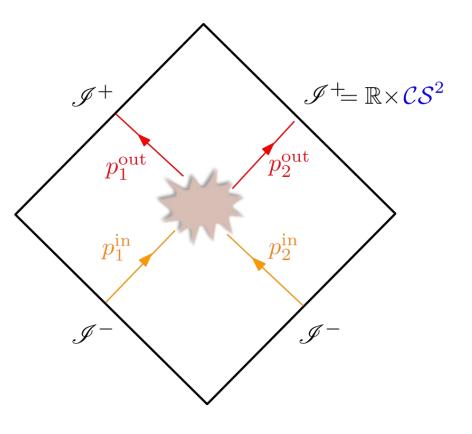
- -> <u>Road map</u>: symmetries

What are the symmetries of asymptotically flat spacetimes?

infinite-dimensional extension of Poincaré!

While BMS symmetries were originally disregarded, it was realized (50 years later) that they

- constrain the gravitational S-matrix
- have associated low-energy observables (memory effects)



Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

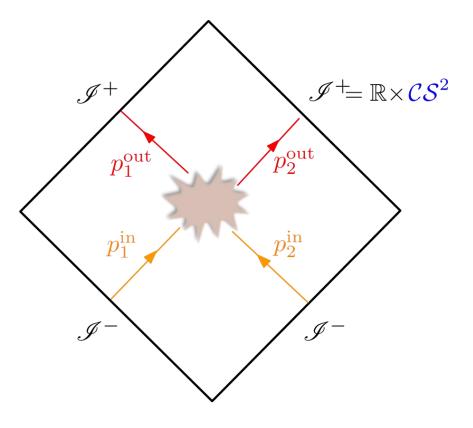
- -> <u>Road map</u>: symmetries

What are the symmetries of asymptotically flat spacetimes?

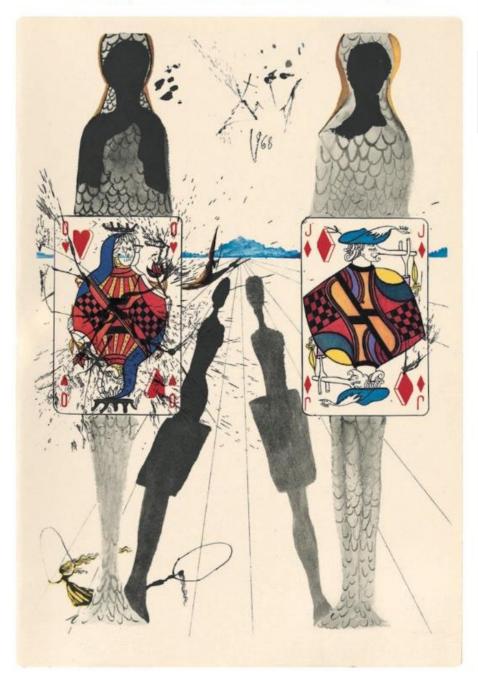
infinite-dimensional extension of Poincaré!

While BMS symmetries were originally disregarded, it was realized (50 years later) that they

- constrain the gravitational S-matrix
- have associated low-energy observables (memory effects)
- allow further extensions, including the local conformal group



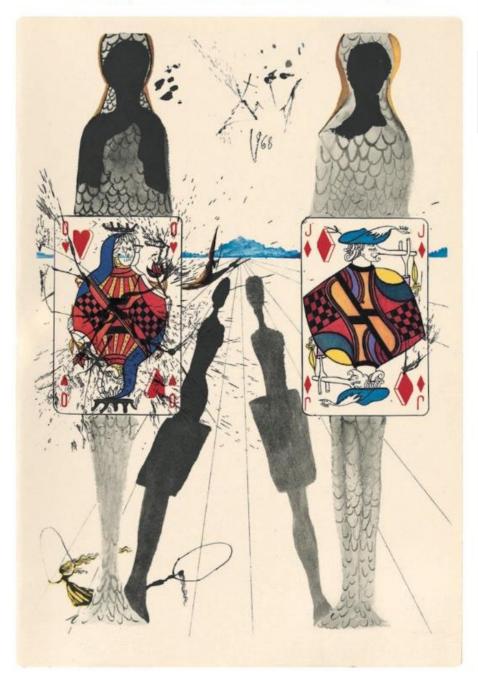
Salvador Dalí, illustrations for Alice's Adventures in Wonderland, 1969:



Outline

- 1. Celestial holography
- 2. Carrollian holography
- 3. CCFT vs CCFT

Salvador Dalí, illustrations for Alice's Adventures in Wonderland, 1969:

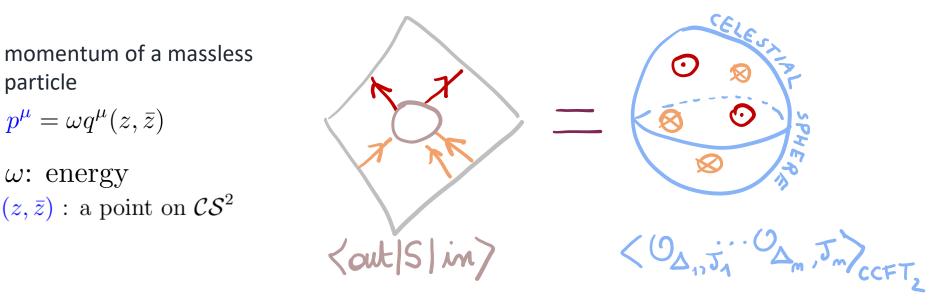


Outline

- 1. Celestial holography
- 2. Carrollian holography
- 3. CCFT vs CCFT

Celestial Holography

The 4d spacetime S-matrix is encoded in a 2d 'Celestial Conformal Field Theory'



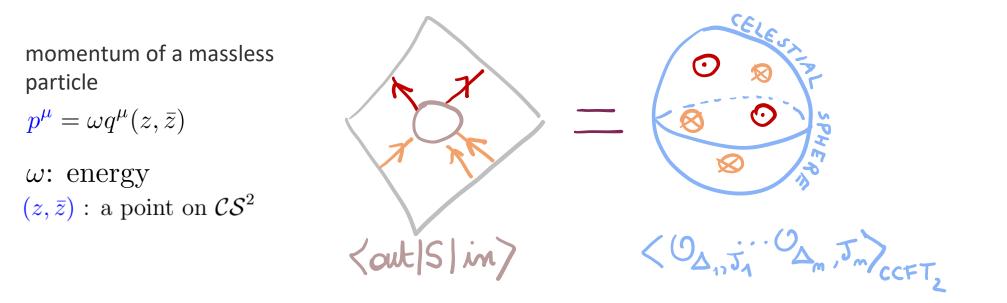
particle

 ω : energy

A Carrollian perspective on celestial holography

Celestial Holography

The 4d spacetime S-matrix is encoded in a 2d 'Celestial Conformal Field Theory'



Simple idea: make conformal properties manifest

→ Plane waves are mapped to

$$\Psi_{\Delta}^{\pm}(X;z,\bar{z}) = \int_{0}^{\infty} d\omega \, \omega^{\Delta-1} e^{\pm i p \cdot X}$$

$$\Psi_{h,\bar{h}}(z,\bar{z})
ightarrow \left(rac{\partial z}{\partial z'}
ight)^h \left(rac{\partial \bar{z}}{\partial \bar{z}'}
ight)^{\bar{h}} \Psi_{h,\bar{h}}(z,\bar{z})$$

Primary field of weight $\Delta = h + \bar{h}$

A Carrollian perspective on celestial holography

$$\mathcal{O}_{h,\bar{h}}(z,\bar{z}) \to \left(\frac{\partial z}{\partial z'}\right)^h \left(\frac{\partial \bar{z}}{\partial \bar{z}'}\right)^{\bar{h}} \mathcal{O}_{h,\bar{h}}(z,\bar{z})$$

 $(h,\bar{h}) = \frac{1}{2}(\Delta + J, \Delta - J)$

The soft sector of celestial CFT is captured by 2d celestial currents.

[Kapec, Mitra, Raclariu, Strominger][Cheung, de la Fuente, Sundrum][Fotopoulos, Stieberger, Taylor] [LD, Puhm, Strominger][Adamo, Mason, Sharma][Puhm][Guevara]

$$\mathcal{O}_{h,\bar{h}}(z,\bar{z}) \to \left(\frac{\partial z}{\partial z'}\right)^h \left(\frac{\partial \bar{z}}{\partial \bar{z}'}\right)^{\bar{h}} \mathcal{O}_{h,\bar{h}}(z,\bar{z})$$

 $(h,\bar{h}) = \frac{1}{2}(\Delta + J, \Delta - J)$

The soft sector of celestial CFT is captured by 2d celestial currents.

[Kapec, Mitra, Raclariu, Strominger][Cheung, de la Fuente, Sundrum][Fotopoulos, Stieberger, Taylor] [LD, Puhm, Strominger][Adamo, Mason, Sharma][Puhm][Guevara]

4	Symptotic symmetry	Ward identity	Weight	2d Celestial current
$g_{zz} = rC_{zz} + \dots$	'large gauge' $\delta A_z = D_z \epsilon$	Soft photon theorem	$\begin{array}{c} \Delta \rightarrow 1 \\ (h,\bar{h}) = (1,0) \end{array}$	$J(z) \mathcal{O}_{h,\bar{h}}(w,\bar{w}) \sim \frac{1}{(z-w)} \mathcal{O}_{h,\bar{h}}(w,\bar{w})$
	supertranslations $\delta C_{zz} = D_z^2 f$	Soft graviton theorem	$egin{array}{l} \Delta ightarrow 1 \ ig(rac{3}{2},rac{1}{2}ig) \end{array}$	$P(z,\bar{z})\mathcal{O}_{h,\bar{h}}(w,\bar{w}) \sim \frac{1}{(z-w)}\mathcal{O}_{h+\frac{1}{2},\bar{h}+\frac{1}{2}}(w,\bar{w})$
	superrotations $\delta C_{zz} = u D_z^3 Y^z$	Sub-leading soft graviton theorem	$egin{array}{c} \Delta ightarrow 2 \ (2,0) \end{array}$	$T(z)\mathcal{O}_{h,\bar{h}}(w,\bar{w}) \sim \frac{h}{(z-w)^2}\mathcal{O}_{h,\bar{h}}(w,\bar{w}) + \frac{\partial\mathcal{O}_{h,\bar{h}}(w,\bar{w})}{z-w}$
				2d stress tensor!

A Carrollian perspective on celestial holography

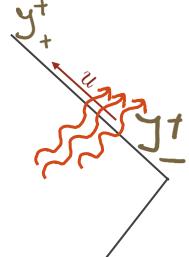
 Can be related to objects of the gravitational solution space in terms of 'BMS fluxes'

[LD, Ruzziconi '21]

$$ds^{2} = -du^{2} - 2dudr + 2r^{2}\gamma_{z\bar{z}} dzd\bar{z}$$

$$+ \frac{2M}{r}du^{2} + rC_{zz}dz^{2} + D^{z}C_{zz}dudz$$

$$+ \frac{1}{r}\left(\frac{4}{3}(N_{z} + u\partial_{z}m_{B}) - \frac{1}{4}\partial_{z}(C_{zz}C^{zz})\right) dudz + c.c. + \cdots$$



 Can be related to objects of the gravitational solution space in terms of 'BMS fluxes'

[LD, Ruzziconi '21]

$$\int_{\mathcal{J}^+} du \partial_u \left(\cdot\right) = \left(\cdot\right) \Big|_{\mathcal{J}^+_-}^{\mathcal{J}^+_+} \qquad \qquad +\frac{2M}{r} du^2 + r C_{zz} dz^2 + D^z C_{zz} du dz \\ +\frac{1}{r} \left(\frac{4}{3} (N_z + u \partial_z m_B) - \frac{1}{4} \partial_z (C_{zz} C^{zz})\right) du dz + c.c. + \cdots$$

- Infinite tower of currents! $\Delta
ightarrow 2, 1, 0, -1, \cdots$

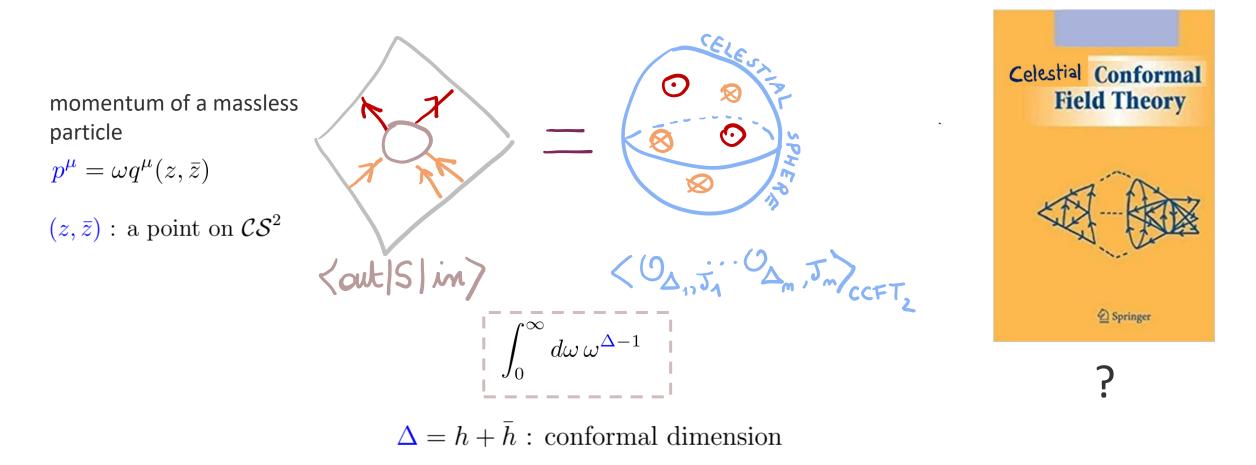
reorganized in terms of a $w_{1+\infty}$ algebra (positive helicity gravitons) [Guevara, Himwich, Pate, Strominger '21] [Strominger '21][Himwich, Pate, Singh '21]

 $ds^2 = -\mathrm{d}u^2 - 2\mathrm{d}u\mathrm{d}r + 2r^2\gamma_{z\bar{z}}\,\mathrm{d}z\mathrm{d}\bar{z}$

natural appearance from twistor space! [Penrose '76][Newman '76][Adamo, Mason, Sharma '21]...

Powerful organizing principles for the soft sector of the S-matrix

Summary: celestial holography



The soft sector of scattering is captured by celestial currents $\Delta \to \mathbb{Z}$

A Carrollian perspective on celestial holography

Holographic description of quantum gravity in 4d asymptotically flat spacetimes

two natural boundaries/proposals

null infinity

lighlike 3d hypersurface

4d bulk/3d holography: 'Carroll holography'

Dual: 3d 'BMS field theory'

[Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06][Adamo, Casali, Skinner '14] [Bagchi, Basu, Kakkar, Melhra '16] [Bagchi, Melhra, Nandi '20] [LD, Fiorucci, Herfray, Ruzziconi '22][Bagchi, Banerjee, Basu, Dutta '22][...]

Features: closer to AdS/CFT ©

Laura Donnay

treatment of fluxes \mathfrak{S}

celestial sphere

Euclidean 2-sphere

4d bulk/2d holography: 'celestial holography'

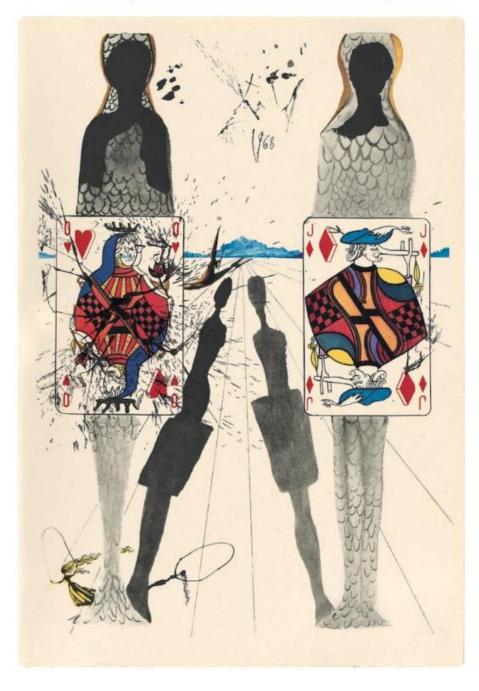
Dual: 2d 'celestial CFT'

[de Boer, Solodukhin '03][Pasterski, Shao, Strominger '17] [Pasterski, Shao '17] [Cheung, de la Fuente, Sundrum'17][...]

Features: powerful CFT techniques at hand ☺ role of translations obscured ☺

A Carrollian perspective on celestial holography

Salvador Dalí, illustrations for Alice's Adventures in Wonderland, 1969:



Outline

- 1. Celestial holography
- 2. Carrollian holography

3. CCFT vs CCFT

based on 2202.04702 PRL (2022) & 2212.12553 w/ Adrien FIORUCCI, Yannick HERFRAY & Romain RUZZICONI

Carrollian physics

<u>1965</u>: A curiosity of Lévy-Leblond (also independently by Sen Gupta 1966)

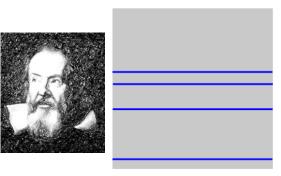
The $c \rightarrow \infty$ limit of the Poincaré group leads to the Galilean group.

But what if we take the $c \rightarrow 0$ limit instead?

'Carroll group'

"Alice's Adventures in Wonderland" Lewis Carroll (1865)

Carrollian spacetime (space is absolute)



Galilean spacetime (time is absolute)

A Carrollian perspective on celestial holography

light cones

Carrollian physics

<u>1965</u>: A curiosity of Lévy-Leblond (also independently by Sen Gupta 1966)

The $c \to \infty$ limit of the Poincaré group leads to the Galilean group. But what if we take the $c \to 0$ limit instead?

→ 'Carroll group'

- Weird features... but (lately) found to be relevant for
 - Hamiltonian analysis of GR [Henneaux '79]
 - fluid/gravity correspondence
 [Ciambelli, Marteau, Petkou, Petropoulos, Siampos '18]
 [de Boer, Hartong, Obers, Sybesma, Vandoren '22]
 - black hole near-horizon physics [Penna'18][LD, Marteau '18]
 - cosmology [de Boer, Hartong, Obers, Sybesma, Vandoren '22]
 - ...flat space holography

BMS = conformal Carrollian symmetries

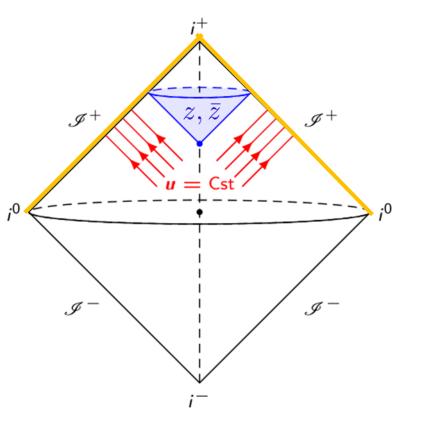
BMS symmetries = conformal symmetries of a Carrollian structure at null infinity

[Geroch][Penrose][Henneaux][Duval, Gibbons, Horvathy][Hartong][Ciambelli, Leigh, Marteau, Petropoulos][Bekaert, Morand][Herfray]...

 $x^a = (u, z, \bar{z})$

 q_{ab} : a degenerate metric $\longrightarrow q_{ab}dx^a dx^b = 0 \times du^2 + 2\gamma_{z\bar{z}}dzd\bar{z}$

a vector field satisfying $q_{ab}n^b = 0 \rightarrow n = \partial_u$



BMS = conformal Carrollian symmetries

BMS symmetries = conformal symmetries of a Carrollian structure at null infinity

[Geroch][Penrose][Henneaux][Duval, Gibbons, Horvathy][Hartong][Ciambelli, Leigh, Marteau, Petropoulos][Bekaert, Morand][Herfray]...

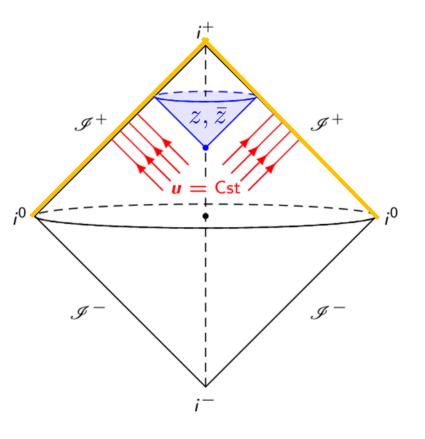
 $x^a = (u, z, \bar{z})$

 q_{ab} : a degenerate metric $\longrightarrow q_{ab}dx^a dx^b = 0 \times du^2 + 2\gamma_{z\bar{z}}dzd\bar{z}$

a vector field satisfying $q_{ab}n^b = 0 \rightarrow n = \partial_u$

Conformal Carrollian symmetries:

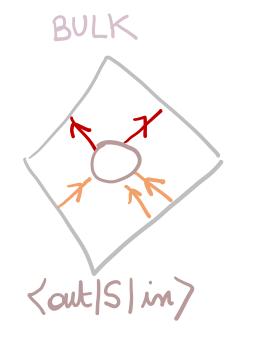
$$\mathcal{L}_{\bar{\xi}}q_{ab} = 2\alpha q_{ab} \qquad \mathcal{L}_{\bar{\xi}}n^a = -\alpha n^a$$
$$\alpha := \frac{1}{2}(D\mathcal{Y} + \bar{D}\bar{\mathcal{Y}})$$
$$\bar{\xi} = \left[\mathcal{T} + \frac{u}{2}(D\mathcal{Y} + \bar{D}\bar{\mathcal{Y}})\right]\partial_u + \mathcal{Y}\partial + \bar{\mathcal{Y}}\bar{\partial}$$



Towards Carrollian holography...

The S-matrix has an intrinsic holographic flavor.

Can we interpret S-matrix elements as correlation functions of a 'conformal Carrollian field theory'?

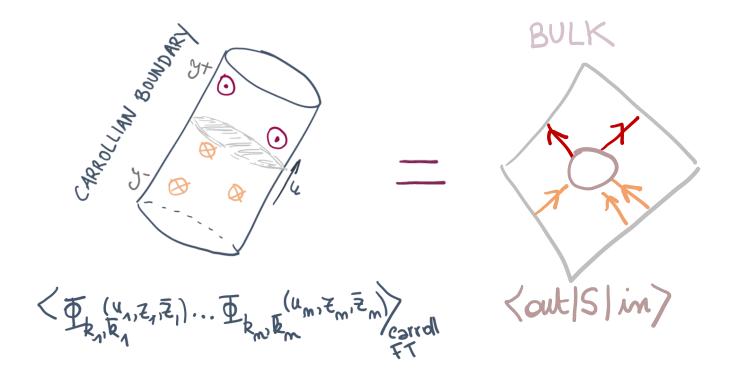


A Carrollian perspective on celestial holography

Towards Carrollian holography...

The S-matrix has an intrinsic holographic flavor.

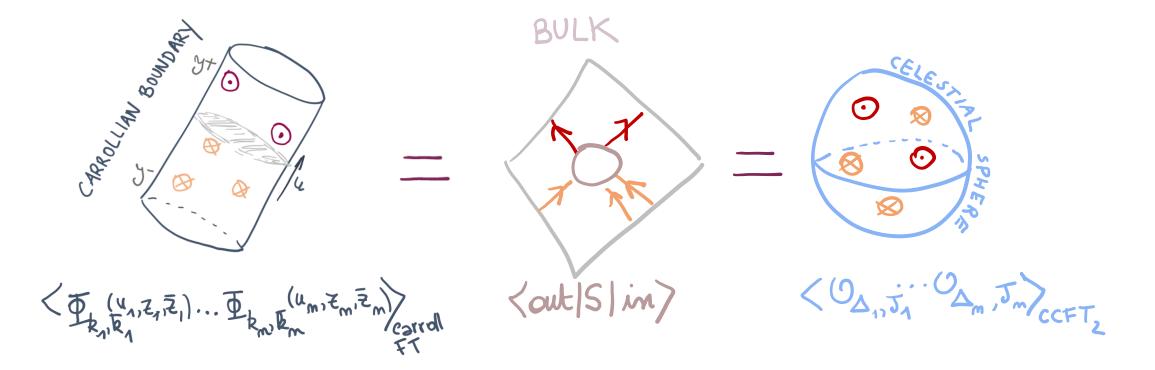
Can we interpret S-matrix elements as correlation functions of a 'conformal Carrollian field theory'?



Towards Carrollian holography...

The S-matrix has an intrinsic holographic flavor.

Can we interpret S-matrix elements as correlation functions of a 'conformal Carrollian field theory'?



Can it give new insights for celestial CFT?

A Carrollian perspective on celestial holography

From **bulk** to **boundary** (large r expansion):

 $\Phi(X) = \int \frac{d^3p}{(2\pi)^3 2p^0} \left[a(p) e^{ip \cdot X} + a(p)^{\dagger} e^{-ip \cdot X} \right]$

 $p^{\mu} = \omega q^{\mu}(\vec{w})$

momentum of a massless particle heading towards the celestial sphere

From **bulk** to **boundary** (large r expansion):

$$\Phi(X) = \int \frac{d^3p}{(2\pi)^3 2p^0} \left[a(p)e^{ip \cdot X} + a(p)^{\dagger}e^{-ip \cdot X} \right]$$
$$= \int \frac{d^2\vec{w}}{2(2\pi)^3} \omega d\omega \left[a(\omega, \vec{w})e^{i\omega q \cdot X} + a(\omega, \vec{w})^{\dagger}e^{-i\omega q \cdot X} \right]$$

$$p^{\mu} = \omega q^{\mu}(\vec{w})$$

momentum of a massless particle heading towards the celestial sphere

From **bulk** to **boundary** (large r expansion):

$$\Phi(X) = \int \frac{d^3p}{(2\pi)^3 2p^0} \left[a(p)e^{ip \cdot X} + a(p)^{\dagger}e^{-ip \cdot X} \right]$$
$$= \int \frac{d^2\vec{w}}{2(2\pi)^3} \omega d\omega \left[a(\omega, \vec{w})e^{i\omega q \cdot X} + a(\omega, \vec{w})^{\dagger}e^{-i\omega q \cdot X} \right]$$

$$p^{\mu} = \omega q^{\mu}(\vec{w})$$

momentum of a massless particle heading towards the celestial sphere

Go to Bondi coordinates $X^{\mu} = (u, r, z, \overline{z})$ and make a large r expansion (using the stationary phase space approximation)

scalar:
$$\Phi \sim \frac{1}{r} \int_0^{+\infty} d\omega \left[a(\omega, z, \bar{z}) e^{-i\omega u} - a(\omega, z, \bar{z})^{\dagger} e^{+i\omega u} \right]$$

From **bulk** to **boundary** (large r expansion):

$$\Phi(X) = \int \frac{d^3p}{(2\pi)^3 2p^0} \left[a(p)e^{ip \cdot X} + a(p)^{\dagger}e^{-ip \cdot X} \right]$$
$$= \int \frac{d^2\vec{w}}{2(2\pi)^3} \omega d\omega \left[a(\omega, \vec{w})e^{i\omega q \cdot X} + a(\omega, \vec{w})^{\dagger}e^{-i\omega q \cdot X} \right]$$

 $p^{\mu} = \omega q^{\mu}(\vec{w})$

momentum of a massless particle heading towards the celestial sphere

Go to Bondi coordinates $X^{\mu} = (u, r, z, \overline{z})$ and make a large r expansion (using the stationary phase space approximation)

scalar:
$$\Phi \sim \frac{1}{r} \int_{0}^{+\infty} d\omega \left[a(\omega, z, \bar{z}) e^{-i\omega u} - a(\omega, z, \bar{z})^{\dagger} e^{+i\omega u} \right]$$

spin s:
$$\Phi_{z...z}^{(s)}(X) \sim r^{s-1} \int_0^{+\infty} d\omega \left[a_+^{(s)}(\omega, z, \bar{z}) e^{-i\omega u} - a_-^{(s)}(\omega, z, \bar{z})^{\dagger} e^{+i\omega u} \right]$$

(photon)
$$A_z \sim A_z^{(0)}(u, z, \bar{z})$$

(graviton) $h_{zz} \sim rC_{zz}(u, z, \bar{z})$

From **bulk** to **boundary** (large r expansion):

spin s:
$$\Phi_{z...z}^{(s)}(X) \sim r^{s-1} \left[\int_{0}^{+\infty} d\omega \left[a_{+}^{(s)}(\omega, z, \bar{z})e^{-i\omega u} - a_{-}^{(s)}(\omega, z, \bar{z})^{\dagger}e^{+i\omega u} \right] \right]$$
$$|||$$
$$\| \bar{\Phi}_{z...z}(u, z, \bar{z})$$

This is the boundary operator: it encodes the asymptotic behavior at null infinity. Later we will identify it with a 'Carrollian primary'.

A Carrollian perspective on celestial holography

From **bulk** to **boundary** (large r expansion):

This is the boundary operator: it encodes the asymptotic behavior at null infinity. Later we will identify it with a 'Carrollian primary'.

Using the usual commutation relations $[a_{\alpha}^{(s)}(\vec{p}), a_{\alpha'}^{(s)}(\vec{p'})^{\dagger}] = (2\pi)^3 2p^0 \delta^{(3)}(\vec{p} - \vec{p'}) \delta_{\alpha,\alpha'}$, one gets

$$[\bar{\Phi}_{z...z}(u, z, \bar{z}), \bar{\Phi}_{\bar{z}...\bar{z}}(u', z', \bar{z}')] = \operatorname{sign}(u - u')\delta^{(2)}(z - z')$$

Ex: gravitational shear obeys the canonical relations [Ashtekar '87]

 $[C_{zz}(u, z, \bar{z}), C_{\bar{z}\bar{z}}(u', z', \bar{z}')] = \operatorname{sign}(u - u')\delta^{(2)}(z - z')$

From **bulk** to **boundary** (large r expansion): $\Phi_{z...z}^{(s)}(X) \sim r^{s-1} \bar{\Phi}_{z...z}(u, z, \bar{z})$

From **boundary** to **bulk**:

$$\Phi_I^{(s)}(X) = \int_0^{+\infty} d\omega d^2 z \left[\epsilon_I^{*\alpha} a_\alpha^{(s)}(\omega, z, \bar{z}) e^{ip \cdot X} + h.c. \right]$$

From bulk to boundary operators (and back)

From **bulk** to **boundary** (large r expansion): $\Phi_{z...z}^{(s)}(X) \sim r^{s-1} \bar{\Phi}_{z...z}(u, z, \bar{z})$

From **boundary** to **bulk**:

$$\Phi_{I}^{(s)}(X) = \int_{0}^{+\infty} d\omega d^{2}z \left[\epsilon_{I}^{*\alpha} a_{\alpha}^{(s)}(\omega, z, \bar{z}) e^{ip \cdot X} + h.c. \right]$$

$$a_{+}^{(s)}(\omega, z, \bar{z}) = \int_{-\infty}^{+\infty} d\tilde{u} e^{i\omega\tilde{u}} \bar{\Phi}_{z...z}(\tilde{u}, z, \bar{z})$$

$$\Phi_{I}^{(s)}(X) = \int d^{2}z \epsilon_{I}^{*+} \partial_{\tilde{u}} \bar{\Phi}_{z...z}(\tilde{u} = -q \cdot X, z, \bar{z}) + h.c.$$
Kirchhoff-d'Adhémar formula
[Penrose '80]
Allows to reconstruct the bulk field from its boundary value at \mathscr{I}^{+}

Can we interpret **S-matrix** elements as correlation functions of a 'conformal Carrollian field theory'?

Boundary operators as Carrollian primaries

Can we interpret S-matrix elements as correlation functions of a 'conformal Carrollian field theory'?

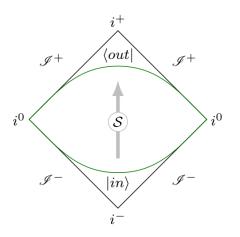
• Asymptotically free fields: $\Phi^{(s)}(X) \stackrel{\mathscr{I}^+}{\sim} r^{s-1} \bar{\Phi}^{\operatorname{out}(s)}(u, z, \bar{z}) \qquad \Phi^{(s)}(X) \stackrel{\mathscr{I}^-}{\sim} r^{s-1} \bar{\Phi}^{\operatorname{in}(s)}(v, z, \bar{z})$

The out/in boundary operators are

$$\bar{\Phi}^{\mathrm{out}(s)}(u,z,\bar{z}) = \int_0^{+\infty} d\omega \left[a_+^{(s)\mathrm{out}}(\omega,z,\bar{z})e^{-i\omega u} - a_-^{(s)\mathrm{out}}(\omega,z,\bar{z})^{\dagger}e^{i\omega u} \right]$$

destroys (creates) outgoing spin-s particles with positive (negative) helicity

$$\bar{\Phi}^{\mathrm{in}(s)}(\boldsymbol{v}, \boldsymbol{z}, \bar{\boldsymbol{z}}) = \int_{0}^{+\infty} d\omega \left[a_{+}^{(s)\mathrm{in}}(\omega, \boldsymbol{z}, \bar{\boldsymbol{z}}) e^{-i\omega\boldsymbol{v}} - a_{-}^{(s)\mathrm{in}}(\omega, \boldsymbol{z}, \bar{\boldsymbol{z}})^{\dagger} e^{i\omega\boldsymbol{v}} \right]$$



Can we interpret **S-matrix** elements as correlation functions of a 'conformal Carrollian field theory'?

• Asymptotically free fields: $\Phi^{(s)}(X) \stackrel{\mathscr{I}^+}{\sim} r^{s-1} \bar{\Phi}^{\mathrm{out}(s)}(u, z, \bar{z}) \qquad \Phi^{(s)}(X) \stackrel{\mathscr{I}^-}{\sim} r^{s-1} \bar{\Phi}^{\mathrm{in}(s)}(v, z, \bar{z})$

The out/in boundary operators are

$$\bar{\Phi}^{\mathrm{out}(s)}(u,z,\bar{z}) = \int_0^{+\infty} d\omega \left[a_+^{(s)\mathrm{out}}(\omega,z,\bar{z})e^{-i\omega u} - a_-^{(s)\mathrm{out}}(\omega,z,\bar{z})^{\dagger}e^{i\omega u} \right]$$

destroys (creates) outgoing spin-s particles with positive (negative) helicity

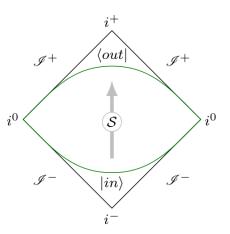
$$\bar{\Phi}^{\mathrm{in}(s)}(\boldsymbol{v}, \boldsymbol{z}, \bar{\boldsymbol{z}}) = \int_0^{+\infty} d\omega \left[a_+^{(s)\mathrm{in}}(\omega, \boldsymbol{z}, \bar{\boldsymbol{z}}) e^{-i\omega \boldsymbol{v}} - a_-^{(s)\mathrm{in}}(\omega, \boldsymbol{z}, \bar{\boldsymbol{z}})^{\dagger} e^{i\omega \boldsymbol{v}} \right]$$

They transform as 'conformal Carrollian primaries'

$$\delta_{\bar{\xi}}\bar{\Phi}^{(s)}(u,z,\bar{z}) = \left[\left(\mathcal{T} + \frac{u}{2} (\partial \mathcal{Y} + \bar{\partial}\bar{\mathcal{Y}}) \right) \partial_u + \mathcal{Y}\partial + \bar{\mathcal{Y}}\bar{\partial} + \frac{k}{k} \, \partial \mathcal{Y} + \frac{\bar{k}}{k} \, \bar{\partial}\bar{\mathcal{Y}} \right] \bar{\Phi}^{(s)}(u,z,\bar{z})$$

with weights (for outgoing) $k = \frac{1+J}{2}$ and $\bar{k} = \frac{1-J}{2}$, where $J = \pm s$

Ex: gravitational shear $C_{zz}(u, z, \overline{z})$ is a (quasi-)Carrollian primary of weights $(\frac{3}{2}, -\frac{1}{2})$. J = +2



Laura Donnay

A Carrollian perspective on celestial holography

Can we interpret **S-matrix** elements as correlation functions of a 'conformal Carrollian field theory'?

• Asymptotically free fields: $\Phi^{(s)}(X) \stackrel{\mathscr{I}^+}{\sim} r^{s-1} \bar{\Phi}^{\mathrm{out}(s)}(u, z, \bar{z}) \qquad \Phi^{(s)}(X) \stackrel{\mathscr{I}^-}{\sim} r^{s-1} \bar{\Phi}^{\mathrm{in}(s)}(v, z, \bar{z})$

The out/in boundary operators are

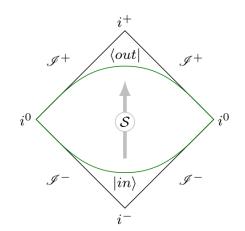
$$\bar{\Phi}^{\mathrm{out}(s)}(u, z, \bar{z}) = \int_{0}^{+\infty} d\omega \left[a_{+}^{(s)\mathrm{out}}(\omega, z, \bar{z}) e^{-i\omega u} - a_{-}^{(s)\mathrm{out}}(\omega, z, \bar{z})^{\dagger} e^{i\omega u} \right]$$

destroys (creates) outgoing spin-s particles with positive (negative) helicity

$$\bar{\Phi}^{\mathrm{in}(s)}(\boldsymbol{v}, \boldsymbol{z}, \bar{\boldsymbol{z}}) = \int_0^{+\infty} d\omega \left[a_+^{(s)\mathrm{in}}(\omega, \boldsymbol{z}, \bar{\boldsymbol{z}}) e^{-i\omega \boldsymbol{v}} - a_-^{(s)\mathrm{in}}(\omega, \boldsymbol{z}, \bar{\boldsymbol{z}})^{\dagger} e^{i\omega \boldsymbol{v}} \right]$$

• **Goal**: S-matrix as a correlation function of conformal Carrollian primaries:

$$\left| \langle 0 | \bar{\Phi}^{(s)}(x_1)^{\text{out}} \dots \bar{\Phi}^{(s)}(x_n)^{\text{out}} \bar{\Phi}^{(s)}(x_{n+1})^{\text{in}\,\dagger} \dots \bar{\Phi}^{(s)}(x_N)^{\text{in}\,\dagger} | 0 \rangle = \mathcal{C}_N(u_i, z_i, \bar{z}_i) \right|$$
S-matrix in position basis

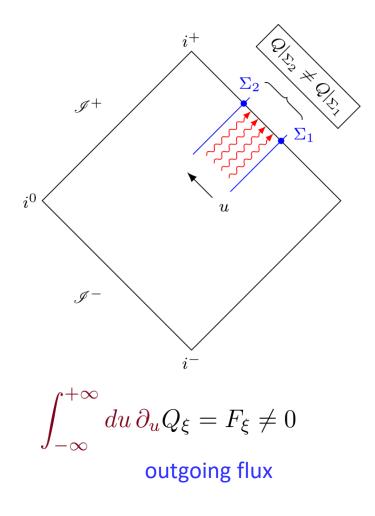


Laura Donnay

BMS charges and fluxes

• At each cut $\{u = \text{constant}\}$ of \mathscr{I}^+ , one can construct 'surface charges' associated to BMS symmetries.

Outgoing radiation → BMS charges are *not* conserved.



BMS charges and fluxes

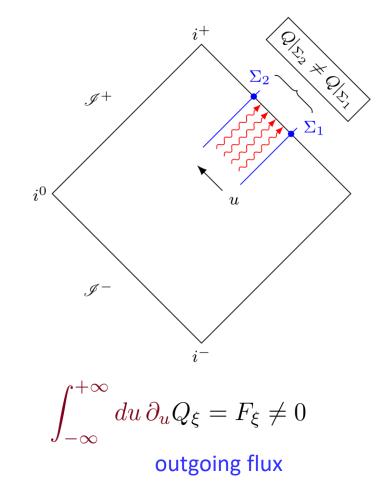
• At each cut $\{u = \text{constant}\}$ of \mathscr{I}^+ , one can construct 'surface charges' associated to BMS symmetries.

Outgoing radiation → BMS charges are *not* conserved.

A 'good prescription' for BMS charges has emerged in recent years:

[Barnich, Troessaert '11][He, Lysov, Mitra, Strominger '14][Kapec, Lysov, Pasterski, Strominger '14][Compère, Fiorucci, Ruzziconi '19 '20][Campiglia, Peraza '20] [LD, Ruzziconi '21][Fiorucci '21][Freidel, Pranzetti, Raclariu '21][LD, Nguyen, Ruzziconi '22]

$$\begin{aligned} Q_{\xi} &= \frac{1}{8\pi G} \int_{\mathcal{S}} d^2 z \left[2\mathcal{T}\widetilde{M} + \mathcal{Y}\overline{\widetilde{N}} + \bar{\mathcal{Y}}\widetilde{N} \right], \\ \widetilde{M} &= M + \frac{1}{8} (C_{zz} N^{zz} + C_{\bar{z}\bar{z}} N^{\bar{z}\bar{z}}) \\ \widetilde{N} &= N_{\bar{z}} - u \bar{\partial} \mathcal{M} + \frac{1}{4} C_{\bar{z}\bar{z}} \bar{\partial} C^{\bar{z}\bar{z}} + \frac{3}{16} \bar{\partial} (C_{zz} C^{zz}) \\ &+ \frac{u}{4} \bar{\partial} \left[\left(\partial^2 - \frac{1}{2} N_{zz} \right) C_{\bar{z}}^z - \left(\bar{\partial}^2 - \frac{1}{2} N_{\bar{z}\bar{z}} \right) C_{\bar{z}}^{\bar{z}} \right] \end{aligned}$$



Sourced conformal Carrollian Ward identities

• This suggests to consider external sources: Noether currents j_K^a are no longer conserved:

$$\partial_a j^a_K = F_K
eq 0$$
flux term

Noether currents associated to conformal Carrollian symmetries $\bar{\xi} = \left[\mathcal{T} + \frac{u}{2}(\partial \mathcal{Y} + \bar{\partial}\bar{\mathcal{Y}})\right]\partial_u + \mathcal{Y}\partial + \bar{\mathcal{Y}}\bar{\partial}$

 $j_{\bar{\xi}}^{a} = \mathcal{C}^{a}{}_{b}\bar{\xi}^{b} \qquad \qquad \mathcal{C}^{a}{}_{b} = \begin{bmatrix} \mathcal{M} & \mathcal{N}_{\mathcal{B}} \\ \mathcal{B}^{A} & \mathcal{A}^{A}{}_{B} \end{bmatrix} : \text{encodes Carrollian momenta} \\ \text{[Ciambelli, Marteau, Petkou, Petropoulos, Siampos '18]}^{2}$ $x^a = (u, z, \bar{z})$ Carrollian stress tensor

[Ciambelli, Marteau '18][LD, Marteau '19]

Global conformal Carrollian symmetries (Carrollian rotation, translations, boosts, dilatation, special CT) $z\partial_z - \bar{z}\partial_{\bar{z}} \qquad \partial_a \qquad z\partial_u, \bar{z}\partial_u \quad x^a\partial_a$ impose the following constraints

> $\begin{aligned} \partial_{u}\mathcal{M} &= F_{u}, & \mathcal{B}^{A} = 0, \\ \partial_{u}\mathcal{N}_{z} &- \frac{1}{2}\partial\mathcal{M} + \bar{\partial}\mathcal{A}^{\bar{z}}{}_{z} = F_{z}, & 2\mathcal{A}^{z}{}_{z} + \mathcal{M} = 0, \\ \partial_{u}\mathcal{N}_{\bar{z}} &- \frac{1}{2}\bar{\partial}\mathcal{M} + \partial\mathcal{A}^{z}{}_{\bar{z}} = F_{\bar{z}}, & 2\mathcal{A}^{\bar{z}}{}_{\bar{z}} + \mathcal{M} = 0 \end{aligned}$ [LD, Fiorucci, Herfray, Ruzziconi '22]

Sourced conformal Carrollian Ward identities

The sourced Ward identities
$$\partial_a \langle j_K^a(x)X \rangle = \sum_{k=1}^N \delta^{(n)}(x-x_k) \, \delta_{K^{i_k}} \, \langle X \rangle + \langle F_K(x)X \rangle$$

 $X \equiv \Psi^{i_1}(x_1) \dots \Psi^{i_N}(x_N)$

 $j^{a}_{\bar{\xi}} = \mathcal{C}^{a}{}_{b}\bar{\xi}^{b} \qquad \mathcal{C}^{a}{}_{b} = \left| \begin{array}{cc} \mathcal{M} & \mathcal{N}_{\mathcal{B}} \\ \mathcal{B}^{A} & \mathcal{A}^{A}{}_{B} \end{array} \right|$ of a conformal Carrollian field theory imply $\partial_u \langle \mathcal{M} X \rangle + \sum_i \delta^{(3)}(x - x_i) \partial_{u_i} \langle X \rangle = \langle F_u X \rangle$ $\partial_u \langle \mathcal{N}_z X \rangle - \frac{1}{2} \partial \langle \mathcal{M} X \rangle + \bar{\partial} \langle \mathcal{A}^{\bar{z}}_z X \rangle + \sum_i \left[\delta^{(3)}(x - x_i) \partial_i \langle X \rangle - \partial \left(\delta^{(3)}(x - x_i) k_i \langle X \rangle \right) \right] = \langle F_z X \rangle$ $\partial_u \langle \mathcal{N}_{\bar{z}} X \rangle - \frac{1}{2} \bar{\partial} \langle \mathcal{M} X \rangle + \partial \langle \mathcal{A}^z{}_{\bar{z}} X \rangle + \sum \left[\delta^{(3)}(x - x_i) \bar{\partial}_i \langle X \rangle - \bar{\partial} \left(\delta^{(3)}(x - x_i) \bar{k}_i \langle X \rangle \right) \right] = \langle F_{\bar{z}} X \rangle$ $\langle \mathcal{B}^A X \rangle = 0$ $\langle (\mathcal{A}^{z}{}_{z} + \frac{1}{2}\mathcal{M})X \rangle + \sum_{i} \delta^{(3)}(x - x_{i}) k_{i} \langle X \rangle = 0,$ $\langle (\mathcal{A}^{\bar{z}}{}_{\bar{z}} + \frac{1}{2}\mathcal{M})X \rangle + \sum_{i} \delta^{(3)}(x - x_{i}) \bar{k}_{i} \langle X \rangle = 0$

[LD, Fiorucci, Herfray, Ruzziconi '22]

Duality Carrollian momenta/gravitational data

We propose

$$\begin{split} \langle \mathcal{M} \rangle &= \frac{\widetilde{M}}{4\pi G} \,, \\ \langle \mathcal{N}_A \rangle &= \frac{1}{8\pi G} \left(\widetilde{N}_A + u \partial_A \widetilde{M} \right) \,, \\ \langle \mathcal{C}^A{}_B \rangle &+ \frac{1}{2} \delta^A{}_B \langle \mathcal{M} \rangle = 0 \,. \end{split}$$

[LD, Fiorucci, Herfray, Ruzziconi '22]

$$ds^{2} = -\mathrm{d}u^{2} - 2\mathrm{d}u\mathrm{d}r + 2r^{2}\gamma_{z\bar{z}}\,\mathrm{d}z\mathrm{d}\bar{z}$$
$$+\frac{2M}{r}\mathrm{d}u^{2} + rC_{zz}\mathrm{d}z^{2} + D^{z}C_{zz}\mathrm{d}u\mathrm{d}z$$
$$+\frac{1}{r}\left(\frac{4}{3}(N_{z} + u\partial_{z}m_{B}) - \frac{1}{4}\partial_{z}(C_{zz}C^{zz})\right)\mathrm{d}u\mathrm{d}z + c.c. + \cdots$$

Laura Donnay

A Carrollian perspective on celestial holography

Duality Carrollian momenta/gravitational data

We propose

e	$\langle \mathcal{M} \rangle = \frac{\widetilde{M}}{4\pi G} ,$
	$\langle \mathcal{N}_A \rangle = \frac{1}{8\pi G} \left(\widetilde{N}_A + u \partial_A \widetilde{M} \right) ,$
	$\langle \mathcal{C}^{\mathcal{A}}{}_{B} \rangle + \frac{1}{2} \delta^{A}{}_{B} \langle \mathcal{M} \rangle = 0.$

[LD, Fiorucci, Herfray, Ruzziconi '22]

$$ds^{2} = -\mathrm{d}u^{2} - 2\mathrm{d}u\mathrm{d}r + 2r^{2}\gamma_{z\bar{z}}\,\mathrm{d}z\mathrm{d}\bar{z}$$
$$+\frac{2M}{r}\mathrm{d}u^{2} + rC_{zz}\mathrm{d}z^{2} + D^{z}C_{zz}\mathrm{d}u\mathrm{d}z$$
$$+\frac{1}{r}\left(\frac{4}{3}(N_{z} + u\partial_{z}m_{B}) - \frac{1}{4}\partial_{z}(C_{zz}C^{zz})\right)\mathrm{d}u\mathrm{d}z + c.c. + \cdots$$

cf. AdS/CFT where the holographic stress-energy tensor is identified with some subleading order in the bulk metric expansion [Balasubramanian, Kraus '99] [Haro, Solodukhin, Skenderis '01]

Duality Carrollian momenta/gravitational data

We propose

$$\begin{split} \langle \mathcal{M} \rangle &= \frac{\widetilde{M}}{4\pi G} \,, \\ \langle \mathcal{N}_A \rangle &= \frac{1}{8\pi G} \left(\widetilde{N}_A + u \partial_A \widetilde{M} \right) \,, \\ \langle \mathcal{C}^A{}_B \rangle &+ \frac{1}{2} \delta^A{}_B \langle \mathcal{M} \rangle = 0 \,. \end{split}$$

[LD, Fiorucci, Herfray, Ruzziconi '22]

$$\begin{split} ds^2 &= -\mathrm{d}u^2 - 2\mathrm{d}u\mathrm{d}r + 2r^2\gamma_{z\bar{z}}\,\mathrm{d}z\mathrm{d}\bar{z} \\ &+ \frac{2M}{r}\mathrm{d}u^2 + rC_{zz}\mathrm{d}z^2 + D^zC_{zz}\mathrm{d}u\mathrm{d}z \\ &+ \frac{1}{r}\left(\frac{4}{3}(N_z + u\partial_z m_B) - \frac{1}{4}\partial_z(C_{zz}C^{zz})\right)\mathrm{d}u\mathrm{d}z + c.c. + \cdots \end{split}$$

cf. AdS/CFT where the holographic stress-energy tensor is identified with some subleading order in the bulk metric expansion [Balasubramanian, Kraus '99] [Haro, Solodukhin, Skenderis '01]

The external sources at the boundary are identified with the asymptotic shear

Fluxes:
$$F_{u} = \frac{1}{16\pi G} \Big[\partial_{z}^{2} \partial_{u} \sigma_{\bar{z}\bar{z}} + \frac{1}{2} \sigma_{\bar{z}\bar{z}} \partial_{u}^{2} \sigma_{zz} + \text{c.c.} \Big],$$

$$F_{z} = \frac{1}{16\pi G} \Big[-u \partial_{z}^{3} \partial_{u} \sigma_{\bar{z}\bar{z}} + \sigma_{zz} \partial_{z} \partial_{u} \sigma_{\bar{z}\bar{z}} - \frac{u}{2} (\partial_{z} \sigma_{zz} \partial_{u}^{2} \sigma_{\bar{z}\bar{z}} + \sigma_{zz} \partial_{z} \partial_{u}^{2} \sigma_{\bar{z}\bar{z}}) \Big]$$

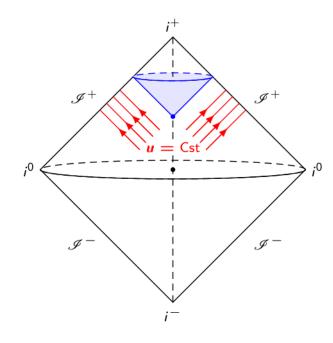
Consistently, these expressions plugged into the sourced Ward id. of the conformal Carrollian theory reproduce the flux-balance laws (e.g. Bondi mass loss).

Laura Donnay

A Carrollian perspective on celestial holography

Constraints for a holographic conformal Carrollian theory

Gluing the future and the past

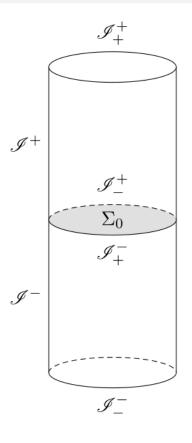


 We want to treat the conformal boundary as a whole by gluing the two pieces around spatial infinity.

$$\hat{\mathscr{I}} \equiv \mathscr{I}^- \sqcup \mathscr{I}^+$$

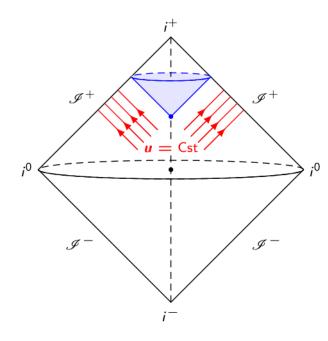
Separating surface

- = locus where the Carrollian vector n^a vanishes
- We get only one smooth automorphism of *J*.
 Consistent with antipodal matching of [Strominger '13].



Constraints for a holographic conformal Carrollian theory

Gluing the future and the past



 We want to treat the conformal boundary as a whole by gluing the two pieces around spatial infinity.

$$\hat{\mathscr{I}} \equiv \mathscr{I}^- \sqcup \mathscr{I}^+$$

Separating surface

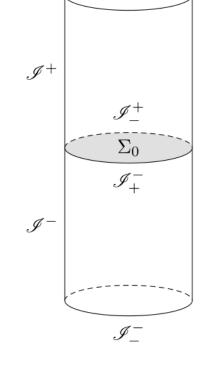
- = locus where the Carrollian vector n^a vanishes
- We get only one smooth automorphism of *J*.
 Consistent with antipodal matching of [Strominger '13].

Ward id. for massless scattering

Assuming that the Noether current vanishes at \mathscr{I}_{-}^{-} and \mathscr{I}_{+}^{+} :

$$\delta_{\bar{\xi}} \left\langle X_N^{\sigma} \right\rangle = 0$$

Invariance of the correlators under conformal Carroll symmetries



 \mathscr{I}^+_+

A Carrollian perspective on celestial holography

Laura Donnay

 $\delta_{\bar{\xi}} \langle X_N \rangle = 0 \qquad \langle X_2 \rangle = \langle \Phi_{(k_1, \bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2, \bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

A Carrollian perspective on celestial holography

 $\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts $\rightarrow \langle X_2 \rangle = f(z_{12}, \bar{z}_{12}) + g(u_{12})\delta^{(2)}(z_{12})$ $z_{12} = z_1 - z_2$ $u_{12} = u_1 - u_2$

 $\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts

$$\partial_a \qquad z\partial_u, \bar{z}\partial_u \rightarrow \langle X_2 \rangle = \begin{bmatrix} f(z_{12}, \bar{z}_{12}) \\ f(z_{12}, \bar{z}_{12}) \end{bmatrix} + g(u_{12})\delta^{(2)}(z_{12}) \qquad \qquad z_{12} = z_1 - z_2$$

 $u_{12} = u_1 - u_2$

• Time-independent branch

 $\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts

$$\partial_a \qquad z\partial_u, \bar{z}\partial_u \rightarrow \langle X_2 \rangle = \begin{bmatrix} f(z_{12}, \bar{z}_{12}) \\ f(z_{12}, \bar{z}_{12}) \end{bmatrix} + g(u_{12})\delta^{(2)}(z_{12}) \qquad \qquad z_{12} = z_1 - z_2$$

 $u_{12} = u_1 - u_2$

• Time-independent branch

Carrollian rotation and dilatation
$$\rightarrow \langle X_2 \rangle^f = \frac{c_1 \, \delta_{k_1,k_2} \delta_{\bar{k}_1,\bar{k}_2}}{(z_1 - z_2)^{k_1 + k_2} (\bar{z}_1 - \bar{z}_2)^{\bar{k}_1 + \bar{k}_2}}$$

 $\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts

$$\partial_a \qquad z\partial_u, \bar{z}\partial_u \rightarrow \langle X_2 \rangle = f(z_{12}, \bar{z}_{12}) + \begin{bmatrix} g(u_{12})\delta^{(2)}(z_{12}) \\ g(u_{12})\delta^{(2)}(z_{12}) \end{bmatrix} \qquad z_{12} = z_1 - z_2$$

 $u_{12} = u_1 - u_2$

• Time-independent branch

 $\delta_{ar{\xi}}\left\langle X_{N}
ight
angle =0$

Carrollian rotation and dilatation
$$\rightarrow \langle X_2 \rangle^f = \frac{c_1 \, \delta_{k_1,k_2} \delta_{\bar{k}_1,\bar{k}_2}}{(z_1 - z_2)^{k_1 + k_2} (\bar{z}_1 - \bar{z}_2)^{\bar{k}_1 + \bar{k}_2}}$$

• Time-**dependent** branch

 $\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1,z_1,\bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2,z_2,\bar{z}_2) \rangle$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts

$$\partial_a \qquad z\partial_u, \bar{z}\partial_u \rightarrow \langle X_2 \rangle = f(z_{12}, \bar{z}_{12}) + \begin{bmatrix} g(u_{12})\delta^{(2)}(z_{12}) \\ g(u_{12})\delta^{(2)}(z_{12}) \end{bmatrix}$$

$$z_{12} = z_1 - z_2$$

$$u_{12} = u_1 - u_2$$

Time-independent branch

 $\delta_{ar{\xi}} \left\langle X_N \right
angle = 0$

Carrollian rotation and dilatation
$$\rightarrow \langle X_2 \rangle^f = \frac{c_1 \, \delta_{k_1,k_2} \delta_{\bar{k}_1,\bar{k}_2}}{(z_1 - z_2)^{k_1 + k_2} (\bar{z}_1 - \bar{z}_2)^{\bar{k}_1 + \bar{k}_2}}$$

Time-dependent branch

Carrollian rotation and dilatation

$$k_{12}^{\pm} \equiv \sum_{i=1,2} (k_i \pm \bar{k}_i)$$

$$\rightarrow \langle X_2 \rangle^g = \frac{c_2}{(u_1 - u_2)^{k_{12}^+ - 2}} \delta^{(2)}(z_{12}) \delta_{k_{12}^-, 0}$$

A Carrollian perspective on celestial holography

Laura Donnay

 $\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$

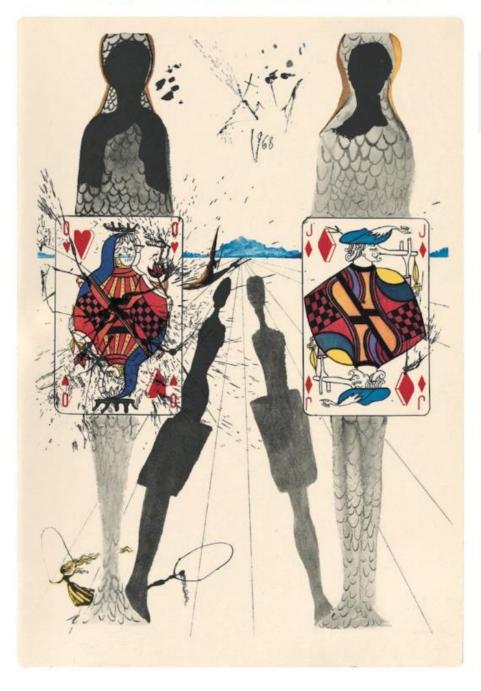
[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Conclusion: the time-dependent branch gives the Carrollian 2-point function

$$\langle X_2 \rangle = \left[\frac{1}{\beta} - \left(\gamma + \ln |u - v| + \frac{i\pi}{2} \operatorname{sign}(u - v) \right) \right] \delta^{(2)}(z_1 - z_2) \delta_{k_{12}^+, 0} \delta_{k_{12}^-, 0}$$

Three-point correlators were computed as well using the embedding space formalism.
 [Salzer '23]

Salvador Dalí, illustrations for Alice's Adventures in Wonderland, 1969:

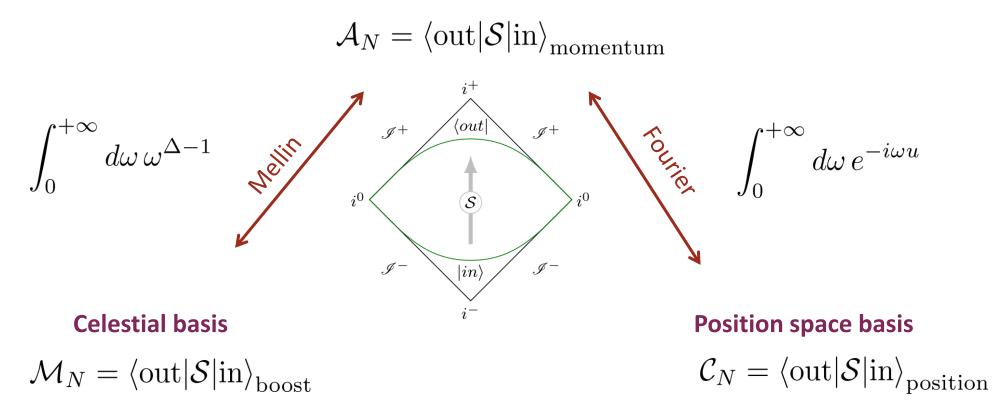


Outline

- 1. Celestial holography
- 2. Carrollian holography
- 3. CCFT vs CCFT

From Carrollian to celestial

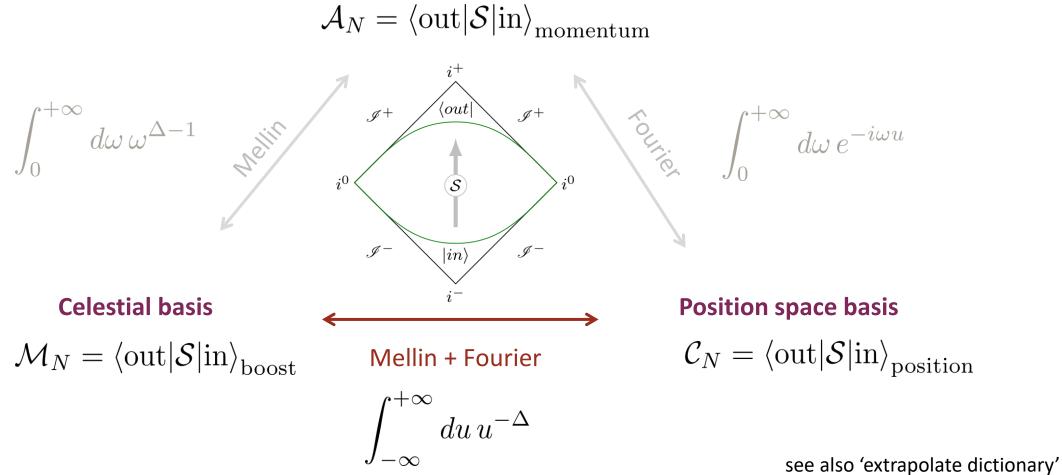
Momentum basis



A Carrollian perspective on celestial holography

From Carrollian to celestial

Momentum basis



[Pasterski, Puhm, Trevisani '21]

A Carrollian perspective on celestial holography

Laura Donnay

• The map between conformal Carrollian and celestial operators is

[LD, Fiorucci, Herfray, Ruzziconi '22]

$$\mathcal{O}_{(\Delta_i,J_i)}^{\text{out}}(z_i,\bar{z}_i) = \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} \frac{du_i}{(u_i + i\epsilon)^{\Delta_i}} \,\sigma_{(k_i,\bar{k}_i)}^{\text{out}}(u_i,z_i,\bar{z}_i),$$
$$\mathcal{O}_{(\Delta_j,J_j)}^{\text{in}}(z_j,\bar{z}_j) = \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} \frac{dv_j}{(v_j - i\epsilon)^{\Delta_j}} \,\sigma_{(k_j,\bar{k}_j)}^{\text{in}}(v_j,z_j,\bar{z}_j)$$

$$k = \frac{1}{2}(1 \pm J), \qquad \bar{k} = \frac{1}{2}(1 \mp J)$$

• The map between conformal Carrollian and celestial operators is

[LD, Fiorucci, Herfray, Ruzziconi '22]

$$\mathcal{O}_{(\Delta_i,J_i)}^{\text{out}}(z_i,\bar{z}_i) = \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} \frac{du_i}{(u_i+i\epsilon)^{\Delta_i}} \,\sigma_{(k_i,\bar{k}_i)}^{\text{out}}(u_i,z_i,\bar{z}_i),$$
$$\mathcal{O}_{(\Delta_j,J_j)}^{\text{in}}(z_j,\bar{z}_j) = \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} \frac{dv_j}{(v_j-i\epsilon)^{\Delta_j}} \,\sigma_{(k_j,\bar{k}_j)}^{\text{in}}(v_j,z_j,\bar{z}_j)$$

$$k = \frac{1}{2}(1 \pm J), \qquad \bar{k} = \frac{1}{2}(1 \mp J)$$

• Conformal Carrollian Ward identities can reproduce the ones for celestial CFT:

$$\left\langle P(z,\bar{z})\prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})\right\rangle + \sum_{q=1}^{N}\frac{1}{z-z_{q}}\left\langle \dots\mathcal{O}_{\Delta_{q}+1,J_{q}}(z_{q},\bar{z}_{q})\dots\right\rangle = 0$$

$$\left\langle T(z)\prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})\right\rangle + \sum_{q=1}^{N}\left[\frac{\partial_{q}}{z-z_{q}} + \frac{h_{q}}{(z-z_{q})^{2}}\right]\left\langle \prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})\right\rangle = 0 \right\rangle$$

$$\text{leading & subleading soft graviton theorem}$$

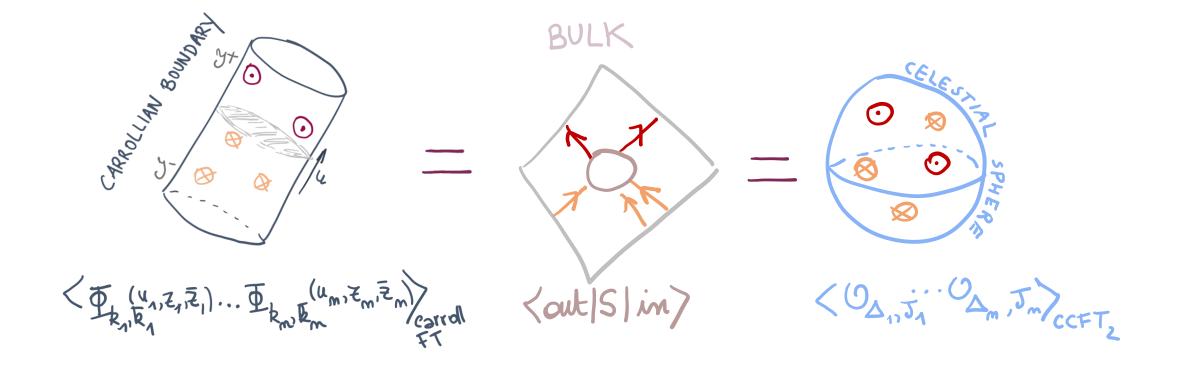
[He, Lysov, Mitra, Strominger '15][Kapec, Mitra, Raclariu, Strominger '17] [LD, Puhm, Strominger '18][Fan, Fotopoulos, Taylor '19]

Laura Donnay

A Carrollian perspective on celestial holography

Conformal Carrollian field theory living at null infinity

→ quantum gravity in flat spacetime



Celestial CFT living on the celestial sphere

Conformal Carrollian field theory living at null infinity

What is a **CCFT**?

→ Beyond kinematics? Top-down constructions?

quantum gravity in flat spacetime

Celestial CFT living on the celestial sphere

Conformal Carrollian field theory living at null infinity

What is a CCFT?

→ Beyond kinematics? Top-down constructions?

full tower of currents link with AdS/CFT, dS/CFT building representations log corrections bootstrapping CCFT higher dimensions massive particles relationship to string theory adding black holes quantum gravity in flat spacetime

Laura Donnay

...

Celestial CFT living on the celestial sphere

Conformal Carrollian field theory living at null infinity

quantum gravity in flat spacetime

amplitudes gravitational waves observation conformal field theory twistor theory asymptotic symmetries quantumfield theory mathematical GR fluid/gravity

Celestial CFT living on the celestial sphere

Conformal Carrollian field theory living at null infinity

quantum gravity in flat spacetime

amplitudes gravitational waves observation conformal field theory twistor theory asymptotic symmetries quantumfield theory mathematical GR fluid/gravity

Thank you!