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Currently four major directions in the study of defects

* Topological defects and generalised symmetries: defects as symmetry generators
[Gaiotto, Kapustin, Seiberg, Willett; Chang, Lin, Shao, Wang, Yin; ...]
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Supersymmetric defects and AdS/CFT

[Maldacena; Drukker, Gross; DeWolfe, Freedman, Ooguri;

Drukker, Gomis, Matsuura; Pestun; Giombi, Komatsu; Liendo, Meneghelli;
Grabner, Gromov, Julius; ...]

E.g. 4d Maxwell
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* Symmetry protected quantum criticality
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Currently four major directions in the study of defects

* Symmetry protected quantum criticality

Boundaries of SPTs often have gapless modes, often survive closing of the bulk gap
[Scaffidi, Parker, Vasseur; Verresen, Thorngren, Jones, Pollmann; Verresen; ...]

* Defect renormalisation group flows and fixed points (focus: lines)

Can have RG even when bulk is critical

.@(x) Fixed point:  (O(z)) = |$le
RG flow: (O(x)) = %



Symmetries and RG
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« Defect line preserves SL(2,R) x SO(D —1) C SO(D +1,1)
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SL(2,R) may be broken by physics on the line

f
W
N

W

!

7
T

* Fixed points preserve maximal symmetry (also for higher d) =7
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SL(2,R) may be broken by physics on the line
* Fixed points preserve maximal symmetry (also for higher d) //‘%

Two viewpoints

* Impurity or heavy probe: changes Hilbert space

Applications: order parameter for confinement;
physical boundaries (SP criticality, ...);
impurities, dislocations, ...
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Two viewpoints
* Impurity or heavy probe: changes Hilbert space
Applications: order parameter for confinement; ‘ t
physical boundaries (SP criticality, ...);
impurities, dislocations, ...
* Ontime slice: operator acting on Hilbert space
Applications: area vs perimeter law of WLs; t

charges of generalised symmetries




* Perturbation theory: defect can be (strongly) interacting even when bulk is free
[Allais, Sachdev; Cuomo, Komargodski, Mezei; Cuomo, Komargodski, Mezei, Raviv-Moshe; ...]

e Large N: vector, melonic, matrix

[Metlitski; Cuomo, Komargodski, Mezei; Popov, Wang; Krishnan, Metlitski; Drukker, Gross; ...]
* Semiclassics at large charge

[Cuomo, Komargodski, Mezei, Raviv-Moshe; Rodriguez-Gomez; Rodriguez-Gomez, Russo; ...]

* Bootstrap
[Gliozzi, Liendo, Meineri, Rago; Billo, Goncalves, Lauria, Meineri; Lauria, Liendo, van Rees, Zhao; Behan, Di Pietro,
Lauria, van Rees; Collier, Mazanc, Wang; Padayasi, Krishnan, Metlitski, Gruzberg, Meineri; Herzog, Shrestha; ...]

* Integrability and localization
[Pestun; Giombi, Komatsu; Liendo, Meneghelli; Grabner, Gromoy, Julius; Komatsu, Wang; ...]
* RG monotonicity
» Dilaton effective action
[Jensen, O’Bannon; Cuomo, Komargodski, Raviv-Moshe; Wang]
» Entanglement entropy inequalities
[Casini, Testé, Torroba; Casini, Landea, Torroba]

* (Quantum) Monte Carlo and quantum simulation
[Assaad, Herbut; Allais; Toldin, Assaad, Wessel; Ebadi et al.]

e Combinations of the above






RG monotonicity

In odd dimensions RG monotonicity expected from universal piece in partition function
[Jafferis; Jafferis, Klebanov, Pufu, Safdi]

* Line defect insertion
[Cuomo, Komargodski, Raviv-Moshe; Affleck, Ludwig; Friedan, Konechny]
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In odd dimensions RG monotonicity expected from universal piece in partition function
[Jafferis; Jafferis, Klebanov, Pufu, Safdi]

* Line defect insertion
[Cuomo, Komargodski, Raviv-Moshe; Affleck, Ludwig; Friedan, Konechny]

b(uR) = (1 — R%) log(D)

b _ g / drdg (Tp(61)Tp(¢2)) + R / 49 {Tn(9),

dlog R /

= —R? / dgp1dda (Tp(¢1)Tp(¢2)) [1 — cos d12]

<0
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RG monotonicity

In even dimensions trace anomaly coefficient is RG monotone
[Zamolodchikov; Cardy; Komargodski, Schwimmer; Jensen, O’Bannon; Wang] o

* Defect contribution to trace anomaly

(T!) = Apu + 6(2q) [—(—l)d/2 by Eq + (other int. terms) + (ext. terms)]



RG monotonicity

In even dimensions trace anomaly coefficient is RG monotone
[Zamolodchikov; Cardy; Komargodski, Schwimmer; Jensen, O’Bannon; Wang] o

* Defect contribution to trace anomaly

(Th) = Apuix + 6(Xq) [—(—l)d/2 by Fq + (other int. terms) + (ext. terms)]
* Dilaton effective action

S = SIr DCFT + Sdilaton [P] + - - .

Abs [(0P)? d=2

Sdilaton[q)] - {Ab4 f(aq))2 [282(1) _ (8(1))2} d=14



RG monotonicity

In even dimensions trace anomaly coefficient is RG monotone
[Zamolodchikov; Cardy; Komargodski, Schwimmer; Jensen, O’Bannon; Wang] o

* Defect contribution to trace anomaly
(TV) = Apuik + 6(2q) [—(—l)d/2 by Eq + (other int. terms) + (ext. terms)]

* Dilaton effective action

S = Str DCFT + Sailaton[P] + - -

Abs [(0P)? d=2

Sdilaton[q)] - {Ab4 f(aq))2 [282(1) _ (8(1))2} d=14




RG monotonicity
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* Defect contribution to trace anomaly
(TV) = Apuik + 6(2q) [—(—l)d/2 by Eq + (other int. terms) + (ext. terms)]

* Dilaton effective action

S = Str DCFT + Sailaton[P] + - -

Sdilaton[q)] » {Ab4 f(8®)2 [282(1) — (8(1))2} d=4

e Differences from bulk case
> No conserved defect stress tensor (vanishes for 1d DCFT)

» Extrinsic anomaly terms (not yet classified in 4d)




RG monotonicity

In even dimensions trace anomaly coefficient is RG monotone
[Zamolodchikov; Cardy; Komargodski, Schwimmer; Jensen, O’Bannon; Wang] o

* Defect contribution to trace anomaly
(TV) = Apuik + 6(2q) [—(—l)d/2 by Eq + (other int. terms) + (ext. terms)]

* Dilaton effective action

S = Str DCFT + Sailaton[P] + - -

Sailaton|®] 2 {Ab4 [(09)? [20%® — (89)?] d =

e Differences from bulk case
> No conserved defect stress tensor (vanishes for 1d DCFT)
» Extrinsic anomaly terms (not yet classified in 4d)

Spherical 2d defects provide another avenue to monotonicity [Sinha’s talk]

d 1 _d




RG monotonicity from entanglement entropy

Entanglement entropy also provides a count of dofs

* Equivalent to sphere partition function
[Casini, Huerta, Myers]

* Inequalities indicate proof method: SSA, QNEC

[Lieb, Ruskai; Bousso et al.; Balakrishnan et al.; Casini, Huerta; Casini, Testé, Torroba]
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RG monotonicity from entanglement entropy

Entanglement entropy also provides a count of dofs

* Equivalent to sphere partition function
[Casini, Huerta, Myers]

* Inequalities indicate proof method: SSA, QNEC

[Lieb, Ruskai; Bousso et al.; Balakrishnan et al.; Casini, Huerta; Casini, Testé, Torrobal]

* Incorporating a line defect

[Affleck, Ludwig; Lewkowycz, Maldacena] ’

AS = 10g<D> + /<TTT>D I

* Improved construction
[Casini, Landea, Torroba]

Srel (pr|oR) = Trg [(log pr — log or) pR]
— A(H,) — AS

Relative entropy to be evaluated on the light cone, where CFT
vacuum has Markov property
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RG monotonicity from entanglement entropy

Construction eliminates /(TTT>D term

0O+... R<1/u
buv —bir + ... R > 1/#

Srel (PR|OR) = {

Positivity of relative entropy gives [Ab > (|

RG monotonicity follows from monotonicity of Srel (Pr|0R)

For higherd, |Ab > O| requires monotonicity + QNEC applied to boosted spheres

Key equation RS/, (R)— (d—3)S.,(R) >0

rel rel

For d=D this proves c-theorems for bulk RG flows

For d>4 would need more derivatives, but such
entropy inequalities are currently not known
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If Ao < 1, relevant perturbation of trivial line
* RG monotonicity: can’t flow to trivial or topological line == DCFT (or runaway)
 E.g: exp (—h / dr ¢1 (T, 0)) in O(N) Wilson-Fischer CFT
DCFT saddle point at large N

[Cuomo, Komargodski, Mezei]
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Applications

External field defect
* Integrate bulk operator on aline exp (—h/ (’))
gl
If Ap < 1, relevant perturbation of trivial line
 RG monotonicity: can’t flow to trivial or topological line =———» DCFT (or runaway)
e E.g: exp <—h / dr ¢1(T, O)) in O(N) Wilson-Fischer CFT
DCFT saddle point at large N

[Cuomo, Komargodski, Mezei]

1
5(5’7) — Wv

bir = —0.1537TN,  aj, =0.5581 N
Marginal tilt operator rotates the external field A (A&) =1
Long DRG flow: A(¢1)uy =05 —  A(d)r = 1.542

Consistent with € - expansion, 2d Ising interface, Monte Carlo
[Allais, Sachdev; Cuomo, Komargodski, Mezei; Assaad, Herbut; Allais; Toldin, Assaad, Wessel]
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External field defects in other models

* Closed set of Schwinger-Dyson equations

for one-point functions in melonic theories
[Popov, Wang]

JJJJJJJJJJJJJJJJJJJI JJJJJJJ

melonic tree



(Gl
External field defects in other models

* Closed set of Schwinger-Dyson equations

for one-point functions in melonic theories
[Popov, Wang]

JJJJJJJJJJJJJJJJJJJI JJJJJJJ

melonic tree

* In Gross-Neveu-Yukawa model A(oys) < 1, can deform trivial line exp (—h/ O'Hs>
gl

[Giombi, Helfenberger, Khanchandani]



exp (—h / dr ¢1(T, 0)) models turning on magnetic field for a couple of lattice sites
—

External field defect
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Impurity: new degrees of freedom at the defect

SpQFT =ScFT + SqMm — V/dT ¢S

* Natural setup O(3) CFT coupled to spin-1/2 impurity

* Variants: O(N) model coupled to impurity in spinor rep.
bap = —PBa, (@, =1,...N) sigma model coupled to impurity

in O(N) spinor rep.
... [Liu, Shapurian, Vishwanath, Metlitski]
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Impurity: new degrees of freedom at the defect

SpQFT =ScFT + SqMm — W/dT ¢S

* Natural setup O(3) CFT coupled to spin-1/2 impurity

* Variants: O(N) model coupled to impurity in spinor rep. Lo

bap = —PBa, (@, =1,...N) sigma model coupled to impurity
in O(N) spinor rep.
... [Liu, Shapurian, Vishwanath, Metlitski]

* 0O(3) model coupled to spin-s impurity

[Cuomo, Komargodski, Mezei, Raviv-Moshe]

SQM:/dTEZ, Zz = 28, S“:Z%z, buv = 2s+1
1/s expansion: impurity spin is slow

7 = / 4% | D¢, Dy exp {—sext, o (1) — / dr vy — —= [ dr “bx” + . ..

1 1 P

averaging over ext. field direction ext. field defect free spins  interactions fixed by sym.

|



Boundary universality in the 3d O(N) CFT y K, y
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Boundary universality in the 3d O(N) CFT 7K /

[Metlitski; Toldin; Gliozzi, Liendo, Meineri, Rago; Padayasi, Krishnan, Metlitski, Gruzberg, Meineri] A1 4
H=— E K15a°53— E KSZS] K
bdy layer,(aS3) bulk, (i)

* Phase diagramfor 2 < N < N,

O > K1
Dirichlet (ordinary) Neumann (special) symmetry breaking disallowed
by CMWH mechanism (extraordinary log)

e Extraordinary log described by symmetry breaking BC coupled to boundary sigma model
through tilt operator



Novelty: existence of DCFT/BCFT was a dynamical question in O(N) CFT CR, y

* The existence of conformal Wilson and ‘t Hooft lines is also

a dynamical question K
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Novelty: existence of DCFT/BCFT was a dynamical question in O(N) CFT

* The existence of conformal Wilson and ‘t Hooft lines is also

a dynamical question
[Aharony, Cuomo, Komargodski, Mezei, Raviv-Moshe; Shytov, Katsnelson, Levitov]

- WLin QED,
WL = exp [z / dr qAT]
CFT in double scaling limit
e -0, g— oo, e’q=fixed

Similar double scaling limits
[Badel, Cuomo, Monin, Rattazzi; Rodriguez-Gomez; Rogriduez-Gomez, Russo; ...]

* Large anomalous dimension for the defect operator

() =12y
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* Naive WL action is fine tuned

3 () =21 gt

WL = exp [i/dT (qAT —g@)]
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Naive WL action is fine tuned

3 () =21 gt

WL = exp [i/dT (qAT —g@)]

DRG flow

New DCFT v alternative quantization

Annihilation of fixed points:
screening of WL by pair production of
fermions down to

B 4
qc_ 62




Naive WL action is fine tuned

3 () =21 gt

WL = exp [i/dT (qAT —g@)]

DRG flow

New DCFT v alternative quantization

Annihilation of fixed points:
screening of WL by pair production of
fermions down to

B 4
qc_ 62

In contrast, with bosons complete screening
Exponentially large screening clouds




Screening common feature in gauge theories

« 3d QED at large N, E(q/Ny)

A (99) =14 /1 - 4B(g/Ny)?




Screening common feature in gauge theories

 3d QED at large N

A (99) =14 /1 - 4B(g/Ny)?

Check: equal mass to fermions gives
U(1)+n; CStheory with Ny WLs
In UV we have just enough 1.12N; distinct WLs
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Wilson lines

Screening common feature in gauge theories

 3d QED at large N

A () =14 4/1-4B(q/Ny)?

Check: equal mass to fermions gives
U(1)+n; CStheory with N WLs
In UV we have just enough 1.12N; distinct WLs

* In graphene (mixed dimensional QED)
screening experimentally observed
Would need Z>137 to be accessible in atomic
physics

[Wang et al.; Pomeranchuk, Smorodinsky]

 Two WL DCFTs in planar CS matter theories,

closed set of loop equations
[Gabai, Sever, Zhong]
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Comparison and summary
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Ext. field defect
Protected by RG
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Spin impurity
Partial protection by
one-form sym., existence

dynamical question

Conformal boundaries
Existence dynamical
question

Wilson line
Screening dynamics



Defect dynamics

Comparison and summary

_* -
_‘_ -

| |
kA AR R
AR A - AR AR AN - SO :
- # an- - 2t (@ ¥ -
e n@n K
—aa*— - AN -
B Bk S 3
| | | | | | | | | | |
Ext. field defect Spin impurity Conformal boundaries Wilson line
Protected by RG Partial protection by Existence dynamical Screening dynamics
monotonicity one-form sym., existence question

dynamical question

For dynamical questions we have perturbative expansions and numerical methods

A

* A(¢) inOrdinary BCFT in O(N) model

N2 [N=3 [n=a JEOTES O(x)

€ - expansion 1.19 1.153 1.125 <V(Z)> -
Bootstrap 1.2342(9) 1.198(1) 1.172 —
Monte Carlo  1.2286(25) 1.194(3) 1.158(3) O(y) O(y)
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Bootstrap

Bootstrap dream: classify all CFTs
Defect version: classify all defects for a given CFT

* Minimal possible bjine given a bulk CFT,

* Simplicity: Crossing equation is simpler than for bulk and looks very constraining
Richness: Can introduce any defect degrees of freedom
Shortcoming: No positivity

* Fusion of defects in its infancy

» Fusion of conformal boundary with topological defect lines in CFT,

> Free theories and e -expansion



Start with local operator bootstrap in free theories

* Codim-2 defects trivial in one real free scalar and in 4d Maxwell
[Lauria, Liendo, van Rees, Zhao; Herzog, Shrestha]

* New BCFT even for one real free scalar from kink in bootstrap
[Behan, Di Pietro, Lauria, van Rees]

* Rich DCFT physics in O(3) free scalar (in fractional d)

[Cuomo, Komargodski, Mezei, Raviv-Moshe; Beccaria, Giombi, Tseytlin; Nahum]

e SL(2,7Z) orbits of BCFTs for 4d Maxwell
[Di Pietro, Gaiotto, Lauria, Wu; Witten]






Conclusions and the future

Defect RG monotonicity from dilaton effective actions and quantum information
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Three routes do defects: external field, new dofs, gauging
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Bootstrap and (Quantum) Monte Carlo

Future: interplay between DCFT, topological defects, integrability and AdS/CFT,
bootstrap, quantum simulation



