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Correlation functions in large charge states


• Large charge perturbation theory, non-perturbative effects,  duality


• An emergent ’t Hooft-like expansion parameter 


• A large charge gravity regime

SL(2,ℤ)

This talk is about large charge limit of four dimensional  super 

Yang-Mills theory

𝒩 = 4

What is the large charge limit of semiclassical string theory in AdS?

1/20



Setup

Exactly marginal gauge coupling τ =
θ

2π
+

4πi
g2

≡ x + iy

The theory enjoys S-duality — is  invariant —  fundamental domain  of SL(2,ℤ) τ ∈ ℱ SL(2,ℤ)

 Super-Yang Mills theory on  with gauge group 𝒩 = 4 ℝ4 SU(N)

ℱ
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Setup

1/2-BPS operators  : Lorentz scalar ,  = R-charge 𝒪p Δ p

Exactly marginal gauge coupling τ =
θ

2π
+

4πi
g2

≡ x + iy

The theory enjoys S-duality — is  invariant —  fundamental domain  of SL(2,ℤ) τ ∈ ℱ SL(2,ℤ)

 Super-Yang Mills theory on  with gauge group 𝒩 = 4 ℝ4 SU(N)

ℱ

𝒪p = [Tr(ϕ2)]p/2

Multi-trace composite of 
stress-tensor

2/20

We will be interested in four-point correlation functions of such operators



What exactly are we computing?

⟨0 𝒪p𝒪2𝒪2𝒪p 0⟩c
∼ ℋ(N)

p (U, V; τ, τ̄)  conformal cross ratiosU, V

In particular we look at four-point correlators of the type:
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What exactly are we computing?

⟨0 𝒪p𝒪2𝒪2𝒪p 0⟩c
∼ ℋ(N)

p (U, V; τ, τ̄)

Generically hard to compute !

 conformal cross ratiosU, V

𝒢(N)
p (τ, τ̄) = ∫ dUdV ρ(U, V) ℋ(N)

p (U, V; τ, τ̄)

Less ambitious : Average out the dependence on the cross-ratios and consider a simpler object

“Integrated correlators”

 is non-trivial function: R-charge , rank  and non-holomorphic in 𝒢 p N τ

In particular we look at four-point correlators of the type:
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Localization formula

𝒢(N)
p (τ) ∼ ∫

∞

0
dr∫

π

0
dθ

r3 sin2 θ
U2

ℋ(N)
p (U, V; τ)

𝒢(N)
p (τ) ∼ ∂p

τ∂p
τ̄∂2

m log 𝒵𝕊4(N; τ, m)
m=0

U = 1 + r2 − 2r cos θ
V = r2

  can be computed via supersymmetric localization of the  theory on  
[Binder, Chester, Pufu, Wang], [Chester, Green, Pufu, Wang, Wen], [Dorigoni, Green, Wen], [Gerchkovitz, et. al.]
𝒢(N)

p (τ) 𝒩 = 2* S4

Partition function  determined by supersymmetric localization 

[Pestun], [Nekrasov], [Fucito, Morales, Poghossian], [Gerchkovitz, et. al.], …

𝒵𝕊4
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Localization formula

𝒢(N)
p (τ) ∼ ∂p

τ∂p
τ̄∂2

m log 𝒵𝕊4(N; τ, m)
m=0

Partition function  determined by supersymmetric localization 

[Pestun], [Nekrasov], [Fucito, Morales, Poghossian], [Gerchkovitz, et. al.], …

𝒵𝕊4

  can be computed via supersymmetric localization of the  theory on  
[Binder, Chester, Pufu, Wang], [Chester, Green, Pufu, Wang, Wen], [Dorigoni, Green, Wen], [Gerchkovitz, et. al.]
𝒢(N)

p (τ) 𝒩 = 2* S4

In practice, we exploit this connection to compute  exactly in all parameters !𝒢(N)
p (τ)

U = 1 + r2 − 2r cos θ
V = r2𝒢(N)

p (τ) ∼ ∫
∞

0
dr∫

π

0
dθ

r3 sin2 θ
U2

ℋ(N)
p (U, V; τ)
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Exact solution

 can be written as a spectral integral [Paul, Perlmutter, HR], [Collier, Perlmutter]𝒢(N)
p (τ)

𝒢(N)
p (τ) = ⟨𝒢(N)

p ⟩ +
1

4πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2g(N)

p (s)E*
s (τ)
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Exact solution

constant piece

⟨𝒢(N)
p ⟩ = vol(ℱ)−1 ∫ℱ

dxdy
y2

𝒢(N)
p (τ)

ℱ

Constant piece = average over the  conformal manifold𝒩 = 4

 can be written as a spectral integral [Paul, Perlmutter, HR], [Collier, Perlmutter]𝒢(N)
p (τ)

𝒢(N)
p (τ) = ⟨𝒢(N)

p ⟩ +
1

4πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2g(N)

p (s)E*
s (τ)
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Exact solution

ΔτE*
s (τ) = s(1 − s)E*

s (τ)

Δτ = − y2 (∂2
x + ∂2

y)

The entire coupling dependence packaged into the Eisenstein series E*
s (τ)

 can be written as a spectral integral [Paul, Perlmutter, HR], [Collier, Perlmutter]𝒢(N)
p (τ)

E*
s (τ) = E*

1−s(τ)

Real analytic completed

Eisenstein series 

𝒢(N)
p (τ) = ⟨𝒢(N)

p ⟩ +
1

4πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2g(N)

p (s)E*
s (τ)
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Eigen function of the 
hyperbolic laplacian

functional identity



Exact solution

𝒢(N)
p (τ) = ⟨𝒢(N)

p ⟩ +
1

4πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2g(N)

p (s)E*
s (τ)

The entire coupling dependence packaged into the Eisenstein series E*
s (τ)

Real analytic completed

Eisenstein series 

E*
s (τ) = Λ(s)ys + Λ(1 − s)y1−s +

∞

∑
k=1

4 cos(2πkx)
σ2s−1(k)

ks− 1
2

yKs− 1
2
(2πky)

non-zero modeszero modes

<latexit sha1_base64="WumBQjwWePtJPruy9n++fTAA6hA=">AAAB6XicbVDLSgNBEOzxGeMr6tHLkCAIQtgVUY9BLx6jmAdklzA7mU2GzM4uM7PCsuQPvAgq4tU/8pa/cfI4aGJBQ1HVTXdXkAiujeOM0crq2vrGZmGruL2zu7dfOjhs6jhVlDVoLGLVDohmgkvWMNwI1k4UI1EgWCsY3k781hNTmsfy0WQJ8yPSlzzklBgrPXh5t1Rxqs4UeJm4c1Kplb2z13Etq3dL314vpmnEpKGCaN1xncT4OVGGU8FGRS/VLCF0SPqsY6kkEdN+Pr10hE+s0sNhrGxJg6fq74mcRFpnUWA7I2IGetGbiP95ndSE137OZZIaJulsUZgKbGI8eRv3uGLUiMwSQhW3t2I6IIpQY8Mp2hDcxZeXSfO86l5WL+5tGjcwQwGOoQyn4MIV1OAO6tAACiE8wxu8oyF6QR/oc9a6guYzR/AH6OsHuRuQeQ==</latexit> {
instanton corrections

Λ(s) = π−sΓ(s)ζ(2s)
perturbative series

 can be written as a spectral integral [Paul, Perlmutter, HR], [Collier, Perlmutter]𝒢(N)
p (τ)

Fourier decomposition 
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τ =
θ

2π
+

4πi
g2

≡ x + iy



Exact solution

𝒢(N)
p (τ) = ⟨𝒢(N)

p ⟩ +
1

4πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2g(N)

p (s)E*
s (τ)

Eisenstein overlap

All remaining info contained in Eisenstein overlap g(N)
p (s)

1. Completely fixed from perturbation theory data (via the localization formula)


2. At finite  these are polynomials of  symmetric under  (from )N s s ↔ 1 − s E*
s (τ) = E*

1−s(τ)

 can be written as a spectral integral [Paul, Perlmutter, HR], [Collier, Perlmutter]𝒢(N)
p (τ)
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Exact solution

𝒢(N)
p (τ) = ⟨𝒢(N)

p ⟩ +
1

4πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2g(N)

p (s)E*
s (τ)

Eisenstein overlap

 can be written as a spectral integral [Paul, Perlmutter, HR]𝒢(N)
p (τ)

Closed form solution

g(N)
p (s) = Fp(N, s) g(N)

2 (s)

g(N)
2 (s) =

N
N + 1 3F2(2 − N, s,1 − s; 3,2; 1)

Fp(N, s) =
N2 − 1

2s(1 − s)
1 − 3F2 (−

p
2

, s,1 − s; 1,
N2 − 1

2
; 1)

Products of  Hypergeometric functions3F2 6/20



Exact solution: A coupled harmonic system

Δτ𝒬(N)
p−2(τ) = − κp (𝒬(N)

p (τ) − 𝒬(N)
p−2(τ)) + κp−2 (𝒬(N)

p−2(τ) − 𝒬(N)
p−4(τ))

κp :=
p
4 (N2 + p − 3)

𝒬(N)
p (τ) := 𝒢(N)

p (τ) −
1
2 (N2 − 1) Δ−1

τ 𝒢(N)
2 (τ)Shifted correlator:

 satisfies a differential recursion in  [Dorigoni, Green, Wen]𝒢(N)
2 (τ) N
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Exact solution: A coupled harmonic system

Δτ𝒬(N)
p−2(τ) = − κp (𝒬(N)

p (τ) − 𝒬(N)
p−2(τ)) + κp−2 (𝒬(N)

p−2(τ) − 𝒬(N)
p−4(τ))

• Each lattice site = integrated correlator

• Harmonic interactions among lattice sites with a site- and - 

dependent coupling 


• This describes the evolution of a 1D semi-infinite lattice chain 
over the fundamental domain of 

N
κp

SL(2,ℤ)

κp :=
p
4 (N2 + p − 3)
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Towards large charge

Three parameters in : coupling , R-charge  and rank  𝒢(N)
p (τ) τ p N

𝒢(N)
p (τ) = ⟨𝒢(N)

p ⟩ +
1

4πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2g(N)

p (s)E*
s (τ)

g(N)
p (s) = Fp(N, s) g(N)

2 (s)

g(N)
2 (s) =

N
N + 1 3F2(2 − N, s,1 − s; 3,2; 1)

Fp(N, s) =
N2 − 1

2s(1 − s) [1 − 3F2 (−
p
2

, s,1 − s; 1,
N2 − 1

2
; 1)]

entire  dependence 
here

p
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Towards large charge

Three distinct regimes:

p ≫ N2

p = αN2

p ≪ N2

Gravity regime: where  scales with p N2

Both  finite or  largeN N

Both  finite or  largep p

Fp(N, s) =
N2 − 1

2s(1 − s) [1 − 3F2 (−
p
2

, s,1 − s; 1,
N2 − 1

2
; 1)]

9/20



Towards large charge

Three distinct regimes:

A further limit can be taken w.r.t. to the coupling  by manipulating the spectral integralτ

These limits are obtained from expanding the overlaps g(N)
p (s)

𝒢(N)
p (τ) = ⟨𝒢(N)

p ⟩ +
1

4πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2g(N)

p (s)E*
s (τ)

p ≫ N2

p = αN2

p ≪ N2

Gravity regime: where  scales with p N2
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Towards large charge

Three distinct regimes:

A further limit can be taken w.r.t. to the coupling  by manipulating the spectral integralτ

𝒢(N)
p (τ) = ⟨𝒢(N)

p ⟩ +
1

4πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2g(N)

p (s)E*
s (τ)

p ≫ N2

p = αN2

p ≪ N2

Gravity regime: where  scales with p N2

Both  finite or  largeN N

Both  finite or  largep p

These limits are obtained from expanding the overlaps g(N)
p (s)
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Large Charge at Finite  N

p ≫ 1, N fixed

2. Large charge at finite coupling   
(always exists for any QFT with a global symmetry)

p → ∞, τ fixed 

1. Large charge ’t Hooft like limit:  

(non-trivial, previously seen to emerge in  extremal correlators)

p → ∞, λp := g2p fixed 

𝒩 = 2
[Bourget, Rodriguez-Gomez, Russo], [Beccaria], [Grassi, Komargodski, Tizzano]
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Large Charge at Finite : ’t Hooft-like limitN

p ≫ 1, N fixed
g2p = λp fixed

Gauge instantons are exponentially suppressed in : p e−p/λp

Existence of this limit is manifest in the spectral representation of the correlator

𝒢(N)
p (τ) = ⟨𝒢(N)

p ⟩ +
1

4πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2g(N)

p (s)E*
s (τ)

E*
s (τ) ∼ g2s

g(N)
p (s) ∼ ps
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p ≫ 1, N fixed
g2p = λp fixed

A genus-like expansion in the double-scaled large charge limit 𝒢(N)
p (τ) =

∞

∑
𝔤=0

p−𝔤𝒢(N)
𝔤 (λp)

𝒢(2)
𝔤=0 (λp) = ∫

∞

0
dw

w
sinh2(w) [1 − J0 (w 2λp /π)]

Genus 0 result for SU(2)

Large Charge at Finite : ’t Hooft-like limitN

𝒢(2)
𝔤=0 (λp) = −

1
2πi ∫Re s=1+ϵ

ds(2s − 1)Γ2(1 − s)ζ(2 − 2s)(
λp

2 )
s−1

deforming integration 
contour to the right

Independently obtained by 
[Caetano, Komatsu, Wang]
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p ≫ 1, N fixed
g2p = λp fixed

A genus-like expansion in the double-scaled large charge limit 𝒢(N)
p (τ) =

∞

∑
𝔤=0

p−𝔤𝒢(N)
𝔤 (λp)

𝒢(2)
𝔤=0 (λp) = ∫

∞

0
dw

w
sinh2(w) [1 − J0 (w 2λp /π)]

Genus 0 result for SU(2)

𝒢(2)
𝔤=0 (λp) =

1
2

log (
λp

8π2 ) + 1 + γE + 2π (2λp)
1/4

Li− 1
2 (e

− 2λp) + O (λ−1/4
p )

exponentially suppressed terms

Strong coupling expansion:

Large Charge at Finite : ’t Hooft-like limitN
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p ≫ 1, N fixed
g2p = λp fixedLarge Charge at Finite : ’t Hooft-like limitN

Similar results exist for the  case with the interesting difference that:SU(N)

For even  the strong  expansion terminates at a finite orderN λp

For odd  the strong  expansion does not terminateN λp

In both cases the scale of non-perturbative corrections at large  is the same   λp ∼ e
− 2λp
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Large Charge at Finite : Finite CouplingN

p ≫ 1, N fixed
τ fixed

Gauge instantons are no longer suppressed 

The spectral representation of the integrated correlator easily facilitates the large 
charge expansion

14/20

NP terms in the large charge expansion can be rigorously computed



Large Charge at Finite : Finite CouplingN p ≫ 1, N fixed
τ fixed

ℱ(2)
NP(p; τ) ∼ p1/4 ∑

(m,n)≠(0,0)

exp (−2 2pYmn(τ)) (Ymn(τ))
1
4 + O (p−1/4)

Ymn(τ) =
1
4

g2 |m + nτ |2

Encodes exponentially suppressed corrections in large charge ∼ e− p

mass of a BPS-saturated 
dyonic statesM = 2 pg |m + nτ |Exact NP scale

First NP correction of its kind rigorously computed in the literature

(also discussed in [Grassi, Komargodski, Tizzano], [Hellerman] in the  SQCD context)𝒩 = 2
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Gravity Regime: Large Charge at Large N

p ≫ 1, N ≫ 1, α =
p

N2
 fixed , α ∈ ℝ≥0

A triple-scaled limit:   with   and    finite N → ∞ λ = g2
YMN α Semi-classical 

string theory 
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The correlators  in triple-scaled limit organizes into a genus expansion (!)𝒢(N)
αN2(λ)

𝒢(N)
αN2(λ) =

∞

∑
𝔤=0

N2−2𝔤 𝒢(𝔤)
α (λ)

p ≫ 1, N ≫ 1, α =
p

N2
 fixed 

g2
YMN fixedGravity Regime: Large Charge at Large N
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The correlators  in triple-scaled limit organizes into a genus expansion (!)𝒢(N)
αN2(λ)

𝒢(N)
αN2(λ) =

∞

∑
𝔤=0

N2−2𝔤 𝒢(𝔤)
α (λ)

𝒢(0)
α (λ) =

log(α + 1)
4

+
1

2πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2Λ(1 − s)( λ

4π )
s−1

h(0)
α (s)

Genus 0 term has the spectral representation

h(0)
α (s) = h̃0(s) − h̃α(s), h̃α(s) = 2F1(1 − s, s; 1; − α)

2s(1 − s)
g(0)

2 (s)

p ≫ 1, N ≫ 1, α =
p

N2
 fixed 

g2
YMN fixed

22sΓ (s + 1
2 )

π(2s − 1)Γ(s + 1)Γ(s + 2)
usual ’t Hooft limit term

Gravity Regime: Large Charge at Large N
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The correlators  in triple-scaled limit organizes into a genus expansion (!)𝒢(N)
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𝒢(0)
α (λ) =

log(α + 1)
4

+
1

2πi ∫Re s= 1
2

ds
π

sin(πs)
s(1 − s)(2s − 1)2Λ(1 − s)( λ

4π )
s−1

h(0)
α (s)

Genus 0 term has the spectral representation

We can learn about the NP physics of this regime by analysing the above equation

p ≫ 1, N ≫ 1, α =
p

N2
 fixed 

g2
YMN fixedGravity Regime: Large Charge at Large N

h(0)
α (s) = h̃0(s) − h̃α(s), h̃α(s) = 2F1(1 − s, s; 1; − α)

2s(1 − s)
g(0)

2 (s)
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p ≫ 1, N ≫ 1, α =
p

N2
 fixed 

g2
YMN fixed

𝒢(0)
α (λ ≫ 1) =

log(α + 1)
4

+ 4 [1 − 2F1 (−
1
2

,
3
2

; 1; − α)] ζ(3)
λ3/2

+ O(λ−5/2)

Strong coupling expansion:

: supergravity resultO(λ0) : leading  correctionO(λ−3/2) α′￼

The strong coupling expansion is asymptotic. There are exponentially small corrections

The scale of such corrections is controlled by weak coupling radius of convergence [Collier, Perlmutter]

Two sets of NP corrections at large λ

e−2 λ e−2 λ/Rα

emergent subleading scale

Rα = 1 + 2α − 2 α(α + 1)

leading NP effect

Gravity Regime: Large Charge at Large N
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In  holographyAdS5 × S5

e−2 λ ⟷ fundamental string worldsheet instantons 2πTF1 = λ

What about the emergent scale   ( )e−2 λ/Rα Rα = 1 + 2α − 2 α(α + 1)

e−2 λ/Rα ⟷ fundamental string action in a background dual to |𝒪p⟩

p ≫ 1, N ≫ 1, α =
p

N2
 fixed 

g2
YMN fixed

 large charge dressing factorRα :

New prediction for novel NP effects in the gravity regime of large charge

Gravity Regime: Large Charge at Large N
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Thank You!

An emergent double-scaled t’ Hooft like limit: Interesting NP aspects, genus expansion 
and connections to RMT

Large charge large  regime  : novel NP effects, worthy of further investigationN p ∼ N2

These exact results for integrated correlators in  SYM serve as a useful 
benchmark for future EFT approach to computing correlators at large charge

𝒩 = 4

Conclusion

The recursion formulas for integrated correlators can be generalized to other 1/2 BPS 
operator insertions. Recently worked out and proven in [Brown, Wen, Xie [2303.13195]]
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