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1- Introduction
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Entanglement Entropy Definition
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Starting point: bipartite quantum system +—»
Choose some state
Integrate out d.o.f. in the complement —»

Compute Von Neumann entropy of

Entanglement Entropy Counts # of entangled

Spp = —Tr[palogpal bits between A and B

Geometric entropy +—» is a spatial region

i

Focus In this talk

(t = constant)




Entanglement Entropy

cred. T. Takayanagi




1.1- Entanglemet Entropy
in (3d) QFTs
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Entanglement Entropy

QFTaq — UV divergent but universal terms

regulator
dependent!

Leading term controlled by local et
correlations at both sides of 2: Area law

(Volume law for
excited states)

Some of the subleading terms encode well-
defined information about the theory




Entanglement Entropy
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N 3d CFTs

General structure:

Universal

term

Disk region

oure \

constant equals Free
energy on S°

F-theorem! ,
3d version of

‘c-theorem”

controlled by
local correlator

— scalar
— fermion
— holography
o Ising (N=1)
v XY (N=2)
b A Heisen. (N=3)
NOT

ALLOWED

==+ minimal

Corner region




1.2- Holographic
Entanglement Entropy
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Holographic Entanglement Entropy

RyuTakayanagi prescription
for CFTs dual to Einstein gravity

AdS boundary
boundary
conformal field
—_ S

AdS bulk
spacetime

Extremize area functional over all bulk

surfaces whose boundary coincides with
Evaluate on the extremal

[

Tons of consistency checks and applications Proof
Generalized to: time dependence

higher-order gravities

guantum corrections, etc.




2- Torus Entanglement
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Torus Entanglement

Smooth curved surfaces are not ideal for numerics

Pixelization leads to cormers = pollutes the result with log. terms

Finite-size effects also pollute unless total space much larger than A

Alternative

}

Flat but finite entangling surfaces

!

Spaces with non-trivial topology

less explored

—




2.1- General results
& holography
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Torus Entanglement

Area(0A)

S(4) = B=03

— x(0;b:) + -+

Regulator independent

ST '(0) <0,  Xx"(6) >0,

00.0 03210 «154 2055257+ 30
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Witczak-Krempa, Hayward, Melko Chen, Cho, Faulkner, Fradkin
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Torus Entanglement

(T:O) Witten;
Holography —» AdS solitons .. e

HOEREBNEENNY doubly-\Wick-rotated black branes
smallest dim. must be compact

f additional (d-2) spatial conformal boundary
dimensions also periodic foliated by T4

AdS solitons dominate the semiclassical partition function at small temperatures




Torus Entanglement

27k 1 r'(3)!2
= + =
b | 6 [130636877bG

bx(@)I (2 x)

Comer like

2m
0) = \
x(0) 3G

Disconnected
nolographic surface

0 VL mi2 3mid I

x1€) 1@ k)

Non-smoothness (large-N)
Smooth for free scalar




2.2- Renormalized EE
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Torus Entanglement

PB, Witczak-Krempa

—

Focus on cylinder limit with A covering half of it

Pure constant

|

Very similar to disk
entanglement

F-theorem

Casini, Huerta
Casini, Huerta, Myers, Yale

\ 4

Monotonicity theorem for y?
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Renormalized EE

Away from the fixed point, additional divergences

Solution SHit

use “Renormalized” EE

5S(R)
OR

Removes divergences
Isolates F at fixed point

+ R

This is in fact the quantity
that satisfies the F-theorem

[

Half cylinder

Removes divergences
[solates y at fixed points

(d=4 case is more interesting
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Holographic RG flow

[

Deform CFT with relevant scalar perturbation

4 2
S =Sorr +2 [ z0() IR ’:/d{:swa [6 R——3u¢6"¢—m7¢2+

Expansion parameter —p )‘zho X )\LS_A marginality

G

Perturbed metric Regularity

Scalar field back-reaction
at leading order fixes

EE gets corrected in the perturbed geometry

—
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Holographic RG flow

S = 2L_y _ (3A —4) LY | Extradivergences
Ge 32(A =5/2) 275G ~  Nalve subtraction of

3 6—4AD L7_4A/\2 ]
() " Doa Ly A" area law fails

T T42A—1) 7AG

Corrected universal
constant

Unphysical divergence
Sl =y

3—A
@ (hl(o_ T

(1) 3—A Doa /1 d¢
0

TI6(A—5/2) 22A-1)
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Holographic RG flow

Removes all divergences
and issue at A=5/2

™

'Yr(Ly) 3G

1 —n,(A)L;E- N
| X




e —

3- Summary

Defining good measures of degrees of freedom in CFTs is
challenging

F-theorem for disk REE achieves it. But smooth regions
not nice for simulations

Torus EE quite unexplored. Alternative to smooth regions.

In d=3 always decreasing
at leading order for a
particular holographic RG
flow.

What happens for more complicated flows and outside
holography?

'YSO)(LHT) = =S(L,)

L, dS(Ly) L2 dS(Ly)
+a

2 0L, 2 0L}

REE not uniquely defined in d-=4.

+ (1 - a)
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Depends
on aspect ratio

Very different from smooth surface
entanglement in flat space

on S4
when A

a-theorem sphere

(no use of EE)

Smooth
(sphere)

C1[,,0°S(R) _OS(R)
S(r)= 3 B~ R |

Ssphere = B(R/€)? — 4alog(R/¢)

Removes divergences
Isolates a at fixed points

Scalable region
fix

Half cylinder

Removes divergences
|solates y at fixed points

W) (Ly;r) = —S(L1)
L1 8S(L,)

+(1—a)—

L2 828(Ly)
> oL, %%

OL?
Family of REE




