Holographic Torus
Entanglement and its RG flow

Pablo Bueno

V Postgraduate Meeting On Theoretical Physics
Oviedo - November 2016
Based on:
PB, Witczak-Krempa, arXiv:1611.01846
1- Introduction
 1.1- EE in (3d) QFTs
 1.2- Holographic EE

2- Torus Entanglement
 2.1- General results & holography
 2.2- Renormalized EE
 2.3- Holographic RG flow

3- Summary
1- Introduction
Entanglement Entropy

Definition

Starting point: bipartite quantum system \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \)

Choose some state \(\rho \in \mathcal{H} \)

Integrate out d.o.f. in the complement

Compute Von Neumann entropy of \(\rho_A \)

\[S_{EE} = - \text{Tr} [\rho_A \log \rho_A] \]

Entanglement Entropy

Counts # of entangled bits between A and B

Focus in this talk

Geometric entropy \(A \) is a spatial region

\[(t = \text{constant}) \]
Hard to compute!
Numerics
Free fields

CM: Order parameter
QFT: F-theorem
Quantum gravity

Wen, Levine; Kitaev, Preskill…
Useful in
Melko et al…
Islam et al.
Measurable?
Casini, Huerta…
A lot of people!

Disk entanglement
cred. T. Takayanagi

Entanglement Entropy

Why?

Gravity
G_N

Quantum Entanglement

Quantum Many-body System
\hbar

Quantum Information Theory
(Stat.Mech.)
k_B, \hbar

cred. T. Takayanagi
1.1- Entanglement Entropy in (3d) QFTs
Entanglement Entropy

In QFTs

$\text{QFT}_d \quad \longrightarrow \quad \text{UV divergent but universal terms}$

$$S_{EE}(A) = c_0 \frac{R^{d-2}}{\delta_{d-2}} + c_1 \frac{R^{d-3}}{\delta_{d-3}} + \ldots$$

Leading term controlled by local correlations at both sides of Σ: **Area law**

(Regulator dependent!

Some of the subleading terms encode well-defined information about the theory

(Volume law for excited states)
Entanglement Entropy

In 3d CFTs

General structure:

\[S_{3d} = B \frac{L}{\epsilon} + S_{\text{univ}} \]

“Area”-law term

Non-universal constant

Relevant IR scale

Universal term

UV cut-off

Disk region

\[S_{\text{univ}} = -F \]

pure constant

equals Free energy on \(S^3 \)

F-theorem!

Casini, Huerta

Corner region

\[S_{\text{univ}} = -q(\Omega) \log \left(\frac{L}{\epsilon} \right) \]

controlled by local correlator

exact in almost smooth limit

\[q(\Omega \sim \pi) = \sigma \cdot (\pi - \Omega)^2 \]

Universal term

PB, Myers, Witczak-Krempa
1.2- Holographic Entanglement Entropy
Holographic Entanglement Entropy

Ryu-Takayanagi prescription

for CFTs dual to *Einstein* gravity

Extremize area functional \(\mathcal{A}(V) \) over all bulk surfaces \(V \) whose boundary coincides with \(\Sigma \)

Evaluate \(\mathcal{A}(V) \) on the extremal \(V \)

Tons of consistency checks and applications

Generalized to: time dependence

higher-order gravities

quantum corrections, etc.

Many people

Proof

Lewkowycz, Maldacena.
2- Torus Entanglement
Smooth curved surfaces are not ideal for numerics

Pixelization leads to corners → pollutes the result with log. terms

Finite-size effects also pollute unless total space much larger than A

Alternative

↓

Flat but finite entangling surfaces

↓

Spaces with non-trivial topology

less explored
2.1- General results & holography
Torus Entanglement

Spatial dimensions form a $T^{(d-1)}$

$$S(A) = B \frac{\text{Area}(\partial A)}{\epsilon^{d-2}} - \chi(\theta; b_i) + \cdots$$

$$b_i = L_x / L_i$$

Regulator independent

SSA

$$\chi'(\theta) \leq 0, \quad \chi''(\theta) \geq 0,$$

$$\chi(\theta \to 0) = \frac{(2\pi)^{d-2} \kappa}{\theta^{d-2} b_1 \cdots b_{d-2}}$$

$$\chi(\theta \approx \pi) = \sum_{\ell=0} c_{\ell} \cdot (\pi - \theta)^{2\ell}$$

Witczak-Krempa, Hayward, Melko

Chen, Cho, Faulkner, Fradkin
Torus Entanglement

(T=0)

Holography \rightarrow AdS solitons

Witten; Horowitz, Myers

$$ds^2 = \frac{1}{z^2} \left[\frac{dz^2}{f(z)} + f(z) \, dx^2 + dy_{(d-2)}^2 - dt^2 \right]$$

$$f(z) = 1 - (z/z_h)^d$$

doubly-Wick-rotated black branes

$$L_x = 4\pi z_h/d$$

smallest dim. must be compact

If additional (d-2) spatial dimensions also periodic \rightarrow conformal boundary foliated by $T^{(d-1)}$

AdS solitons dominate the semiclassical partition function at small temperatures
Focus in this talk: \(d=3\)

Torus Entanglement

For \(L_y > L_x\):

\[
\chi(\theta) = \left[\frac{2\pi \kappa}{b} \right] \frac{1}{\theta} + \left[\frac{\Gamma(\frac{1}{4})^{12}}{1306368\pi^7 b G} \right] \theta^5 + \cdots
\]

Corner like

(Non-generic) jump at \(L_x = L_y\)

For \(L_x > L_y\):

\[
\chi(\theta) = \left[\frac{2\pi \kappa}{b} \right] \frac{1}{\theta} + \left[\frac{\Gamma(\frac{1}{4})^4 b^2}{432\pi G} \right] \theta^2 + \cdots
\]

\[
0 \leq \frac{\theta}{2\pi} \leq \frac{p}{b} \quad p \simeq 0.1889
\]

Non-smoothness (large-N)

Smooth for free scalar

Disconnected holographic surface

Chen, Cho, Faulkner, Fradkin

PB, Witczak-Krempa

Witczak-Krempa, Hayward, Melko
2.2- Renormalized EE
Torus Entanglement

Focus on cylinder limit with A covering half of it

\[S = \frac{L_y}{4G\epsilon} - \gamma \]
\[\gamma = \frac{\pi}{3G} \]

\[S_{\text{disk}} = \mathcal{B}R/\epsilon - F \]

F-theorem
Casini, Huerta
Casini, Huerta, Myers, Yale

Pure constant

Very similar to disk entanglement

Monotonicity theorem for \(\gamma \)?
Renormalized EE

Away from the fixed point, additional divergences

Solution \rightarrow use “Renormalized” EE

Disk

$$S_{\text{disk}} = B R / \epsilon - F$$

$$F(R) = -S(R) + R \frac{\partial S(R)}{\partial R}$$

Removes divergences
Isolates F at fixed point

Half cylinder

$$S_{\text{half cyl.}} = BL_y / \epsilon - \gamma$$

$$\gamma_{\alpha}^{(L_y)} = -S + L_y \frac{\partial S}{\partial L_y} + \alpha L_y^2 \frac{\partial^2 S}{\partial L_y^2}$$

Removes divergences
Isolates γ at fixed points

This is in fact the quantity that satisfies the **F-theorem**

(d=4 case is more interesting)
2.3- Holographic RG flow
Holographic RG flow

Deform CFT with relevant scalar perturbation

\[S = S_{\text{CFT}} + \lambda \int d^d x O(x) \]
\[I = \int \frac{d^4 x \sqrt{-g}}{16\pi G} \left[6 + R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{m^2}{2} \phi^2 + \ldots \right] \]
\[m^2 = \Delta (\Delta - 3) \]

Expansion parameter

\[\lambda z_{h0}^{3-\Delta} \propto \lambda L_y^{3-\Delta} \]

Unitary bound

\[1/2 < \Delta < 3 \]

Marginality

Perturbed metric

\[ds^2 = \frac{1}{z^2} \left[\frac{dz^2}{f \cdot g_1(z)} + dx^2 + f \cdot g_2(z) dy^2 - dt^2 \right] \]

Regularity

\[z_h = \frac{3L_y}{4\pi} \sqrt{g_1(z_h)g_2(z_h)} \]

Scalar field back-reaction at leading order fixes

\[g_i(z) = 1 + h_i(\zeta) \frac{z_{h0}^{2(3-\Delta)}}{\lambda^2} \]

Where

EE gets corrected in the perturbed geometry
Holographic RG flow

Unphysical divergence at $\Delta = 5/2$

Extra divergences
Naive subtraction of area law fails

Corrected universal constant

\[
S = \frac{L_y}{2G\epsilon} - \frac{(3 - \Delta)}{32(\Delta - 5/2)} \frac{L_y \lambda^2}{\epsilon^{2\Delta - 5} G} + \frac{(3/4\pi)^6}{4(2\Delta - 1)} D_0 \Delta \frac{L_y^{7-4\Delta} \lambda^2}{\epsilon^{1-2\Delta} G} - 2\gamma + \ldots
\]

\[
\gamma = \frac{\pi}{3G} \left[1 - \eta(\Delta) L_y^{2(3-\Delta)} \lambda^2 \right]
\]

\[
\eta(\Delta) = \left(\frac{3}{4\pi} \right)^{2(3-\Delta)} \left[\frac{h_1(1) + h_2(1)}{2} + \frac{3 - \Delta}{16(\Delta - 5/2)} - \frac{D_0 \Delta}{2(2\Delta - 1)} - \int_0^1 \frac{d\zeta}{2\zeta^2} \left(h_1(\zeta) - \frac{3 - \Delta}{4} \zeta^{2(3-\Delta)} - D_0 \Delta \zeta^{2\Delta} \right) \right]
\]

PB, Witczak-Krempa
Holographic RG flow

Use REE!

\[\gamma_r(L_y) = -S(L_y) + L_y \frac{\partial S(L_y)}{\partial L_y} \]

\[\gamma_r(L_y) = \frac{\pi}{3G} \left[1 - \eta_r(\Delta) L_y^{2(3-\Delta)} \lambda^2 \right] \]

\[\eta_r(\Delta) = (2\Delta - 5) \eta(\Delta) \]

Removes all divergences and issue at \(\Delta = 5/2 \)

Decreasing for all \(\Delta \)!
3- Summary

Defining good measures of degrees of freedom in CFTs is challenging.

F-theorem for disk REE achieves it. But smooth regions not nice for simulations.

Torus EE quite unexplored. Alternative to smooth regions.

In $d=3$ always decreasing at leading order for a particular holographic RG flow.

\[\gamma_{r}(L_{y}) = \frac{\pi}{3G} \left[1 - \eta_{r}(\Delta)L_{y}^{2(3-\Delta)} \right] \]

What happens for more complicated flows and outside holography?

REE not uniquely defined in $d=4$.

\[\gamma^{(\alpha)}(L_{1}; r) = -S(L_{1}) + (1 - \alpha) \frac{L_{1}}{2} \frac{\partial S(L_{1})}{\partial L_{1}} + \alpha \frac{L_{1}^{2}}{2} \frac{\partial^{2} S(L_{1})}{\partial L_{1}^{2}} \]
Thank you
Very different from smooth surface entanglement in flat space.

\[S = \frac{L_1 L_2}{8G\epsilon^2} - \gamma \]

\[\gamma = \frac{\pi^2}{8G} \frac{L_2}{L_1} \]

Depends on aspect ratio

Free en. on \(S^4 \) when A sphere

a-theorem

Myers, Sinha
Komargodski, Schwimmer (no use of EE)

\[S_{\text{univ}} = I(a, c) \log(l/\epsilon) \]

Smooth (sphere)

\[S_{\text{sphere}} = B(R/\epsilon)^2 - 4a \log(R/\epsilon) \]

\[S(R) = \frac{1}{2} \left[R^2 \frac{\partial^2 S(R)}{\partial R^2} - R \frac{\partial S(R)}{\partial R} \right] \]

Removes divergences
Isolates \(a \) at fixed points

Half cylinder

Removes divergences
Isolates \(\gamma \) at fixed points

\[r = \frac{L_2}{L_1} \]

Scalable region
fix

Family of REE

\[\gamma_r^{(\alpha)}(L_1; r) = -S(L_1) + (1 - \alpha) \frac{L_1}{2} \frac{\partial S(L_1)}{\partial L_1} + \alpha \frac{L_1^2}{2} \frac{\partial^2 S(L_1)}{\partial L_1^2} \]