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Why studying dimensional 
reductions?

String theory has an intrinsic phenomenological problem: it’s defined in 
9+1 dimensions

One looks for solutions of the following form

Internal 
space

External 
space

Often one is interested in the low energy effective theory in (D-d) 
dimensions: (un)gauged supergravity.

The structure of the internal space determines the lower dimensional 
theory. Preserved susy, gauge group, spectrum…

MD ! MD�d ⇥Md



KK compactifications are the standard approach to dimensional 
reductions.  

There is an infinite number of KK modes 

We need to “truncate” to a finite number of d.o.f. 

We call Truncation Ansatz the prescription of selecting the 
degrees of freedom to be kept. 

The problem is to construct the effective action in (D-d) dimensions.

“Consistency” of the ansatz means that the dependence on the 
internal manifold factorises out once the ansatz is inserted in the 
eom. 

All solutions of the lower dimensional theory lift to solutions of the 
higher dimensional one. 

Consistent reductions allow to establish a map between theories in 
different dimensions



Extended symmetry in String 
theory and M-theory

Our goal is to construct effective actions for lower dimensional 
theories 

The D-d dimensional effective action on tori has the following global 
symmetry group

These are the U-duality groups 

They all contain O(d,d) as a subgroup 

d 3 4 5 6 7

group SL(5) SO(5, 5) E6(6) E7(7) E8(8)

T-duality 
group



Extended symmetry in String 
theory and M-theory

These symmetries can be seen from a geometrical point of view on 
the model of GR 

In GR we have diffeomorphisms symmetry and all the quantities 
have defined transformation rules under the group of 
diffeomorphims GL(d) 

One can construct U-duality covariant formalisms 

Double/Exceptional Field Theory [Hull, Zwiebach; Samtleben, Hohm] 

(Exceptional) Generalised Geometry [Hitchin; Gualtieri; Hull; Pacheco, Waldram]



Generalised Geometry

The main idea: define a generalised tangent bundle 

generalised vector V = v + � Structure 
group

O(d, d)

vector
1-form

The structure group of the generalised tangent bundle is        
the T-duality group of toroidal compactifications.

[Hitchin, Gualtieri, ‘01]

Gauge symmetries of the lower-dimensional theory come from the 
metric and p-form potentials of the higher dimensional 
supergravity. 

One needs a formalism treating diffeomorphisms and p-form gauge 
transformations in a unified fashion. 

E ⇠= TM � T ⇤M

O(d, d)



How do we insert fluxes?
O(d,d) formalism encodes the 3-form flux                 H = dB

B(↵) = B(�) � d⇤(↵�)

Connection on a gerbe 
This corresponds to gauge transformations of NSNS supergravity 
gauge potential.

on an overlapping of patches U↵ \ U�Patchings:
V↵ = e�d⇤↵�V�

V = e�BṼ = v + �� ◆vB

Define the twisted generalised vector

2-form

()

This determines the topology of E
adjoint action of O(d,d)

The adjoint action naturally contains a 2-form



Exceptional Generalised 
Geometry

One wants to include RR fields
T-duality group generalises to U-duality: define a generalised tangent 
bundle with a structure group given by the U-duality one.

[Hull; Pacheco, Waldram ‘08]

EGG depends on the theory: focus on IIA
Generalised tangent bundle

Ṽ =
⇣
v,�, �̃,!, ⌧

⌘
generalised vector       
charges of wrapped strings 
and branes

E ⇠= TM � T ⇤M � ⇤5T ⇤M � ⇤evenT ⇤M �
�
TM ⌦ ⇤6T ⇤M

�

Structure group Ed+1(d+1)



Potentials live in the adjoint bundle

adF ⇠= R� (TM ⌦ T ⇤M)� ⇤2T ⇤M � ⇤2TM

� ⇤6TM � ⇤6T ⇤M � ⇤oddTM � ⇤oddT ⇤M

A =
⇣
. . . , B, . . . , B̃, . . . , C

odd

⌘

E has a fibered structure

V = eB̃e�BeC± Ṽ R = eB̃e�BeC±R̃e�C±eBe�B̃

Adjoint rep

B(↵) = B(�) + d⇤(↵�)

C(↵) = C(�) + eB(�)+d⇤(↵�) ^ d⌦(↵�)

. . .

Patching conditions give IIA gauge transformation



Differential structure
Ordinary Lie derivative generates diffeomorphisms

Lvw
µ = v⌫@⌫w

µ � w⌫@⌫v
µ = v⌫@⌫w

µ � (@ ⌦ad v)µ⌫ w
⌫

Dorfman Derivative gl(d,R)

     generates generalised diffeomorphisms = diffeos + gauge   LV

Gauge algebra [�V , �
0
V ] = �LV V 0

[Pacheco, Waldram]

LV V
0 = V · @V 0 � (@ ⌦ad V ) · V 0

�g = Lvg �C± = LvC± + d!⌥ + . . .

�B = LvB + d� �B̃ = LvB̃ + d�̃+ . . .



One can put the analogous of the Riemaniann metric on E 

Defined in terms of the generalised frame

Generalised Metric

G�1 = �ABEA ⌦ EB

Generalised Metric

It contains the metric, the B-field and all RR potentials

Reduced structure

{ẼA} = {êa} [ {ea} [ {ea1...a5} [ {ea2k} [ {ea,a1...a5}

EA = eB̃e�BeCe�e� · ẼA

It parametrises a coset Ed(d)/Hd



One can put the analogous of the Riemaniann metric on E 

Defined in terms of the generalised frame

Generalised Metric

G�1 = �ABEA ⌦ EB

Generalised Metric

It contains the metric, the B-field and all RR potentials

Reduced structure

{ẼA} = {êa} [ {ea} [ {ea1...a5} [ {ea2k} [ {ea,a1...a5}

EA = eB̃e�BeCe�e� · ẼA

It parametrises a coset Ed(d)/Hd

G =

✓
g �Bg�1B Bg�1

�g�1B g�1

◆
For E ⇠= T � T ⇤



Generalised Scherk-Schwarz 
reductions

Goal: generalise Scherk-Schwarz reduction to Exceptional 
Generalised Geometry. 

Basic ingredients: 

Generalised Parallelisability 

Generalised frames 

Generalised ansatz

As the ordinary ones, these reductions preserve all the SUSY.



Generalised Leibniz parallelisation

Topological condition
On        there exists a frame {EA} , A = 1, . . . , dMd

s. t. 8p 2 M , {EA|p} is a basis for the gen. tangent bundle

Differential condition

The frame satisfies LEAEB = X C
AB EC

where           are constants andX C
AB

[XA, XB ] = �X C
AB XC

Extend to EGG the notion of parallelisability [Lee, Strickland-Constable, Waldram  ‘14]

        are related to the embedding tensor of the lower dim sugraX C
AB

X C
AB = ⇥ ↵

A (t↵)
C

B

GLP implies the manifold is a coset M ⇠= G/H

GLP condition



Generalised frame and metric

Given the generalised tangent bundle

E ⇠= TM � T ⇤M � ⇤5T ⇤M � ⇤±T ⇤M �
�
TM ⌦ ⇤6T ⇤M

�

Define the conformal split frame as a twist

{ẼA} = {êa} [ {ea} [ {ea1...a5} [ {ea2k} [ {ea,a1...a5}

EA = eB̃e�BeCe�e� · ẼA

Define the inverse generalised metric

G�1 = �ABEA ⌦ EB



Generalised Scherk-Schwarz ansatz

Scalar ansatz

Ed+1(d+1)Twist the frame by an element of 

E

0 M
A (x, y) = U

B
A (x)EB(y)

Compare with the generalised metric

G

MN (x, y) = �

AB
E

0 M
A (x, y)E0 N

B (x, y)

= MAB(x)E M
A (y)E N

B (y)

         contains all the scalar degrees of freedom of the truncated 
theory.
MAB



Generalised Scherk-Schwarz ansatz

Vector ansatz

Take into account all fields with one external leg

Aµ
⇤
= hµ +Bµ + B̃µ + Cµ,0 + Cµ,2 + Cµ,4 + Cµ,6Generalised 

vector
Expand it on the parallelisation frame

A M
µ (x, y) = A A

µ (x)Ê M
A (y)

A similar construction works for higher rank forms



Comments

Generalised parallelisability guarantees the truncation to be 
consistent

If               it reduces to ordinary Scherk-Schwarz. 
In addition, restricting to NSNS one can truncate to a 
            gauged sugra

Generalised Scherk-Schwarz reduction reproduces the correct 
gauge transformations in lower dimensional supergravity.

Md = G

Gauge group contains the isometry group of Md

G⇥G [Baguet, Pope, Samtleben ‘14]



Generalised Geometry can describe geometrically the fields of 
supergravity

Summary and Conclusions

One can construct consistent truncations using the extended 
symmetries of the theory

How to find non maximally supersymmetric truncations? 

Use generalised structures to define the invariant modes. 

Applications to AdS/CFT:  Finding truncations including 
marginal deformations. 

Massive truncations on spheres with less supersymmetry.



Thank You


