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summary

= Motivation and inspiration

o Extended symmetry in String theory

¢ (Geometrical interpretation of symmetries
= Generalised Geometry

¢ Extended bundles

¢ Encoding Fluxes and gauge transformations
= How to use these weapons

¢ Example: consistent truncations



Why studying dimensional
reductions?

String theory has an intrinsic phenomenological problem: it's defined in
9+1 dimensions

One looks for solutions of the following form

MD — MD—d X Md

External j \ Internal

space —— gpace
Often one is interested in the low energy effective theory in (D-d)
dimensions: (un)gauged supergravity.

The structure of the internal space determines the lower dimensional
theory. Preserved susy, gauge group, spectrum...



= The problem is to construct the effective action in (D-d) dimensions.

s KK compactifications are the standard approach to dimensional
reductions.

¢ [here is an infinite number of KK modes
¢ We need to “truncate” to a finite number of d.o.f.

e We call Truncation Ansatz the prescription of selecting the
degrees of freedom to be kept.

= “Consistency” of the ansatz means that the dependence on the
internal manifold factorises out once the ansatz is inserted in the
eom.

s All solutions of the lower dimensional theory lift to solutions of the
higher dimensional one.

s Consistent reductions allow to establish a map between theories in
different dimensions



Extended symmetry in String
theory and M-theory

Our goal is to construct effective actions for lower dimensional
theories

The D-d dimensional effective action on tori has the following global
symmetry group
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group SL(5) 50(5, 5) E@(@) E7(7) Eg(g)

These are the U-duality groups

/f—aﬁ%\ » T-duality
_ group

They all contain O(d,d) as a subgroup



Extended symmetry in String
theory and M-theory

= These symmetries can be seen from a geometrical point of view on
the model of GR

s In GR we have diffeomorphisms symmetry and all the quantities
have defined transtormation rules under the group of
diffeomorphims GL(d)

= One can construct U-duality covariant formalisms

e Double/Exceptional Field Theory [Hull, zwiebach; Samtleben, Hohm]

s (Exceptional) Generalised Geometry [Hitchin; Gualtieri; Hull; Pacheco, Waldram]



Generalised Geometry

[Hitchin, Gualtieri, ‘01]

= Gauge symmetries of the lower-dimensional theory come from the
metric and p-form potentials of the higher dimensional
supergravity.

= One needs a formalism treating diffeomorphisms and p-form gauge
transformations in a unified fashion.

The main idea: define a generalised tangent bundle

E=ZTMeT*M

O(d, d)
generalised vector V= v + A - Stétrﬁtge
A

vector

s The structure group of the generalised tangent bundle is O(d, d)
the T-duality group of toroidal compactifications.



How do we insert fluxes?

s O(d d)formalism encodes the 3-form flux H = dB
e [he adjoint action naturally contains a 2-form

e Define the twisted generalised vector

V=ePV=v+A—1,B

\ adjoint action of O(d,d)

This determines the topology of E

s Patchings: on an overlapping of patches U, N Upg
Vo =e Vg <= B(a) = Bg) = dA(ap)

. \\Z—form
Connection on a gerbe

This corresponds to gauge transformations of NSNS supergravity
gauge potential.



Exceptional Generalised
Geometry .o

= One wants to include RR fields

¢ [-duality group generalises to U-duality: define a generalised tangent
bundle with a structure group given by the U-duality one.

= EGG depends on the theory: focus on IIA

e Generalised tangent bundle

EXTM&T"M & NT*M & A" T*M & (TM @ A°T* M)

~

V = (U,A,S\,wm) generalised vector

charges of wrapped strings
and branes

Structure group Fg41(d+1)



= Potentials live in the adjoint

bundle

ad F 2R®(TM QT*M)® AN*T*M & AN*TM
D ANTM @ A°T* M @ A°YTM @ AT N1

A = (...,B,...,B,...,Codd>

= E has a fibered structure

~

V = eBe Belxy

= Patching conditions give |lA

‘/’———'Adjoint rep

R=eBe BeCtRe CreBe—B

gauge transformation

B(a) = Bg) + dA(ap)

Cla) = Cp) -

Bgy+dA (.
- e (B) (aB) /\dﬂ(aﬁ)



Differential structure

= Ordinary Lie derivative generates diffeomorphisms

L,w! =v"0,w" —w"o,v" = v"0,w" — (0 ®aq U)MV w”

= Dorfman Derivative [pacheco, Waldram] tgl(d, R)
LyV' =V -0V — (0®.4V) V'’

Ly generates generalised diffeomorphisms = diffeos + gauge

0g = L,q 0CL =L,Cy +dwt + ...

OB = L, B + d)\ 0B =L,B+d\+ ...

» Gauge algebra Oy, 01, ] = Oy v



Generalised Metric

One can put the analogous of the Riemaniann metric on E

Defined in terms of the generalised frame
{EA} _ {éa} U {60’} L {eal...a5} g {eagk} L {ea,al...%}

E 4 = eBe Belele? . EA
Generalised Metric

G l1=6*"PE,s®Ep

It parametrises a coset Eyqy/Ha v Reduced structure

It contains the metric, the B-field and all RR potentials



Generalised Metric

One can put the analogous of the Riemaniann metric on E

Defined in terms of the generalised frame
{EA} _ {éa} U {60’} L {eal...a5} g {eagk} L {ea,al...%}
E 4 = ej‘f}e_BeCeAeq5 - EA

Generalised Metric
For E2ToT*

g—l _ 5ABEA R EB G- (91591_313 Bg_—ll)
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It parametrises a coset Eyqy/Ha v Reduced structure

It contains the metric, the B-field and all RR potentials



Generalised Scherk-Schwarz
reductions

Goal: generalise Scherk-Schwarz reduction to Exceptional
Generalised Geometry.

= Basic ingredients:
¢ Generalised Parallelisability
¢ (Generalised frames

¢ (Generalised ansatz

As the ordinary ones, these reductions preserve all the SUSY.



Generalised Leibniz parallelisation

Extend to EGG the notion of parallelisability  jiee, strickiana-constabie, waidram 14]

= [opological condition
s On M there existsaframe {Ea}, A=1,...,d

s.1. Vpe M, {Fa4l,} is a basis for the gen. tangent bundle

s Differential condition / ™~ GLP condition

s [he frame satisfies LEA EB — XAB

where X, ¢ are constants and [Xa, Xz] = —X,5“Xc
e X .5 are related to the embedding tensor of the lower dim sugra
XABC — @Aa(ta)BC

= GLP implies the manifold is a coset M = G/H



Generalised frame and metric

Given the generalised tangent bundle

EXTM&T*M & AT*M & A T*M & (TM ® A°T* M)

= Define the conformal split frame as a twist
{Ba} = {ea}U{emh U {em o} U {em U femmo)
E 4 = eée_BeceAéb - EA
= Define the inverse generalised metric

G '=64PE,® Ep



GGeneralised Scherk-Schwarz ansatz

s Scalar ansatz

» Twist the frame by an element of Fgi1(q+1)
Ely M(z,y) =U,” (2)Ep(y)
o (Compare with the generalised metric
GMN(z,y) = 0*PE M(z,y)ER Y (z,y)
= M2 (@) E,M (y)Ep™ (y)

M4 contains all the scalar degrees of freedom of the truncated
theory.



GGeneralised Scherk-Schwarz ansatz

= \Vector ansatz

s Take into account all fields with one external leg

r—\‘Au = hu T Bu T Bu T CM,O T Cu,2 T CMA + Cu,6

Generalised
vector

e Expand it on the parallelisation frame

A

AN (zy) = A, (@) Ex™M (y)

= A similar construction works for higher rank forms



Comments

= Generalised Scherk-Schwarz reduction reproduces the correct
gauge transformations in lower dimensional supergravity.

s (Gauge group contains the isometry group of My
e It My =G it reduces to ordinary Scherk-Schwarz.

e |n addition, restricting to NSNS one can truncate to a
G X G gauged Sugra [Baguet, Pope, Samtleben ‘14]

= Generalised parallelisability guarantees the truncation to be
consistent



Summary and Conclusions

= (Generalised Geometry can describe geometrically the fields of
supergravity

= One can construct consistent truncations using the extended
symmetries of the theory

= How to find non maximally supersymmetric truncations?
¢ Use generalised structures to define the invariant modes.

e Applications to AdS/CFT. Finding truncations including
marginal deformations.

¢ Massive truncations on spheres with less supersymmetry.






