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Introduction

Lattice gauge theory was introduced by Kenneth Wilson in 1974.
While it was interesting and useful from the beginning, it was with
the increase in computing power that it matured into an extremely
useful tool, as well as a crucial theoretical framework with a deep
connection to statistical mechanics.

Working on the lattice provides a framework allowing for both
perturbative and non-perturbative approaches, which is extremely
important to understand phenomena such as confinement and
asymptotic freedom in non-abelian gauge theories. Moreover, it is the
only way to properly define a quantum field theory in a
non-perturbative manner.

Although we have not used lattice simulations in our work yet, an
introduction to it is necessary to properly explain our model,
motivation and and goals.
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Quantum field theory on the lattice

Lattice gauge theory works by discretising
space-time: one defines a d-dimensional
hypercubic lattice of spacing a, onto which
the quantum fields are defined.

Quantisation comes through the use of the euclidean path integral
formalism:

Z =

∫
[Dφ] e−SE

Where we used t → −it to go to euclidean time, and [Dφ] denotes
the integral over all field configurations. The continuum action must
be recovered for a→ 0.

Several equivalent actions can be chosen as long as they have the
correct continuum limit. This choice is not trivial: some actions
behave much better than others, and some have critical issues (e.g.
doublers for naive lattice fermions).
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Gauge fields on the lattice I

We will only focus in pure gauge Yang-Mills theory:

SYM =
1

2g 2
0

∫
d4x Tr FµνFµν

While one could try to directly do the naive, trivial discretisation that
is often used for fermions and scalars:

xµ = anµ, nµ ∈ Z;
∫

d4x → a4
∑
xµ

∂µO(x) = 1
a (O(x + aµ̂)− O(x))

This is very problematic for gauge fields, as it breaks gauge invariance.

Instead, one works with the parallel transporters between two
neighbouring points, given by N × N unitary matrices:

Uµ(x) = T exp (−iaAµ(x))
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Gauge fields on the lattice II

These matrices live on the links of the lattice, and transform under a
gauge transformation Ω(x) as:

U ′µ(x) = Ω(x)Uµ(x)Ω†(x + µ)

The only possible invariants built from Uµ matrices are traces over
closed paths. The simplest ones among them are the plaquettes:

Pµν(x) = Tr
(

Uµ (x) Uν (x + µ̂) U†µ (x + ν̂) U†ν (x)
)
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Gauge fields on the lattice III

Using these plaquettes, one can define the gauge-invariant Wilson
action:

SW =
1

g 2
0

(
N − Tr

∑
x ,µ,ν

Uµ (x) Uν (x + µ̂) U†µ (x + ν̂) U†ν (x) + c.c.

)

One can expand the U matrices in powers of a to determine the
leading order terms. This yields:

SW = SYM +O(a2)

Meaning that the Wilson action is a lattice implementation of
Yang-Mills theory, which is recovered in the continuum limit a→ 0.
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The lattice as a regulator

Discretising spacetime can be seen as a way of regularising field
theories. The cutoff appears when looking at the Fourier transform of
the field: Aµ(p) = a4

∑
x=an

e iapnAµ(x).

The periodicity of the function allows us to identify the momenta
pµ ∼ pµ + 2πk

a , setting up a cutoff |pµ| ≤ π
a ≡ Λ.

For numerical simulations, finite lattices are required. To avoid
breaking translation invariance, the usual approach implies using
periodic boundary conditions of period l :

Uµ (x + l ν̂) = Uµ (x) .

These boundary conditions imply a quantisation of momenta:

pµ =
2π

a

mµ

l
mµ ∈ Z
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Twisted boundary conditions

The boundary conditions from the previous slide, while quite common
in literature, are not the most general choice. As physical observables
are gauge-independent, generality implies setting up periodic
boundary conditions up to arbitrary gauge transformations.

This idea, known as twisted boundary conditions, was introduced by
’t Hooft in the seventies for the continuum. In our case the following
set of twisted boundary conditions was considered:

Uµ (x + l ν̂) = Ων (x) Uµ (x) Ω†ν (x + µ̂)

A consistency condition is then required for the corner plaquettes:

Ωµ (x + l ν̂) Ων (x) = zµνΩν (x + l µ̂) Ωµ (x)

The factor zµν is known as the twist of the theory:

zµν = exp
(

2πi
nµν
N

)
, nµν ∈ Z
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The twisted Eguchi-Kawai model

Implementing twisted boundary conditions to the Wilson action
results in added twist factors in the corners:

S =
1

g 2
0

(
N − Tr

∑
xµν

zµνUµ (x) Uν (x + µ̂) U†µ (x + ν̂) U†ν (x) + c.c.

)

Under certain conditions, in the N →∞ limit the lattice version of
the Schwinger-Dyson equations does not depend on the size of the
lattice. The theory can be reduced to a single-point lattice:

STEK =
N

λ0

(
N − Tr

∑
µν

zµνUµUνU†µU†ν + c.c.

)
; λ0 = g 2

0 N

This is an example of reduction: somehow, gauge and spacetime
DOFs are redundant in the large N limit.
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Volume independence

To prevent reduction from breaking down, the centre Zd(N)
symmetry of the action must be preserved, which requires the use of
the so-called symmetric twist:

nµν = εµνklg ;
εµν = θ(ν − µ)− θ(µ− ν)

lg = N
2
dt , k ∈ Z

This simple model can be generalised to finite N, leading to the
hypothesis of volume independence in SU(N) twisted gauge theories:

In finite volume twisted Yang-Mills theory, volume and colour effects
are intertwined, with the torus length and number of colours
appearing combined into an effective length l̃ = lg l .

One of our main goals is to check the validity of this hypothesis, both
in perturbation theory (in the continuum) and nonperturbatively (on
the lattice).
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Twisted gradient flow

We adapted A. Ramos’ twisted gradient flow scheme to obtain the
running of the renormalised ’t Hooft coupling λ = g 2N

This scheme works by introducing an additional time dimension t and
a flow field Bµ(x , t) following the flow equations:

∂tBν (x , t) = DµGµν (x , t) Bµ(x , 0) = Aµ(x)

The flow equations drive the fields towards the Yang-Mills stationary
points, averaging them over a spherical volume of mean-square radius√

8t in four dimensions.

The action density in this scheme is a renormalised quantity allowing
to define a renormalised coupling λTGF using l̃ as a scale:

λTGF(̃l) = N−1(c)
t2〈E (t)〉

N

∣∣∣∣
t= c2 l̃2

8

E (t) =
1

2
Tr Gµν(x , t)Gµν(x , t)
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Perturbation theory in the twisted box I

As a first step towards checking the validity of the volume
independence hypothesis, we are in the process of computing the
running of the twisted gradient flow coupling in perturbation theory.

We expanded the fields in powers of the coupling:

Bµ(x , t) =
∑
k

gk
0 (t)B(k)

µ (x , t)

And then went to momentum space in a traceless,
momentum-dependent basis:

B(k)
µ (x , t) = l̃−

d
2

′∑
q

e iqxB(k)
µ (q, t)Γ̂(q)

Eduardo Ibáñez Bribián (IFT UAM-CSIC) Perturbative Running of λTGF November 17, 2016 13 / 19



Perturbation theory in the twisted box II

The momenta are now quantised in terms of the effective length l̃ :

pµ =
2πmµ

l̃
mµ ∈ Z

And the basis Γ̂(q) (whose explicit expression will be omitted)
satisfies by construction:[

Γ̂(p), Γ̂(q)
]

= iF (p, q,−p − q)Γ̂(p + q)

With the structure constants:

F (p, q,−p − q) = −
√

2

N
sin

(
1

2
θµνpµqν

)
; 2πθµν = θ̃l̃2ε̃µν

We defined a few auxiliary variables given by ε̃µνενλ = δµλ and
θ̃ = k̄/lg , with k̄ given by the twist: kk̄ = 1 (mod lg ).
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Solving the gradient flow equations

The flow equation can be solved in momentum space, order by order
in perturbation theory:

∂tBν (x , t) = DµGµν (x , t) ; Bµ(x , 0) = Aµ(x)

This was done up to order g 4
0 :

B
(1)
µ (q, t) = e−q

2tAµ(q)

B
(2)
µ (q, t) = i l̃−

d
2 e−q

2t
∑
p

′F (p, q, p − q)

×
∫ t

0 dse2(p·q−p2)sAν(q − p)(2pνAµ(p)− pµAν(p))

B
(3)
µ (q, t) = . . .
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Integral form of the coupling constant

After some of algebra, we are left with thirteen different contributions
to the running coupling, which combine multiple integrals over flow
time and sums over momenta:

λTGF(̃l , c) = λ0N−1(c)(1 + λ0

13∑
i=1

ci Ii )

For example, one of such integrals is, setting q = p + r :

I (t) = l̃−2d

∫ t

0
dx

∫ ∞
0

dz
∑
r ,p

NF 2(r , p,−q)e−(2t−x)q2−x(r2+p2)−zr2
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Siegel theta form of the argument

The integrals can be rewritten in terms of Siegel theta functions:

Θ
(

0|iA(s, u, v , θ̃)
)

=
∑

M∈Z2d

exp
{
−πMtA

(
s, u, v , θ̃

)
M
}

Defining Mt = (m, n) and:

A
(

s, u, v , θ̃
)

=

(
sĉ Id v ĉ Id + i θ̃ε̃

v ĉ Id − i θ̃ε̃ uĉ Id

)
Then, defining:

Fc

(
s, u, v , θ̃

)
=

ĉ2

16π2 l̃2d−4
Re

(
Θ (s, u, v , 0)−Θ

(
s, u, v , θ̃

))
All integrals can be rewritten in this manner. For instance, the
previous example can be rewritten as:

I (t) =

∫ 1

0
dx

∫ ∞
0

dz Fc

(
2, z + 2x , x , θ̃

)
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Regularisation

Several terms in the integrals are divergent, and require regularisation.
We chose to use dimensional regularisation, by setting d = 4− ε
We then identified the divergent terms by inspection, and substracted
them manually from our integrals:

Hdiv (s, u, v) =
ĉ2

16π2 l̃2d−4
(ĉu)−

d
2

′∑
m

exp

{
−πĉ

su − v 2

u
m2

}
As a consistency check, we reproduced the universal coefficient of the
1
ε term, by noticing that our integrals can be related to the infinite
volume ones:〈

E (t0)

N

〉
=
λ0(d − 1)

2̃ld

( ′∑
m

e−2πm2ĉ
){

1 +

(
11

48π2ε
+ α

)
λ0 + . . .

}
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Numerical computations

We are currently computing the finite terms numerically in order to
obtain the Λ coefficients between this scheme and the MS one.

The computations are being done through a combination of
Mathematica programs for the simpler terms, and C++ programs
which use trapezoid integration to obtain more complicated terms
which Mathematica cannot compute. These computations are still
ongoing.

Once these are done, we will study whether the hypothesis of volume
independence holds, or if finite N corrections appear, and, if they do,
their relative magnitude.

If the hypothesis holds in perturbation theory, we will test if it does so
as well in nonperturbative computations, through the use of lattice
simulations.
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Thank you.
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