Searching for left-handed sneutrinos at the LHC

Iñaki Lara Pérez

Universidad Autónoma de Madrid Instituto de Física Teórica

V Postgraduate Meeting in Theoretical Phisics

Left-handed sneutrinos @ the LHC

ELE NOR

1/33

I. Introduction

- II. The $\mu\nu SSM$
- III. The left handed sneutrino as the LSP
- IV. Detection at the LHC

EL SQA

Supersymetric models has been an active area of phenomenological research since the 80's.

- \star Solves the big hierarchy problem. Electro weak scale does not have quadratic sensitivity to high scales \Rightarrow Superpartners at the TeV scale.
- * Unification of gauge couplings.
- * Many models provide a viable dark matter candidate.

Simplest realizations of SUSY suffer from tension with experimental searches.

- \Rightarrow More complicated realizations of SUSY.
- \Rightarrow More elaborated experimental analysis to cover this scenarios.

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

SUSY with broken *R*-parity

R-parity is proposed to protect proton from fast decay. \Rightarrow Implies stable LSP and Missing transverse momentum signal at LHC.

 \star There are dimension-five operators permited by *R*-parity wich lead to proton decay:

$$\mathcal{O}_5 = \frac{\bar{u}\bar{u}\bar{d}e}{M}$$
$$\mathcal{O}_5 = \frac{QQQL}{M}$$

R-parity violation is motivated in models explaining neutrino physics such as BRpV or $\mu\nu$ SSM. Signatures at colliders are completely different.

Iñaki Lara Pérez (UAM)

Left-handed sneutrinos @ the LHC

I. Introduction

II. The $\mu\nu SSM$

III. The left handed sneutrino as the LSP

IV. Detection at the LHC

< 注入 < 注

EL SOCO

 $\mu\nu SSM$ extends the MSSM particle content with three singlet chiral superfields. They couple to:

- * Higgs superfields \Rightarrow Solve the μ problem of the MSSM, as in the NMSSM. D.López-Fogliani, C.Muñoz.Phys. Rev. Lett. 97 (2006) 041801
- ★ Lepton superfields ⇒ Give mass to neutrino sector. J.Fidalgo, D. López-Fogliani, C.Muñoz, R.R. de Austri.JHEP 08 (2009) 105

The presence of both coupling breaks *R*-parity explicitly. But only generates lepton number violating interactions.

Neutralinos are no longer stable \Rightarrow Can't be interpreted as dark matter. However, the gravitino could be a viable DM candidate, producing monophoton signals in the decay.A. Albert et al JCAP 10 (2014) 023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう

The $\mu\nu SSM$ Lagrangian

* In the limit $Y_{\nu}^{ij} \rightarrow 0$, *R*-parity is restored.

* We assume a soft-breaking sector with a structure inspired by SUGRA models with diagonal Kähler metric:

$$T_{\lambda_i} = A_{\lambda_i} \lambda_i; T_{\kappa_{ijk}} = A_{\kappa_{ijk}} \kappa_{ijk}; T_{\nu}^{ij} = A_{\nu} Y_{\nu}^{ij}$$
$$T_{u}^{ij} = A_{u} Y_{u}^{ij}; \quad T_{d}^{ij} = A_{d} Y_{d}^{ij}; \quad T_{e}^{ij} = A_{e} Y_{e}^{ij}$$

We also assume no intergenerational mixing in the trilinear terms, neither in the squared sfermion mass matrices.

Scalar potential

The scalar potential recives contributions from F-terms, D-Terms and soft terms, mixing all neutral scalar states:

$$V^{(0)} = V_{soft} + V_D + V_F$$

However spontaneus CP violation is possible with all parameters real. J.Fidalgo, D.López-Fogliani, C.Muñoz, R.R.de Austri JHEP 08 (2009) 105

Minimization equations

$$\begin{split} m_{H_{d}}^{2} &= -\frac{1}{4} G^{2} \left(v_{iL} v_{iL} + v_{d}^{2} - v_{u}^{2} \right) - \lambda_{i} \lambda_{j} v_{iR} v_{jR} - \lambda_{i} \lambda_{i} v_{u}^{2} \\ &+ v_{iR} \tan \beta \left(T_{\lambda_{i}} + \lambda_{j} \kappa_{ijk} v_{kR} \right) + Y_{\nu_{ij}} \frac{v_{iL}}{v_{d}} \left(\lambda_{k} v_{kR} v_{jR} + \lambda_{j} v_{u}^{2} \right) - \frac{1}{v_{d}} V_{v_{d}}^{(n)} , \end{split}$$
(1)
$$\begin{split} m_{H_{u}}^{2} &= \frac{1}{4} G^{2} \left(v_{iL} v_{iL} + v_{d}^{2} - v_{u}^{2} \right) - \lambda_{i} \lambda_{j} v_{iR} v_{jR} - \lambda_{j} \lambda_{j} v_{d}^{2} \\ &+ 2\lambda_{j} Y_{\nu_{ij}} v_{iL} v_{d} - Y_{\nu_{ij}} Y_{\nu_{ik}} v_{kR} v_{jR} - Y_{\nu_{ij}} Y_{\nu_{kj}} v_{iL} v_{kL} \\ &+ v_{iR} \frac{1}{\tan \beta} \left(T_{\lambda_{i}} + \lambda_{j} \kappa_{ijk} v_{kR} \right) - \frac{v_{iL}}{v_{u}} \left(T_{\nu_{ij}} v_{jR} + Y_{\nu_{ij}} \kappa_{ijk} v_{lR} v_{kR} \right) - \frac{1}{v_{u}} V_{v_{u}}^{(n)} , \end{aligned}$$
(2)
$$\begin{split} m_{\nu_{ij}}^{2} v_{jR} = -T_{\nu_{ji}} v_{jL} v_{u} + T_{\lambda_{i}} v_{u} v_{d} - T_{\kappa_{ijk}} v_{jR} v_{kR} - \lambda_{i} \lambda_{j} \left(v_{u}^{2} + v_{d}^{2} \right) v_{jR} + 2\lambda_{j} \kappa_{ijk} v_{d} v_{u} v_{kR} \\ &- 2\kappa_{im} \kappa_{ijk} v_{mR} v_{jR} v_{kR} + Y_{\nu_{ji}} \lambda_{k} v_{jL} v_{kR} v_{d} + Y_{\nu_{kj}} \lambda_{i} v_{d} v_{kL} v_{jR} - 2Y_{\nu_{jk}} \kappa_{ikl} v_{u} v_{jL} v_{lR} \\ &- Y_{\nu_{ji}} Y_{\nu_{lk}} v_{jL} v_{\nu_{l}} v_{kR} - Y_{\nu_{kj}} Y_{\nu_{kj}} v_{u}^{2} v_{jR} - V_{\nu_{ij}}^{(n)} , \end{aligned}$$
(3)
$$\begin{split} m_{L_{ij}}^{2} v_{jL} = -\frac{1}{4} G^{2} \left(v_{jL} v_{jL} + v_{d}^{2} - v_{u}^{2} \right) v_{iL} - T_{\nu_{ij}} v_{\nu_{lk}} v_{\mu} v_{jR} v_{kR} + Y_{\nu_{ij}} \lambda_{k} v_{d} v_{jR} v_{kR} + Y_{\nu_{ij}} \lambda_{j} v_{u}^{2} v_{d} \\ &- criptsize Y_{\nu_{il}} \kappa_{ijk} v_{u} v_{jR} v_{kR} - Y_{\nu_{ij}} Y_{\nu_{lk}} v_{\nu_{l}} v_{\mu} v_{jR} k_{kR} - Y_{\nu_{ijk}} V_{\mu_{ik}} v_{\mu} v_{iR} k_{kR} - Y_{\nu_{ijk}} v_{u}^{2} v_{iR} - V_{\nu_{ijk}} V_{u}^{2} v_{iR} - V_{\nu_{ij}}^{(n)} . \end{split}$$
(4)

One can see that the vevs v_{iR} are naturally above the EWSB scale. While from Eq.4, when $Y_{\nu}^{ij} \rightarrow 0$ then $v_{iL} \rightarrow 0$. And we can estimate $v_{iL} \sim Y_{\nu}^{ij} v_2$.

◆□▶
◆□▶
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Effective terms

After EWSB, several effective terms are generated:

* Trilinear terms
$$\Rightarrow \lambda_{ijk} \sim Y_{\nu_{ii}} \kappa \frac{m_{l_{jk}}}{v} \frac{(1-\delta_{ij})\delta_{jk}}{\sqrt{1+\tan^2\beta}} \lambda'_{ijk} \sim Y_{\nu_{ii}} \kappa \frac{m_{d_{jk}}}{v} \frac{\delta_{jk}}{\sqrt{1+\tan^2\beta}}$$

- * Bilinear $\Rightarrow \epsilon_i^{eff} \sim Y_{\nu_{ij}} v_{jR}$
- $\star~\mu\text{-term}$ for the higgs sector $\Rightarrow \mu^{\textit{eff}} = \lambda_i \textit{v}_{\textit{iR}}$
- * Majorana mass for right handed neutrinos $\Rightarrow (M_M^{eff})_{ii} = \sqrt{2}\kappa_{ijk}v_{jR}$
- $\star\,$ Dirac mass for neutrinos $\Rightarrow\, \left(m_D^{eff}\right)_{ij} = \frac{1}{\sqrt{2}}\, Y_{\nu_{ij}} v_2$

An electroweak scale Type-I seesaw with $Y_{
u_{ii}} \sim 10^{-6}$ appears naturally.

The $\mu\nu SSM$ seesaw .

$$\mathcal{M}_{n} = \begin{pmatrix} M & m \\ m^{T} & 0_{3\times 3} \end{pmatrix}, \qquad \begin{array}{l} M \to M_{1}, M_{2}, \lambda_{i} v_{iR}, \sqrt{2\kappa_{ijk}} v_{jR} \sim \mathcal{O}(M_{SUSY}) \\ m \sim Y_{\nu}^{ii} v_{u} \end{array}$$

At first approximation $m_{eff} = -m^T \cdot M^{-1} \cdot m$ and one can diagonalize as $U_{MNS}^T m_{eff} U_{MNS} = diag(m_1, m_2, m_3)$. Approximately:

$$(m_{eff|real})_{ij} \simeq \frac{v_u^2}{6\kappa v_R} Y_{\nu_i} Y_{\nu_j} \left(1 - 3\,\delta_{ij}\right) - \frac{1}{2M_{eff}} \left[v_{iL}v_{jL} + \frac{v_d \left(Y_{\nu_i}\nu_j + Y_{\nu_j}\nu_i\right)}{3\lambda} + \frac{Y_{\nu_i}Y_{\nu_j}v_d^2}{9\lambda^2}\right] ,$$

$$(m_{eff|real})_{ij} \simeq rac{v_u^2}{6 \,\kappa v_R} Y_{\nu_i} Y_{\nu_j} \left(1 - 3 \,\delta_{ij}\right). \qquad (m_{eff|real})_{ij} \simeq -rac{v_{iL} v_{jL}}{2M}.$$

* Is possible to reproduce neutrino physics with diagonal Yukawa couplings.

Iñaki Lara Pérez (UAM)

The couplings and generated vevs on the $\mu\nu SSM$ mix all the states with the same spin, CP and charge properties. Thus the scalar sector is composed by

- ★ 8 Neutral scalars.
- \star 7 Neutral pseudoscalars.
- \star 7 charged scalars.
- ★ 12 squarks.

The squark sector is analoge to the MSSM. But the neutral and charged scalar sector is clearly different, The admixing of sneutrino states with higgses could have big implications in collider signatures.

- I. Introduction
- II. The $\mu\nu SSM$
- III. The left handed sneutrino as the LSP
- IV. Detection at the LHC

EL SQA

Parameters for the analysis

* For this first analysis focused on the detection of sneutrino LSP at the LHC, is simpler to work with only one family of RH neurinos. \Rightarrow Results concerning LHC phisics remain essentialy the same. Free parameters in the neutral scalar sector at the low scale are:

$$\lambda_{i} \equiv \lambda, \kappa_{ijk} \equiv \kappa, Y_{\nu}^{ij} \equiv Y_{\nu}, \tan \beta, v_{iL}$$
$$v_{iR} \equiv v_{R}, A_{i}^{\lambda} \equiv A_{\lambda}, A_{ijk}^{\kappa} \equiv A_{\kappa}, A_{i}^{\nu} \equiv A_{\nu}$$

 \star Scalar soft masses are eliminated in favor of vevs through the minimization equations.

The rest of the parameters take generic values choosen to keep the rest of the spectrum decoupled.

Mass matrix

$$\begin{split} m_{H_d^T H_d^T}^2 &= v_{iR} \tan\beta \left(T_{\lambda_i} + \lambda_j \kappa_{ijk} v_{kR} \right) + \dots \qquad m_{H_u^T H_u^T}^2 = v_{iR} \frac{1}{\tan\beta} \left(T_{\lambda_i} + \lambda_j \kappa_{ijk} v_{kR} \right) + \dots \\ m_{H_d^T H_u^T}^2 &= T_{\lambda_i} v_{iR} + \lambda_k \kappa_{ijk} v_{iR} v_{jR} + \dots \qquad m_{H_d^T \widetilde{\nu}_{iR}}^2 = T_{\lambda_i} v_u + \dots \qquad m_{H_u^T \widetilde{\nu}_{iR}}^2 = T_{\lambda_i} v_d + \dots \\ m_{\widetilde{\nu}_{iR}}^2 \widetilde{\nu}_{iR}^T &= -2 \left(T_{\kappa_{ijk}} v_{kR} - \lambda_k \kappa_{ijk} v_d v_u + \kappa_{ijk} \kappa_{lmk} v_{lR} v_{mR} \right) + \dots \\ m_{\widetilde{\nu}_{iR}^T \widetilde{\nu}_{jR}}^2 &= -2 \left(T_{\kappa_{ijk}} v_{kR} - \lambda_k \kappa_{ijk} v_d v_u + \kappa_{ijk} \kappa_{lmk} v_{lR} v_{mR} \right) + \dots \\ m_{\widetilde{\nu}_{iR}^T \widetilde{\nu}_{jL}}^2 &= + \frac{\delta_{ij}}{v_{jL}} \left[- T_{\nu_{ik}} v_u v_{kR} + Y_{\nu_{ik}} \left(\lambda_l v_d v_{kR} v_{lR} + \lambda_k v_d v_u^2 - \kappa_{klm} v_u v_{lR} v_{mR} - Y_{\nu_{mk}} v_{mL} v_u^2 \right) \right] \\ &- Y_{\nu_{ml}} v_{mL} v_{lR} v_{kR} \right] + Y_{\nu_{ik}} Y_{\nu_{jk}} v_u^2 + Y_{\nu_{ik}} Y_{\nu_{jl}} v_{kR} v_{lR} + V_{\nu_{iL}} \left(\frac{\delta_{ij}}{v_{iL}} V_{\nu_{iL}}^{(n)} \right) , \end{split}$$

Mixing of left handed sneutrinos with the rest of the scalar sector is supressed:

$$m_{H_{d}^{T}\tilde{\nu}_{il}^{T}}^{2} = -Y_{\nu_{ij}}\lambda_{j}v_{u}^{2} - Y_{\nu_{ij}}\lambda_{k}v_{kR}v_{jR} + V_{v_{d}v_{il}}^{(n)}, \qquad m_{H_{u}^{T}\tilde{\nu}_{il}^{T}}^{2} = -T_{\nu_{ij}}v_{\nu_{j}^{c}} - Y_{\nu_{ik}}\kappa_{ijk}v_{iR}v_{jR} + V_{v_{u}v_{il}}^{(n)}, \\ m_{\tilde{\nu}_{il}^{T}\tilde{\nu}_{jR}^{T}}^{2} = -T_{\nu_{ij}}v_{u} + Y_{\nu_{ij}}\lambda_{k}v_{d}v_{kR} - Y_{\nu_{ik}}\lambda_{j}v_{d}v_{kR} + 2Y_{\nu_{il}}\kappa_{ijk}v_{u}v_{kR} \\ -Y_{\nu_{ij}}Y_{\nu_{ik}}v_{il}v_{kR} + Y_{\nu_{ik}}Y_{\nu_{ij}}v_{lL}v_{kR} + \frac{Y_{\nu_{il}}v_{il}}{V_{il}v_{iR}} \ge 15 - 200$$

Left handed Sneutrino mass

*The mass matrices for CP-odd/even scalar differ only by the D-terms: = $\frac{G^2}{2}v_{iL}v_{jL}$. Which are negligible. \Rightarrow CP-odd/even sneutrino states are degenerate in mass.

* Left handed sleptons are always heavier than sneutrinos due to the contribution of the possitive D-term: $=\frac{g_2^2}{2}(v_u^2 - v_d^2)$. This contribution is small \Rightarrow sleptons would be normaly the NLSP. Neglecting small terms, the mass of sleptons is approximately:

$$m_{\widetilde{\nu}_{i}^{\mathcal{I}}\widetilde{\nu}_{i}^{\mathcal{I}}}^{2} \approx \frac{Y_{\nu}v_{u}}{v_{iL}}v_{R}\left(-A_{\nu}-\kappa v_{R}+\frac{\lambda v_{R}}{\tan\beta}\right)+\frac{\partial^{2}V^{(n)}}{\partial v_{iL}\partial v_{iL}}-\frac{1}{v_{iL}}\frac{\partial V^{(n)}}{\partial v_{iL}},\quad(5)$$

Since $v_{iL} \sim Y_{\nu}v_{u}$. One could have light sneutrinos with low values for A_{ν}, κ, v_{R} and λv_{R} (of the order of 50GeV) or/and with some cancelations between terms. \Rightarrow The higher the value of v_{R} , the bigger need of tuning for a light left handed sneutrino.

Iñaki Lara Pérez (UAM)

* We want to analize a left handed sneutrino LPS in the range 95 \rightarrow 145GeV. Detectable zone on the direct production at the LHC. This means that if $v_R \sim 1$ TeV and $\frac{Y_{\nu}v_u}{v_{iL}} \sim 1$, then $A_{\nu} \sim 100$ GeV and a 1% tuning is necessary.

* Is also possible to suppress the mass of sneutrinos with a higger value of sneutrino vevs, $v_{iL} >> Y_{\nu}v_{u}$. But this make difficult to reproduce experimental constraints in neutrino phisics.

* Universal values for v_{iL} , Y_{ν} and A_{ν} , produce degenerate masses, broken only by small loop efects. A hierarchy could be introduced with nonuniversal values of any of this parameters. Possibly given by neutrino phisics.

▲□▶ ▲□▶ ▲目▶ ▲目▼ ショネ

Benchmark points used

We consider the scenario of only $\tilde{\nu}_{1,2}$ light or $\tilde{\nu}_3$ light. And the rest of the spectrum decoupled.

$$A_{\nu} = 386 \text{ GeV}$$

 $M_1 = 600 \text{ GeV}$
 $M_2 = 900 \text{ GeV}$
 $M_3 = 1600 \text{ GeV}$
 $|A_{Q,u,d,e,\lambda,\kappa}| = 1\text{TeV}$
 $v_R \approx 1.9 \text{ TeV}$

$$\begin{array}{l} A_u \approx 3 \,\, {\rm TeV} \\ m_{Q,u,d} = 1.3 {\rm TeV} \\ m_{e^c} = 1 \,\, {\rm TeV} \\ {\rm tan} \, \beta = 10 \,\, ; \,\, Y_\nu = 5 \times 10^{-7} \\ \lambda = \! 0.2 \,\, ; \kappa = \! 0.3 \end{array}$$

Squarks and gauginos have a mass of the order of M_{SUSY}. *H* ~ λv_R.
ν_R ~ 2κv_R. *v*_R ~ κ²v_R².

Decays modes of the LSP

* Decays of the LSP are always supressed by some power of Y_{ν} or v_{ν} in the admixing of mass eigenstates. In the mass insertion approximation:

Decay modes of the CP-odd state I

* Through H_d :

$$\begin{split} & \Gamma_{\widetilde{\nu}^{I} \to dd} \quad \sim \quad \frac{Y_{d} Y_{\nu} \lambda v_{R}}{\lambda (A_{\lambda} + \kappa v_{R}) \tan \beta} \\ & \Gamma_{\widetilde{\nu}^{I} \to \ell \ell} \quad \sim \quad \frac{Y_{\ell} Y_{\nu} \lambda v_{R}}{\lambda (A_{\lambda} + \kappa v_{R}) \tan \beta} \end{split}$$

Dominant in the b channel, and subdominant in the τ channel. * Through H_u :

The state with dominant H_u composition will be the Goldstone boson. Since G^0 does not have pure composition, we can represent the decay of the sneutrino through H_u couplings as if it happend through the state with second dominant H_u composition. As a result, this decay would be more supressed than naively expected.

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Decay modes of the CP-odd state II

* Through $\widetilde{H_d}$:

$$\Gamma_{\widetilde{
u_i}'
ightarrow e_i e_j} ~\sim~ rac{Y_{\ell_{ii}}Y_{
u_j}}{\lambda}$$

This channel is only visible if i = 3. And if $i \neq j$ could produce LFV decays. The strength of each of the possible channels depend on the hierarchy in Y_{ν_j} . * Through $\widetilde{B}^0/\widetilde{W}^0$:

$$\begin{array}{lcl} \mathsf{\Gamma}_{\widetilde{\nu_i}^{\,\prime} \rightarrow \nu \nu} & \sim & g_1^2 \frac{\mathsf{v}_{iL}}{M_1} \\ \mathsf{\Gamma}_{\widetilde{\nu_i}^{\,\prime} \rightarrow \nu \nu} & \sim & g_2^2 \frac{\mathsf{v}_{iL}}{M_2} \end{array}$$

If i = 1, 2 then this would be the dominant decay channel. For i = 3 this channel is in competition with the decay to $\tau e/\tau \mu$.

▲ Ξ ► ▲ Ξ ► Ξ Ξ Ξ • ○ Q ○

Decay modes of the CP-even state I

For the CP-even states, the decay through the state with dominant H_u composition (SM higgs) is open. The dominant decay channels through H_u are:

⋆ Decay to up-type quarks:

$$-_{\widetilde{\nu}^{I} \to cc} \sim \frac{Y_{c}Y_{\nu}(A_{\lambda} + \kappa v_{R}) \tan \beta}{\lambda(A_{\lambda} + \kappa v_{R})}$$

 \star The decay to gauge bosons VV^* .

The lightest scalar has a small but significant composition of H_d therefore the decay of to down-type quarks and leptons is bigger than expected from mass insertion aproximation. Moreover, the presence of two eigenstates with similar masses in the mass matrix enhance the mixing of them and the mass insertion aproximation is no longer valid \Rightarrow The decay pattern of the left handed sneutrino mimic the one of the SM-like higgs.

B A B A B B B O Q O

Decay modes of the CP-even state II

Of special interest is the diphon decay of the higgs through W^{\pm} and top loops.

The BR is small, but big enough to produce a clean signal easy to disentangle from backgrounds.

- * Stable $\tilde{\nu}_L$ excluded from DM searches. \Rightarrow Not of aplication in the $\mu\nu SSM$.
- * Single $\tilde{\nu}_L$ production through trilinear couplings excluded from ATLAS and CMS searches in $e\mu$, $e\tau$, $\mu\tau$ final states assuming large values of some λ_{ijk} , λ'_{ijk} couplings. \Rightarrow The smallness of the effective trilinear couplings make this searches inefective.
- ★ Contraints form flavour phisics on products of trilinear terms $|\lambda_{ijk}\lambda_{lkm}|, |\lambda_{ijk}\lambda'_{lkm}|... \Rightarrow$ The trilinear effective terms are far below the limits.

A ∃ ► A ∃ ► ∃ ⊨

- I. Introduction
- **II.** The $\mu\nu SSM$
- III. The left handed sneutrino as the LSP
- IV. Detection at the LHC

▲ Ξ ► ▲ Ξ ► Ξ Ξ Ξ • ○ Q ○

* If the mass of the sneutrino is around EW scale.CP-even state decays "SM-Higgs-like". And the CP-odd state decays mainly to neutrinos. \Rightarrow Clean diphoton signal plus missing transverse momentum. * If the mass of the sneutrinos is above $2M_W$ the diboson channel saturates de decays of the CP-even $\tilde{\nu}_i$, and $Z + h_{SM}$ saturates de decay of the CP-odd $\tilde{\nu}_i$. Also direct production crossection drasticaly reduced. * We focuss in the signals:

- $\rightarrow\,$ Diphoton plus missing transverse momentum. For $\widetilde{\nu}_{1,2}$
- $\rightarrow\,$ Diphoton plus $\tau\ell.$ For $\widetilde{\nu}_{3}$

Production

 \star We are interested in the signal from directly pair produced sneutrinos:

* Since the sleptons are directly produced \rightarrow not very boosted. And $M_{\tilde{e}_L} - M_{\tilde{\nu}} < M_W$. The decay $\tilde{e}_L \rightarrow W\tilde{\nu}$ produce very soft products of an offshell W decay plus $\tilde{\nu} \Rightarrow$ Sneutrino production enhanced by slepton production.

27 / 33

* BR($\rightarrow \gamma \gamma$) $\sim 10^{-3}$ supress the signal strength. We need enough crossection to compensate. And BR($\rightarrow \gamma \gamma$) drop fast as we go far from $M_{\widetilde{\nu}} \sim 125$ GeV. \Rightarrow Above 145 GeV no signal expected

 \star Energetic photons plus large missing transverse momentum needed to discriminate from backgrounds. \Rightarrow A small mass would make the selection cuts to reject all the signal, even if the crossection is bigger.

Signals I

* UFO files generated with SARAH-4.8.1 + Spectrum generated with SPHENO-3.3.6 \rightarrow Montecarlo simulation at LO with MadGraph5 _aMC@NLO-2.3.2.2.

- * Output interfased with PITHYIA-6.428 for decay and hadronization.
- \star Fast detector simulation with PGS + ATLAS card.
- * Two signal regions designed for analysis: $\gamma \gamma + E_T^{miss}$
 - $\begin{array}{l} \rightarrow \ \, {\rm Selection \ cuts:} \\ E_T^{miss} > 200 \\ {\rm GeV}, P_T^{\gamma} > 100, 50 \ {\rm GeV}, \\ \Delta R_{\gamma\gamma} < 1.5, \ \, M_{\gamma\gamma} \end{array}$
 - $\begin{array}{l} \rightarrow \mbox{ backgrounds:} \\ \mbox{QCD-diphoton, ggF,} \\ \mbox{Z+H, Z+ISR, W+FSR.} \end{array}$

$$\gamma\gamma + \tau + \tau/\ell$$

 \rightarrow Selection cuts:

- $$\begin{split} & \textit{N}_{\ell} > 1 ~\&~\textit{N}_{\tau^h} = 1 \\ & \textit{P}_{T}^{\gamma} > 100,50 ~\text{GeV}, \\ & \Delta\textit{R}_{\gamma\gamma} < 1.5, ~\textit{M}_{\gamma\gamma} \end{split}$$
- \rightarrow backgrounds: Z+H, Z+ISR, W+FSR.

Signals II

@13TeV $\mathcal{L} = 300 fb^{-1}$

 $\gamma\gamma + E_T^{miss}$

 $\gamma\gamma + \tau + \tau/\ell$

$M_{\widetilde{ u}}(GeV)$	Signal	Background	$M_{\widetilde{ u}}(GeV)$	Signal	Background
~ 95	15 ev	3 ev	~ 95	1 ev	«1 ev
~ 125	27 ev	3 ev	~ 125	4 ev	<1 ev
~ 145	12 ev	2 ev	~ 145	1 ev	«1 ev

* Leptonic signal is very sensitive to the value of Y_{ν} . The relative value of the BR corresponding to each ℓ depends on the hierarchy in Y_{ν} . Also, if the masses of M_1 and M_2 are smaller, the signal is reduced.

A ∃ ► A ∃ ► ∃ ⊨

Decay length and Displaced vertices

* Decay width of the LSP always mediated by \mathcal{R} interactions \Rightarrow Always suppresed by Y_{ν} .

* When $M_{\tilde{\nu}} \sim 125$ GeV width enhanced by bigger admixing. In other cases mean life close to observable values.

* Calculations in 1-generation model predict decay length below mm scale. Also boost factor $\beta\gamma$ small due to direct production of sneutrinos. * Backgrounds for displaced vertex producing jets, photons or leptons are extremely low. \Rightarrow Even small crossection could give a significant signal. * Detailed analysis of possible displaced decays needs full 3-generation

analysis. Which is beyond the scope of present work.

 \star No available public code to simulate detector response to long lived particles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう

Conclusions.

* The $\mu\nu$ SSM is the minimal extension of the MSSM which the μ problem and reproduces neutrino physics.

- * Since *R*-parity is broken, a sneutrino LSP is not ruled out.
- * Light sneutrinos require small and tuned A_{λ} coupling.

* If 95 GeV $\lesssim M_{\tilde{\nu}} \lesssim$ 145 GeV the signals $\gamma \gamma + E_T^{miss}$ and $\gamma \gamma + \tau/\ell$ would be detectable at the end of RUN II.

* Supressed decay width of the sneutrino could lead to displaced vertices. Reliable results require further dedicated analysis.

In the Future:

- * Extend analysis to three generations of right handed neutrinos.
- * Analyze possible production of displaced vertex.
- * Study long decay chains of squarks and gluinos with a sneutrino LSP.
- \star Include possbility of spontaneous CP violation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう

Thank you for your time!

Iñaki Lara Pérez (UAM)

Left-handed sneutrinos @ the LHC 15 de noviembre de 2016 33 / 33

Pseudoscalar mass Matrix I

$$\begin{split} m_{H_{d}}^{2} H_{d}^{T} &= v_{iR} \tan\beta \left(T_{\lambda_{i}} + \lambda_{j} \kappa_{ijk} v_{kR} \right) + Y_{\nu_{ij}} \frac{v_{iL}}{v_{d}} \left(\lambda_{k} v_{jR} v_{kR} + \lambda_{j} v_{u}^{2} \right) + V_{v_{d}v_{d}}^{(n)} - \frac{1}{v_{d}} V_{v_{d}}^{(n)} , \\ m_{H_{u}}^{2} H_{u}^{T} &= v_{iR} \frac{1}{\tan\beta} \left(T_{\lambda_{i}} + \lambda_{j} \kappa_{ijk} v_{kR} \right) - \frac{v_{iL}}{v_{u}} \left(T_{\nu_{ij}} v_{jR} + Y_{\nu_{ij}} \kappa_{ljk} v_{lR} v_{kR} \right) + V_{v_{u}v_{u}}^{(n)} - \frac{1}{v_{u}} V_{v_{u}}^{(n)} , \\ m_{H_{d}}^{2} H_{u}^{T} &= T_{\lambda_{i}} v_{iR} + \lambda_{k} \kappa_{ijk} v_{iR} v_{jR} + V_{v_{d}v_{u}}^{(n)} , \\ m_{H_{d}}^{2} \overline{\nu}_{iR}^{T} &= T_{\lambda_{i}} v_{u} - 2\lambda_{k} \kappa_{ijk} v_{u} v_{jR} - Y_{\nu_{ji}} \lambda_{k} v_{jL} v_{kR} + Y_{\nu_{jk}} \lambda_{i} v_{jL} v_{kR} + V_{v_{d}v_{iR}}^{(n)} , \\ m_{H_{d}}^{2} \overline{\nu}_{iR}^{T} &= T_{\lambda_{i}} v_{d} - T_{\nu_{ji}} v_{jR} - 2\lambda_{k} \kappa_{ilk} v_{d} v_{lR} + 2Y_{\nu_{jk}} \kappa_{ilk} v_{jL} v_{kR} + V_{v_{u}v_{iR}}^{(n)} , \\ m_{i}^{2} \overline{\nu}_{iR}^{T} &= -2 \left(T_{\kappa_{ijk}} v_{kR} - \lambda_{k} \kappa_{ijk} v_{d} v_{u} + \kappa_{ijk} \kappa_{lmk} v_{R} v_{mR} \right) + 4\kappa_{ilk} \kappa_{jmk} v_{lR} v_{mR} + \lambda_{i} \lambda_{j} (v_{d}^{2} + v_{u}^{2}) \\ &- 2Y_{\nu_{lk}} \kappa_{ijk} v_{u} v_{lL} - \left(Y_{\nu_{kj}} \lambda_{i} + Y_{\nu_{ki}} \lambda_{j} \right) v_{d} v_{kL} + Y_{\nu_{ki}} Y_{\nu_{kj}} v_{u}^{2} + Y_{\nu_{li}} Y_{\nu_{kj}} v_{kL} v_{lL} \\ &+ \frac{\delta_{ij}}{v_{jR}} \left[- T_{\nu_{ki}} v_{kL} v_{u} + T_{\lambda_{i}} v_{u} v_{d} - T_{\kappa_{ilk}} v_{lR} v_{kR} + 2\lambda_{l} \kappa_{ilk} v_{d} v_{u} v_{kR} - 2\kappa_{lim} \kappa_{lnk} v_{mR} v_{\nu_{n}^{c}} v_{kR} \\ &- \lambda_{i} \lambda_{l} (v_{d}^{2} + v_{u}^{2}) v_{lR} - 2Y_{\nu_{lk}} \kappa_{ikm} v_{u} v_{lL} v_{mR} + \left(Y_{\nu_{kl}} \lambda_{i} + Y_{\nu_{ki}} \lambda_{l} \right) v_{d} v_{kL} v_{lR} \\ &- Y_{\nu_{ki}} Y_{\nu_{kl}} v_{u}^{2} v_{lR} - Y_{\nu_{ki}} Y_{\nu_{lm}} v_{kL} v_{lL} v_{mR} \right] + V_{iR}^{(n)} v_{iR} - \frac{\delta_{ij}}{v_{iR}} V_{iR}^{(n)} , \end{split}$$

Iñaki Lara Pérez (UAM)

Pseudoscalar mass Matrix II

$$\begin{split} m_{H_{d}^{T}\bar{\nu}_{ll}^{T}}^{T} &= -Y_{\nu_{ij}}\lambda_{j}v_{u}^{2} - Y_{\nu_{ij}}\lambda_{k}v_{kR}v_{jR} + V_{v_{d}}^{(n)}v_{il} , \\ m_{H_{u}^{T}\bar{\nu}_{ll}^{T}}^{T} &= -T_{\nu_{ij}}v_{\nu_{j}^{c}} - Y_{\nu_{ik}}\kappa_{ljk}v_{lR}v_{jR} + V_{v_{u}}^{(n)}v_{il} , \\ m_{\tilde{\nu}_{ll}^{T}\bar{\nu}_{jR}^{T}}^{T} &= -T_{\nu_{ij}}v_{u} + Y_{\nu_{ij}}\lambda_{k}v_{d}v_{kR} - Y_{\nu_{ik}}\lambda_{j}v_{d}v_{kR} + 2Y_{\nu_{il}}\kappa_{jlk}v_{u}v_{kR} \\ &-Y_{\nu_{ij}}Y_{\nu_{lk}}v_{lL}v_{kR} + Y_{\nu_{ik}}Y_{\nu_{lj}}v_{lL}v_{kR} + V_{v_{il}}^{(n)} , \\ m_{\tilde{\nu}_{ll}^{T}\bar{\nu}_{jL}^{T}}^{2} &= Y_{\nu_{ik}}Y_{\nu_{jk}}v_{u}^{2} + Y_{\nu_{ik}}Y_{\nu_{jl}}v_{kR}v_{lR} \\ &+ \frac{\delta_{ij}}{v_{jL}} \left[-T_{\nu_{ik}}v_{u}v_{kR} + Y_{\nu_{ik}} \left(\lambda_{l}v_{d}v_{kR}v_{lR} + \lambda_{k}v_{d}v_{u}^{2} - \kappa_{klm}v_{u}v_{lR}v_{mR} - Y_{\nu_{mk}}v_{mL}v_{u}^{2} \\ &- Y_{\nu_{ml}}v_{mL}v_{lR}v_{kR} \right) \right] + V_{\nu_{il}}^{(n)} - \frac{\delta_{ij}}{v_{iL}}V_{\nu_{iL}}^{(n)} , \end{split}$$

Iñaki Lara Pérez (UAM)

Scalar mass Matrix I

$$\begin{split} m_{H_{d}^{\mathcal{R}}H_{d}^{\mathcal{R}}}^{2} &= m_{H_{d}^{\mathcal{I}}H_{d}^{\mathcal{I}}}^{2} + \frac{G^{2}}{2} v_{d}^{2} , \\ m_{H_{u}^{\mathcal{R}}H_{u}^{\mathcal{R}}}^{2} &= m_{H_{u}^{\mathcal{I}}H_{u}^{\mathcal{I}}}^{2} + \frac{G^{2}}{2} v_{u}^{2} , \\ m_{H_{d}^{\mathcal{R}}H_{u}^{\mathcal{R}}}^{2} &= -\frac{G^{2}}{2} v_{d} v_{u} - T_{\lambda_{i}} v_{iR} - \lambda_{k} \kappa_{ijk} v_{iR} v_{jR} + 2 v_{d} v_{u} \lambda_{i} \lambda_{i} - 2 Y_{\nu_{ij}} \lambda_{j} v_{u} v_{iL} + V_{v_{d} v_{u}}^{(n)} , \\ m_{H_{d}^{\mathcal{R}}H_{u}^{\mathcal{F}}}^{2} &= -T_{\lambda_{i}} v_{u} - 2 \lambda_{k} \kappa_{ijk} v_{u} v_{jR} + 2 \lambda_{i} \lambda_{j} v_{d} v_{jR} - Y_{\nu_{ji}} \lambda_{k} v_{jL} v_{kR} - Y_{\nu_{jk}} \lambda_{i} v_{jL} v_{kR} + V_{v_{d} v_{iR}}^{(n)} , \\ m_{H_{u}^{\mathcal{R}}\tilde{\nu}_{i}^{\mathcal{F}}}^{2} &= -T_{\lambda_{i}} v_{d} + T_{\nu_{ji}} v_{jL} - 2 \lambda_{k} \kappa_{ilk} v_{d} v_{lR} + 2 \lambda_{i} \lambda_{j} v_{u} v_{jR} + 2 Y_{\nu_{jk}} \kappa_{ilk} v_{jL} v_{lR} \\ &+ 2 Y_{\nu_{jk}} Y_{\nu_{ji}} v_{u} v_{kR} + V_{v_{u} v_{iR}}^{(n)} , \end{split}$$

Iñaki Lara Pérez (UAM)

Scalar mass Matrix II

$$\begin{split} m^2_{\vec{\nu}_{iR}^{\mathcal{R}} \tilde{\nu}_{jR}^{\mathcal{R}}} &= m^2_{\vec{\nu}_{iR}^{\mathcal{I}} \tilde{\nu}_{jR}^{\mathcal{I}}} + 4 \left(T_{\kappa_{ijk}} v_{kR} - \lambda_k \kappa_{ijk} v_d v_u + \kappa_{ijk} \kappa_{lmk} v_{lR} v_{mR} \right) , \\ m^2_{H_d^{\mathcal{R}} \tilde{\nu}_i^{\mathcal{R}}} &= \frac{G^2}{2} v_d v_{iL} - Y_{\nu_{ij}} \lambda_j v_u^2 - Y_{\nu_{ij}} \lambda_k v_{kR} v_{jR} + V_{v_d v_{iL}}^{(n)} , \\ m^2_{H_u^{\mathcal{R}} \tilde{\nu}_i^{\mathcal{R}}} &= -\frac{G^2}{2} v_u v_{iL} + T_{\nu_{ij}} v_{jR} + Y_{\nu_{ik}} \kappa_{ljk} v_{lR} v_{jR} - 2Y_{\nu_{ij}} \lambda_j v_d v_u + 2Y_{\nu_{ij}} Y_{\nu_{kj}} v_u v_{kL} + V_{v_u v_{iL}}^{(n)} , \\ m^2_{\tilde{\nu}_{iL}^{\mathcal{R}} \tilde{\nu}_j^{\mathcal{R}}} &= T_{\nu_{ij}} v_u - Y_{\nu_{ij}} \lambda_k v_d v_{kR} - Y_{\nu_{ik}} \lambda_j v_d v_{kR} + 2Y_{\nu_{ik}} \kappa_{jjk} v_u v_{lR} + Y_{\nu_{ij}} Y_{\nu_{kl}} v_{kL} v_{lR} \\ &+ Y_{\nu_{il}} Y_{\nu_{kj}} v_{kL} v_{lR} + V_{\nu_{iL}^{(n)}}^{(n)} , \\ m^2_{\tilde{\nu}_{iL}^{\mathcal{R}} \tilde{\nu}_{jL}^{\mathcal{R}}} &= m^2_{\tilde{\nu}_{iL}^{\mathcal{I}} \tilde{\nu}_{jL}^{\mathcal{I}}} + \frac{G^2}{2} v_{iL} v_{jL} , \end{split}$$

Iñaki Lara Pérez (UAM)

Charged scalar mass matrix I.

$$\begin{split} m_{H_{d}^{-}H_{d}^{-}*}^{2} &= m_{H_{d}^{+}H_{d}^{+}}^{2} + \frac{g_{2}^{2}}{2} (v_{u}^{2} - v_{iL}v_{iL}) - \lambda_{i}\lambda_{j}v_{u}^{2} + Y_{e_{ik}}Y_{e_{jk}}v_{iL}v_{jL} , \\ m_{H_{u}^{+}*H_{u}^{+}}^{2} &= m_{H_{u}^{+}H_{u}^{+}}^{2} + \frac{g_{2}^{2}}{2} (v_{d}^{2} + v_{iL}v_{iL}) - \lambda_{i}\lambda_{i}v_{d}^{2} + 2Y_{\nu_{ij}}\lambda_{j}v_{d}v_{iL} - Y_{\nu_{ik}}Y_{\nu_{jk}}v_{iL}v_{jL} , \\ m_{H_{d}^{-}H_{u}^{+}}^{2} &= \frac{g_{2}^{2}}{2}v_{d}v_{u} + T_{\lambda_{i}}v_{iR} + \lambda_{k}\kappa_{ijk}v_{iR}v_{jR} - \lambda_{i}\lambda_{i}v_{d}v_{u} + Y_{\nu_{ij}}\lambda_{j}v_{u}v_{iL} + V_{v_{d}v_{u}}^{(n)} , \\ m_{\tilde{e}_{i}^{+}H_{d}^{-}}^{2} &= \frac{g_{2}^{2}}{2}v_{d}v_{iL} - Y_{\nu_{ij}}\lambda_{k}v_{kR}v_{jR} - Y_{e_{ij}}Y_{e_{kj}}v_{d}v_{kL} + V_{\nu_{iL}v_{d}}^{(n)} , \\ m_{\tilde{e}_{i}^{+}H_{d}^{-}}^{2} &= \frac{g_{2}^{2}}{2}v_{u}v_{iL} - T_{\nu_{ij}}v_{jR} - Y_{\nu_{ij}}\kappa_{ljk}v_{lR}v_{kR} + Y_{\nu_{ij}}\lambda_{j}v_{d}v_{u} - Y_{\nu_{ik}}Y_{\nu_{kj}}v_{u}v_{jL} + V_{\nu_{iL}v_{u}}^{(n)} , \\ m_{\tilde{e}_{i}^{+}H_{d}^{-}}^{2} &= -T_{e_{ji}}v_{iL} - Y_{e_{ki}}Y_{\nu_{kj}}v_{u}v_{jR} + V_{e_{j}^{(n)}}^{(n)} , \\ m_{\tilde{e}_{i}^{+}H_{d}^{-}}^{2} &= -T_{e_{ji}}v_{iL} - Y_{e_{ki}}Y_{\nu_{kj}}v_{u}v_{jR} + V_{e_{i}^{(n)}}^{(n)} , \\ m_{\tilde{e}_{i}^{+}H_{d}^{-}}^{2} &= -Y_{e_{ki}}(\lambda_{j}v_{kL}v_{jR} + Y_{\nu_{kj}}v_{d}v_{jR}) + V_{\tilde{e}_{i}^{+}v_{u}}^{(n)} , \end{split}$$

Iñaki Lara Pérez (UAM)

Charged scalar mass matrix II.

$$\begin{split} m^2_{\tilde{e}_{i}\tilde{e}_{j}^{c}} &= T_{e_{ij}} v_{d} - Y_{e_{ij}} \lambda_{k} v_{u} v_{kR} + V^{(n)}_{v_{v_{i}}\tilde{e}_{j}^{c}} , \\ m^2_{\tilde{e}_{j}^{c}\tilde{e}_{i}^{c}} &= m^2_{\tilde{e}_{i}\tilde{e}_{j}^{c}} + V^{(n)}_{\tilde{e}_{i}^{c}} v_{v_{j}} , \\ m^2_{\tilde{e}_{i}^{c}\tilde{e}_{j}^{c}} &= m^2_{\tilde{e}_{ij}^{c}} + \frac{g_{1}^{2}}{2} (v_{u}^{2} - v_{d}^{2} - v_{kL} v_{kL}) \delta_{ij} + Y_{e_{ki}} Y_{e_{kj}} v_{d}^{2} + Y_{e_{li}} Y_{e_{kj}} v_{kL} v_{lL} + V^{(n)}_{\tilde{e}_{i}^{c}} \epsilon_{\tilde{e}_{j}^{c}} , \\ m^2_{\tilde{e}_{i}\tilde{e}_{j}^{c}} &= m^2_{\tilde{e}_{ij}^{c}} + \frac{g_{1}^{2}}{2} (v_{u}^{2} - v_{d}^{2} - v_{kL} v_{kL}) \delta_{ij} + \frac{g_{2}^{2}}{2} v_{iL} v_{jL} - Y_{\nu_{ik}} Y_{\nu_{jk}} v_{u}^{2} + Y_{e_{il}} Y_{e_{jl}} v_{d}^{2} , \end{split}$$

Iñaki Lara Pérez (UAM)

Left-handed sneutrinos @ the LHC 15 de noviembre de 2016 39 / 33

Couplings I.

 \star CP even neutral scalar–up quarks–up quarks

$$-i\frac{1}{\sqrt{2}}\delta_{\alpha\beta}\sum_{b=1}^{3}U_{L,jb}^{u,*}\sum_{a=1}^{3}U_{R,ia}^{u,*}Y_{u,ab}Z_{k2}^{H}P_{L} - i\frac{1}{\sqrt{2}}\delta_{\alpha\beta}\sum_{a,b=1}^{3}Y_{u,ab}^{*}U_{R,ja}^{u}U_{L,ib}^{u}Z_{k2}^{H}P_{R} .$$

* CP odd neutral scalar-up quarks-up quarks

$$\frac{1}{\sqrt{2}}\delta_{\alpha\beta}\sum_{b=1}^{3}U_{L,jb}^{u,*}\sum_{a=1}^{3}U_{R,ia}^{u,*}Y_{u,ab}Z_{k2}^{A}P_{L} - \frac{1}{\sqrt{2}}\delta_{\alpha\beta}\sum_{a,b=1}^{3}Y_{u,ab}^{*}U_{R,ja}^{u}U_{L,ib}^{u}Z_{k2}^{A}P_{R} .$$

* CP even neutral scalar-down guarks-down guarks

$$-i\frac{1}{\sqrt{2}}\delta_{\alpha\beta}\sum_{b=1}^{3}U_{L,jb}^{d,*}\sum_{a=1}^{3}U_{R,ia}^{d,*}Y_{d,ab}Z_{k1}^{H}P_{L} - i\frac{1}{\sqrt{2}}\delta_{\alpha\beta}\sum_{a,b=1}^{3}Y_{d,ab}^{*}U_{R,ja}^{d}U_{L,ib}^{d}Z_{k1}^{H}P_{R} .$$

* CP odd neutral scalar-down guarks-down guarks

$$\frac{1}{\sqrt{2}}\delta_{\alpha\beta}\sum_{b=1}^{3}U_{L,jb}^{d,*}\sum_{a=1}^{3}U_{R,ia}^{d,*}Y_{d,ab}Z_{k1}^{A}P_{L} - \frac{1}{\sqrt{2}}\delta_{\alpha\beta}\sum_{a,b=1}^{3}Y_{d,ab}^{*}U_{R,ia}^{d}U_{L,ib}^{d}Z_{k1}^{A}P_{R} .$$
Left-handed sneutrinos @ the LHC 15 de noviembre de 2016 40 / 33

40 / 33

Iñaki Lara Pérez (UAM)

Couplings II.

* CP even neutral scalar-charged fermion-charged fermion

$$\begin{split} &-i\frac{1}{\sqrt{2}}\Big\{\sum_{a,b=1}^{3}U_{R,jb}^{e,*}U_{L,ia}^{e,*}Y_{e,ab}Z_{k1}^{H}+g_{2}U_{L,i4}^{e,*}\Big(U_{R,j5}^{e,*}Z_{k1}^{H}+\sum_{a=1}^{3}U_{R,ja}^{e,*}Z_{k3+a}^{H}\Big)+g_{2}U_{R,j4}^{e,*}U_{L,i5}^{e,*}Z_{k2}^{H}\\ &-U_{L,i5}^{e,*}\sum_{a=1}^{3}U_{R,ja}^{e,*}Y_{\nu,a}Z_{k3}^{H}+U_{R,j5}^{e,*}\Big(\lambda U_{L,i5}^{e,*}Z_{k3}^{H}-\sum_{a,b=1}^{3}U_{L,ia}^{e,*}Y_{e,ab}Z_{k3+b}^{H}\Big)\Big\}P_{L}\\ &+i\frac{1}{\sqrt{2}}\Big\{\sum_{a,b=1}^{3}Y_{e,ab}^{*}U_{L,ja}^{e,}Z_{k3+b}^{H}U_{R,i5}^{e}-g_{2}\sum_{a=1}^{3}U_{R,ia}^{e}Z_{k3+a}^{H}U_{L,j4}^{e}-\sum_{a,b=1}^{3}Y_{e,ab}^{*}U_{L,ja}^{e}U_{R,ib}^{e}Z_{k1}^{H}\\ &-g_{2}U_{R,i5}^{e}U_{L,j4}^{e}Z_{k1}^{H}-g_{2}U_{R,i4}^{e}U_{L,j5}^{e}Z_{k2}^{H}+\sum_{a=1}^{3}Y_{\nu,a}^{*}U_{R,ia}^{e}U_{L,j5}^{e}Z_{k3}^{H}-\lambda^{*}U_{R,i5}^{e}U_{L,j5}^{e}Z_{k3}^{H}\Big\}P_{R}\;. \end{split}$$

★ E ► ★ E ► E = 9 < 0<</p>

Couplings III.

* CP even neutral scalar-neutral fermion-neutral fermion

$$\begin{split} &\frac{i}{2} \left\{ g_{1} U_{i4}^{V,*} \sum_{a=1}^{3} U_{ja}^{V,*} Z_{k3+a}^{H} - g_{2} U_{i5}^{V,*} \sum_{a=1}^{3} U_{ja}^{V,*} Z_{k3+a}^{H} - \sqrt{2} (U_{i8}^{V,*} U_{j7}^{V,*} + U_{i7}^{V,*} U_{j8}^{V,*}) \sum_{a=1}^{3} Y_{\nu,a} Z_{k3+a}^{H} \right. \\ &+ g_{1} U_{i4}^{V,*} U_{j6}^{V,*} Z_{k1}^{H} - g_{2} U_{i5}^{V,*} U_{j6}^{V,*} Z_{k1}^{H} + \sqrt{2} \lambda (U_{i8}^{V,*} U_{j7}^{V,*} Z_{k1}^{H} + U_{i7}^{V,*} U_{j8}^{V,*} Z_{k1}^{H} + U_{i8}^{V,*} U_{j6}^{V,*} Z_{k2}^{H} \right) \\ &- g_{1} U_{i4}^{V,*} U_{j7}^{V,*} Z_{k2}^{H} + g_{2} U_{i5}^{V,*} U_{j7}^{V,*} Z_{k2}^{H} + \sqrt{2} \lambda U_{i6}^{V,*} U_{j8}^{V,*} Z_{k2}^{H} - \sqrt{2} U_{j8}^{V,*} \sum_{a=1}^{3} U_{ia}^{V,*} Y_{\nu,a} Z_{k2}^{H} \\ &- \sqrt{2} U_{i8}^{V,*} \sum_{a=1}^{3} U_{ja}^{V,*} Y_{\nu,a} Z_{k2}^{H} + g_{1} U_{j4}^{V,*} \left(U_{i6}^{V,*} Z_{k1}^{H} - U_{i7}^{V,*} Z_{k2}^{H} + \sum_{a=1}^{3} U_{ia}^{V,*} Z_{k3+a}^{H} \right) - 2\sqrt{2} \kappa U_{i8}^{V,*} U_{j8}^{V,*} Z_{k3}^{H} \\ &- g_{2} U_{j5}^{V,*} \left(U_{i6}^{V,*} Z_{k1}^{H} - U_{i7}^{V,*} Z_{k2}^{H} + \sum_{a=1}^{3} U_{ia}^{V,*} Z_{k3}^{H} + U_{i7}^{V,*} U_{i8}^{V,*} Z_{k3}^{H} \right) \\ &- g_{2} U_{j5}^{V,*} \left(U_{i6}^{V,*} Z_{k1}^{H} - U_{i7}^{V,*} Z_{k2}^{H} + \sum_{a=1}^{3} U_{ia}^{V,*} Z_{k3+a}^{H} \right) + \sqrt{2} \lambda (U_{i7}^{V,*} U_{j6}^{V,*} Z_{k3}^{H} + U_{i6}^{V,*} U_{j7}^{V,*} Z_{k3}^{H} \right) \\ &- g_{2} U_{j5}^{V,*} \left(U_{i6}^{V,*} Z_{k1}^{H} - U_{i7}^{V,*} Z_{k2}^{H} + \sum_{a=1}^{3} U_{ia}^{V,*} Z_{k3}^{H} \right) + \sqrt{2} \lambda (U_{i7}^{V,*} U_{j6}^{V,*} Z_{k3}^{H} + U_{i6}^{V,*} U_{j7}^{V,*} Z_{k3}^{H} \right) \\ &- \sqrt{2} U_{j7}^{V,*} \sum_{a=1}^{3} U_{ia}^{V,*} Y_{\nu,a} Z_{k3}^{H} - \sqrt{2} U_{i7}^{V,*} \sum_{a=1}^{3} U_{ia}^{V,*} Y_{\nu,a} Z_{k3}^{H} \right) + g_{2} \sum_{a=1}^{3} Z_{i3}^{H} U_{i4}^{V} U_{i2}^{V} \left(g_{1} U_{i4}^{V} - g_{2} U_{i5}^{V} \right) \\ &- \sqrt{2} \sum_{a=1}^{3} Y_{\nu,a}^{*} U_{ja}^{V} \left(Z_{k2}^{H} U_{i8}^{V} + Z_{k3}^{H} U_{i7}^{V} \right) + g_{1} \sum_{a=1}^{3} Z_{k3+a}^{H} U_{i0}^{V} U_{j4}^{V} + g_{1} Z_{k1}^{H} U_{i6}^{V} U_{j4}^{V} - g_{1} Z_{k2}^{H} U_{i7}^{V} U_{j4}^{V} \right) \\ \end{array}$$

Iñaki Lara Pérez (UAM)

▶ < 글 ▶ < 글 ▶ 글| = </p>

$$\begin{split} -g_{2}\sum_{a=1}^{3}Z_{k3+a}^{H}U_{ia}^{V}U_{j5}^{V} - g_{2}Z_{k1}^{H}U_{i6}^{V}U_{j5}^{V} + g_{2}Z_{k2}^{H}U_{i7}^{V}U_{j5}^{V} + g_{1}Z_{k1}^{H}U_{i4}^{V}U_{j6}^{V} - g_{2}Z_{k1}^{H}U_{i5}^{V}U_{j6}^{V} + \sqrt{2}\lambda^{*}Z_{k3}^{H}U_{i7}^{V}U_{j6}^{V} \\ +\sqrt{2}\lambda^{*}Z_{k2}^{H}U_{i8}^{V}U_{j6}^{V} - \sqrt{2}\sum_{a=1}^{3}Y_{\nu,a}^{*}U_{ia}^{V}Z_{k3}^{H}U_{j7}^{V} - g_{1}Z_{k2}^{H}U_{i4}^{V}U_{j7}^{V} + g_{2}Z_{k2}^{H}U_{i5}^{V}U_{j7}^{V} + \sqrt{2}\lambda^{*}Z_{k3}^{H}U_{i6}^{V}U_{j7}^{V} \\ -\sqrt{2}\sum_{a=1}^{3}Y_{\nu,a}^{*}Z_{k3+a}^{H}U_{i8}^{V}U_{j7}^{V} + \sqrt{2}\lambda^{*}Z_{k1}^{H}U_{i8}^{V}U_{j7}^{V} - \sqrt{2}\sum_{a=1}^{3}Y_{\nu,a}^{*}U_{ia}^{V}Z_{k2}^{H}U_{j8}^{V} + \sqrt{2}\lambda^{*}Z_{k2}^{H}U_{i6}^{V}U_{j8}^{V} \\ -\sqrt{2}\sum_{a=1}^{3}Y_{\nu,a}^{*}Z_{k3+a}^{H}U_{i8}^{V}U_{j7}^{V} + \sqrt{2}\lambda^{*}Z_{k1}^{H}U_{i7}^{V}U_{j8}^{V} - \sqrt{2}2\kappa^{*}Z_{k3}^{H}U_{i8}^{V}U_{j8}^{V} + \sqrt{2}\lambda^{*}Z_{k2}^{H}U_{i6}^{V}U_{j8}^{V} \\ -\sqrt{2}\sum_{a=1}^{3}Y_{\nu,a}^{*}Z_{k3+a}^{H}U_{i7}^{V}U_{j8}^{V} + \sqrt{2}\lambda^{*}Z_{k1}^{H}U_{i7}^{V}U_{j8}^{V} - 2\sqrt{2}\kappa^{*}Z_{k3}^{H}U_{i8}^{V}U_{j8}^{V} \right\} P_{R} \; . \end{split}$$

Iñaki Lara Pérez (UAM)

Couplings V.

 \star CP odd neutral scalar-charged fermion-charged fermion

$$\begin{split} &-\frac{1}{\sqrt{2}}\Big\{-\sum_{a,b=1}^{3}U_{R,jb}^{e,*}U_{L,ia}^{e,*}Y_{e,ab}Z_{k1}^{A}+g_{2}U_{L,i4}^{e,*}\left(U_{R,j5}^{e,*}Z_{k1}^{A}+\sum_{s=1}^{3}U_{R,ja}^{e,*}Z_{k3+s}^{A}\right)+g_{2}U_{R,j4}^{e,*}U_{L,i5}^{e,*}Z_{k2}^{A}\\ &-U_{L,i5}^{e,*}\sum_{a=1}^{3}U_{R,ja}^{e,*}Y_{\nu,a}Z_{k3}^{A}+U_{R,j5}^{e,*}\left(\lambda U_{L,i5}^{e,*}Z_{k3}^{A}+\sum_{a,b=1}^{3}U_{L,ia}^{e,*}Y_{e,ab}Z_{k3+b}^{A}\right)\Big\}P_{L}\\ &+\frac{1}{\sqrt{2}}\Big\{\sum_{a,b=1}^{3}Y_{e,ab}^{*}U_{L,ja}^{e}Z_{k3+b}^{A}U_{R,j5}^{e,}+g_{2}\sum_{a=1}^{3}U_{R,ia}^{e,*}Z_{k3+a}^{A}U_{L,j4}^{e}-\sum_{a,b=1}^{3}Y_{e,ab}^{*}U_{L,ja}^{e}U_{R,ib}^{e}Z_{k1}^{A}\\ &+g_{2}U_{R,i5}^{e}U_{L,j4}^{e}Z_{k1}^{A}+g_{2}U_{R,i4}^{e}U_{L,j5}^{e}Z_{k2}^{A}-\sum_{a=1}^{3}Y_{\nu,a}^{*}U_{R,ia}^{e}U_{L,j5}^{e}Z_{k3}^{A}+\lambda^{*}U_{R,i5}^{e}U_{L,j5}^{e}Z_{k3}^{A}\Big\}P_{R}\;. \end{split}$$

Iñaki Lara Pérez (UAM)

Couplings VI.

 \star CP odd neutral scalar-charged fermion-charged fermion

$$\begin{split} &\frac{1}{2} \left\{ g_{1} U_{l4}^{V,*} \sum_{a=1}^{3} U_{ja}^{V,*} Z_{k3+a}^{A} - g_{2} U_{l5}^{V,*} \sum_{a=1}^{3} U_{ja}^{V,*} Z_{k3+a}^{A} + \sqrt{2} (U_{l8}^{V,*} U_{j7}^{V,*} + U_{l7}^{V,*} U_{j8}^{V,*}) \sum_{a=1}^{3} Y_{\nu,a} Z_{k3+a}^{A} \right. \\ &+ g_{1} U_{l4}^{V,*} U_{j6}^{V,*} Z_{k1}^{A} - g_{2} U_{l5}^{V,*} U_{j6}^{V,*} Z_{k1}^{A} - \sqrt{2} \lambda (U_{l8}^{V,*} U_{j7}^{V,*} Z_{k1}^{A} - U_{l7}^{V,*} U_{j8}^{V,*} Z_{k1}^{A} - U_{l8}^{V,*} U_{j6}^{V,*} Z_{k2}^{A} \right) \\ &- g_{1} U_{l4}^{V,*} U_{j7}^{V,*} Z_{k2}^{A} + g_{2} U_{l5}^{V,*} U_{j7}^{V,*} Z_{k2}^{A} - \sqrt{2} \lambda U_{l6}^{V,*} U_{j8}^{V,*} Z_{k2}^{A} + \sqrt{2} U_{j8}^{V,*} Z_{k1}^{A} - U_{l7}^{V,*} U_{j8}^{V,*} Z_{k2}^{A} \right) \\ &+ \sqrt{2} U_{l8}^{V,*} \sum_{a=1}^{3} U_{ja}^{V,*} Y_{\nu,a} Z_{k2}^{A} + g_{1} U_{j4}^{V,*} \left(U_{l6}^{V,*} Z_{k1}^{A} - U_{l7}^{V,*} Z_{k2}^{A} + \sum_{a=1}^{3} U_{la}^{V,*} Z_{k3}^{A} \right) - 2\sqrt{2} \kappa U_{l8}^{V,*} U_{j8}^{V,*} Z_{k3}^{A} \\ &- g_{2} U_{j5}^{V,*} \left(U_{l6}^{V,*} Z_{k1}^{A} - U_{l7}^{V,*} Z_{k2}^{A} + \sum_{a=1}^{3} U_{la}^{V,*} Z_{k3}^{A} + \sqrt{2} \lambda U_{l6}^{V,*} U_{l6}^{V,*} U_{l8}^{V,*} Z_{k3}^{A} \right) \\ &- \sqrt{2} U_{j7}^{V,*} \sum_{a=1}^{3} U_{la}^{V,*} Y_{\nu,a} Z_{k3}^{A} - \sqrt{2} U_{l7}^{V,*} \sum_{a=1}^{3} U_{la}^{V,*} Y_{\nu,a} Z_{k3}^{A} \right\} \\ &- \sqrt{2} U_{j7}^{V,*} \sum_{a=1}^{3} U_{la}^{V,*} Y_{\nu,a} Z_{k3}^{A} - \sqrt{2} U_{l7}^{V,*} \sum_{a=1}^{3} U_{la}^{V,*} Y_{\nu,a} Z_{k3}^{A} \right) \\ &- \sqrt{2} U_{j7}^{V,*} \sum_{a=1}^{3} U_{la}^{V,*} Y_{\nu,a} Z_{k3}^{A} - \sqrt{2} U_{l7}^{V,*} \sum_{a=1}^{3} U_{la}^{V,*} Y_{\nu,a} Z_{k3}^{A} \right) \\ &- \sqrt{2} U_{j7}^{V,*} \sum_{a=1}^{3} U_{la}^{V,*} Y_{\nu,a} Z_{k3}^{A} - \sqrt{2} U_{l7}^{V,*} \sum_{a=1}^{3} U_{la}^{V,*} Y_{\nu,a} Z_{k3}^{A} \right) \\ &- \sqrt{2} U_{j7}^{V,*} \sum_{a=1}^{3} U_{la}^{V,*} Y_{\nu,a} Z_{k3}^{A} - \sqrt{2} U_{l7}^{V,*} \sum_{a=1}^{3} U_{la}^{V,*} Y_{\nu,a} Z_{k3}^{A} \right) \\ &- \sqrt{2} U_{j7}^{V,*} U_{j4}^{V,*} \left(- Z_{k2}^{V} U_{l8}^{V,*} Z_{k3}^{V,*} \right) \\ &- g_{a=1}^{V,*} U_{\nu,a}^{V,*} U_{ja}^{V,*} \left(- Z_{k2}^{V} U_{l8}^{V,*} Z_{k3}^{V,*} \right) \\ &- g_{a=1}^{V,*} U_{\nu,a}^{V,*} U_{ja}^{V,*} \left(- Z_{k2}^{V} U_{l8}^{V,*} Z_{k3}^{V,*} \right) \\ &- g_{a=1}^{V,*} U_{\mu,a}^{V,*} U_{\mu}^{V,*$$

$$\begin{split} +g_{2}\sum_{a=1}^{3}Z_{k3+a}^{A}U_{ia}^{V}U_{j5}^{V}+g_{2}Z_{k1}^{A}U_{i6}^{V}U_{j5}^{V}-g_{2}Z_{k2}^{A}U_{i7}^{V}U_{j5}^{V}-g_{1}Z_{k1}^{A}U_{i4}^{V}U_{j6}^{V}+g_{2}Z_{k1}^{A}U_{i5}^{V}U_{j6}^{V}\\ -\sqrt{2}\lambda^{*}(Z_{k3}^{A}U_{i7}^{V}U_{j6}^{V}+Z_{k2}^{A}U_{i8}^{V}U_{j6}^{V})+\sqrt{2}\sum_{a=1}^{3}Y_{\nu,a}^{*}U_{ia}^{V}Z_{k3}^{A}U_{j7}^{V}+g_{1}Z_{k2}^{A}U_{i4}^{V}U_{j7}^{V}-g_{2}Z_{k2}^{A}U_{i5}^{V}U_{j7}^{V}\\ -\sqrt{2}\lambda^{*}Z_{k3}^{A}U_{i6}^{V}U_{j7}^{V}-\sqrt{2}\sum_{a=1}^{3}Y_{\nu,a}^{*}Z_{k3+a}^{A}U_{i8}^{V}U_{j7}^{V}+\sqrt{2}\lambda^{*}Z_{k1}^{A}U_{i6}^{V}U_{j7}^{V}-\sqrt{2}\sum_{a=1}^{3}Y_{\nu,a}^{*}U_{ia}^{V}Z_{k2}^{A}U_{j8}^{V}\\ +\sqrt{2}\lambda^{*}Z_{k2}^{A}U_{i6}^{V}U_{j8}^{V}-\sqrt{2}\sum_{a=1}^{3}Y_{\nu,a}^{*}Z_{k3+a}^{A}U_{i7}^{V}U_{j8}^{V}+\sqrt{2}\lambda^{*}Z_{k1}^{A}U_{i7}^{V}U_{j8}^{V}+2\sqrt{2}\kappa^{*}Z_{k3}^{A}U_{i8}^{V}U_{j8}^{V}\}P_{R} \;. \end{split}$$

Iñaki Lara Pérez (UAM)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 三日日 のへで

Constraints on trilinear+bilinear

After EWSB effective terms are generated:

Trilinear terms

$$\star \ \lambda_{ijk} \sim Y_{\nu_{ij}} \kappa \frac{m_{ijk}}{v} \frac{(1-\delta_{ij})\delta_{jk}}{\sqrt{1+\tan^2\beta}} \lesssim 2 \times 10^{-10} \ \text{ for } j=k=3$$

$$\star \ \lambda_{ijk}' \sim Y_{\nu_{ii}} \kappa \frac{m_{d_{jk}}}{v} \frac{\delta_{jk}}{\sqrt{1 + \tan^2\beta}} \lesssim 2 \times 10^{-10} \quad \text{for } j = k = 3$$

Bilinear

$$\star ~ \epsilon_i^{
m eff} \sim Y_{
u_{ij}} v_{jR} \lesssim 2 imes 10^{-3} ~ {
m GeV} ~ {
m for} ~ i=j=3$$

Experimental contraints form Cosmology, Colliders and Flavour physics are:

- \star *R-parity* $\lesssim \mathcal{O}(10^{-20}) \Rightarrow$ DM candidate.
- * $\mathcal{O}(10^{-20}) \lesssim R$ -parity $\lesssim \mathcal{O}(10^{-12}) \Rightarrow$ Ruled out (Interference with Big-bang nucleosynthesis).
- * $\mathcal{O}(10^{-12}) \lesssim$ *R-parity* $\lesssim \mathcal{O}(10^{-9}) \Rightarrow$ Decay outside detector (E_T^{miss}).

Stringest constraints (with $m_S oft \sim 1 \text{TeV}$) over:

Higgs mass in the $\mu\nu SSM$

 \star Additional tree-level contributions from new *F*-terms and or *D*-terms.

* In the $\mu\nu$ SSM is possible a tree-level mass around 125 GeV \Rightarrow At higher tan β , stronger λ coupling is needed.

(N.Escudero, D. E .López-Fogliani, C. Muñoz and R.R.de Austri, JHEP 12 (2008) 099

Iñaki Lara Pérez (UAM)	Left-handed sneutrinos @ the LHC	15 de noviembre de 2016	48 / 33
	· · · · · · · · · · · · · · · · · · ·		

Z_3 Symmetric superpotential

* If a discrete Z_3 symmetry is imposed to the superpotential, to avoid dimensionful parameters \Rightarrow Once spontaneously broken after EWSB Domain walls are generated which can dominate the energy density of the universe, producing large anisotropies on the CMB

* If Z_3 is an accidental symmetry \Rightarrow Nonrenormalizable interactions lift the degeneracy between vacua

* If the right handed neutrino superfields couple in the most general way to heavy fiels \Rightarrow Radiative corrections can induce very large terms in the effective action linear in $\hat{\nu_R}$

* Impose R-symmetries in the nonrenormalizable lagrangian allow only non-dangerous higher dimension terms

J. R. Ellis, K. Enqvist, D. V. Nanopoulos, K. A. Olive, M. Quiros and F. Zwirner, Phys. Lett. B176 (1986) 403.

B. Ray and G. Senjanovic, Phys. Rev. D49 (1994)2729.

- S. A. Abel, S. Sarkar and P. L. White, Nucl. Phys. B454 (1995) 663.
- S. A. Abel, Nucl. Phys. B480 (1996) 55.
- C. Panagiotakopoulos and K. Tamvakis, Phys. Lett. B446 (1999) 224

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう

* Same QFV contraints as to the NMSSM apply to the $\mu\nu$ SSM. * The $\mu\nu$ SSM superpotential includes terms which break splicitly Lepton number conservation. \Rightarrow Small violation:

• BR
$$(\mu \to e\gamma)_{\mu\nu SSM} = 3.96 \times 10^{-26} \ll BR(\mu \to e\gamma)_{exp} < 5.7 \times 10^{-13}$$

• BR $(\tau \to e\gamma)_{\mu\nu SSM} = 2.23 \times 10^{-28} \ll BR(\tau \to e\gamma)_{exp} < 3.3 \times 10^{-8}$
• BR $(\tau \to \mu\gamma)_{\mu\nu SSM} = 2.22 \times 10^{-28} \ll BR(\tau \to \mu\gamma)_{exp} < 4.4 \times 10^{-8}$
• BR $(\mu \to eee)_{\mu\nu SSM} = 1.0 \times 10^{-26} \ll BR(\mu \to eee)_{exp} < 1.0 \times 10^{-12}$
• BR $(\tau \to e\mu\mu)_{\mu\nu SSM} = 1.341 \times 10^{-28} \ll BR(\tau \to e\mu\mu)_{exp} < 4.4 \times 10^{-8}$
• Limits on $\mu \to e$ conversion: $\mu\nu SSM \sim 10^{-26} \ll Exp$ Limits $\lesssim 10^{-11}$