
Poincaré Symmetry
shapes the Massive 3-point Amplitude

Andrea Marzolla
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Motivations

• On-shell recursion relations for scattering amplitudes
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e.g.: Parke-Taylor formula for MHV gluon tree-level amplitudes

Mn(. . . , i−, . . . , j−, . . . ) =
〈i, j〉

〈1, 2〉〈2, 3〉 · · · 〈n−1, n〉〈n, 1〉

proved by induction with BCFW recursion relations for any n,
while increasingly painful for increasing n with Feynman graphs...

n 4 5 6 · · · 8

# 4 25 220 · · · 10525900
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Motivations

• On-shell recursion relations for scattering amplitudes

• Non perturbative results for scattering amplitudes
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Main result

For massless complex external momenta, the Poincaré invariant
3-point amplitude is fixed up to a constant (coupling).

[Benincasa-Cachazo ’07]

Poincaré invariance determines the 3-point amplitude also in the
case where external states can be massive, up to some constants.

[E. Conde, AM arxiv/1601.08113]
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Philosophy

Reconstructing the amplitude with the minimal amount of
information.

Amplitude as an asymptotic object

The states of the Hilbert space (particles) are identified by the
symmetry of space-time (Wigner classification)
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Outline

Poincaré representations and Little Group

LG for massless representations

LG for massive representations

Review of the massless 3-point amplitude

Spinor-Helicity formalism

Massive 3-point amplitude
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Poincaré in 4 dim

Casimir operators

P 2 square of translation generator −→ mass

W 2 square of Pauli-Lubanski operator −→ spin

Wλ = ελµνρM
µνP ρ generator of the Little Group

LGp =
{

Λp ∈ L↑+
/

Λpp = p
}
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LG for massless representations

p
Lp−−−→ k = (E, 0, 0, E)

=⇒ LGk ≡ ISO2 : Isometries in 2 dim. euclidean space

Λk|k; a〉 = eiαAeiβBeiθJ3 |k; a〉

If α, β 6= 0 ⇒ continuous spin

J3 admits for discrete eigenvalues: ±h −→ helicity

J3 |p;h〉 = h |p;h〉
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LG for massive representations

P
LP−−−→ K = (m, 0, 0, 0)

=⇒ LGK ≡ SO(3) : 3-dim. spatial rotations

J0 |P ; s, σ〉 = σ |P ; s, σ〉

J±|P ; s, σ〉 = σ±|P ; s, σ ± 1〉

σ ∈ {−s, . . . ,+s}

σ± =
√

(s∓ σ)(s± σ + 1)
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How is this story helpful to constrain the amplitude?

|p; a〉 −→ Mn ∼
n⊗
i=1

|pi; ai〉

P −→ momentum conservation −→ Mn ∝ δ
(∑

i pi
)

W −→ little group scaling −→ LG equations
“spin conservation”
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LG equations in the massless case

From the LG action on the states descends the LG action on the
amplitude

eiθJ3 |p;h〉 = eiθh|p;h〉
⇓

eiθJ
j
3Mn({pi, hi}) = eiθhjMn({pi, hi})

The infinitesimal version of this equation,

J j3Mn({pi, hi}) = hjMn({pi, hi})

yields strong constraints on the amplitude, and it is actually
enough to fully fix the 3-point one.
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Spinor-Helicity formalism...

L↑+(R)
homomorph.−−−−−−−→

1 to 2
SL(2,C)

L+(C)
homomorph.−−−−−−−→

1 to 2
SL(2,C)× SL(2,C)

pµ −→ paȧ = σµaȧpµ

Λ ν
µ pν −→ ζ b

a pbḃ η
ḃ
ȧ

σµ = (I, ~σ)

pµp
µ = det |paȧ|



Motivations Poincaré representations and LG Massless 3-point amplitude Massive 3-point amplitude Summary and outlook

... for massless particles

det |paȧ| = pµp
µ = 0

⇓

paȧ = λa ⊗ λ̃ȧ = λaλ̃ȧ

reality condition: λ̃ȧ ≡ (λa)
∗ , η ≡ ζ† .

We define:
〈λ, µ〉 = εabλbµa

[λ̃, µ̃] = λ̃ȧε
ȧḃµ̃ḃ

〈i, j〉[i, j] ≡ 〈λi, λj〉 = 2 pi ·pj
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LG scaling

eiθhi Mn

(
λj λ̃j ;hj

)
−→ t−2hi Mn

(
λj λ̃j ;hj

)
t ∈ C

λ −→ t λ

λ̃ −→ t−1λ̃

}
⇒ λλ̃ −→ λλ̃

X LG

LG differential equation:(
λi

∂

∂λi
− λ̃i

∂

∂λ̃i

)
Mn

(
λj λ̃j ;hj

)
= −2hiMn

(
λj λ̃j ;hj

)



Motivations Poincaré representations and LG Massless 3-point amplitude Massive 3-point amplitude Summary and outlook

LG scaling

eiθhi Mn

(
λj λ̃j ;hj

)
−→ t−2hi Mn

(
λj λ̃j ;hj

)
t ∈ C

λ −→ t λ

λ̃ −→ t−1λ̃

}
⇒ λλ̃ −→ λλ̃ X LG

LG differential equation:(
λi

∂

∂λi
− λ̃i

∂

∂λ̃i

)
Mn

(
λj λ̃j ;hj

)
= −2hiMn

(
λj λ̃j ;hj

)
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3-point massless amplitude

[Benincasa-Cachazo ’07]

(
λi

∂

∂λi
− λ̃i

∂

∂λ̃i

)
M3

(
λj λ̃j ;hj

)
= −2hiM3

(
λj λ̃j ;hj

)
3 equations for 6 variables

x1 = 〈2, 3〉 , x2 = 〈3, 1〉 , x3 = 〈1, 2〉
y1 = [2, 3] , y2 = [3, 1] , y3 = [1, 2]

Mh1,h2,h3
3 = xh1−h2−h31 xh2−h3−h12 xh3−h1−h23 f

(
x1y1, x2y2, x3y3

)
= yh2+h3−h1

1 yh3+h1−h2
2 yh1+h2−h3

3 f̃
(
x1y1, x2y2, x3y3

)
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... but then we have to impose momentum conservation:

0 = p2
1 = (−p2−p3)2 = 2p2·p3 = 〈2, 3〉[2, 3] ⇒ x1 = 0 , or y1 = 0

Let’s say x1 ≡ 〈2, 3〉 = 0 ⇒ λ2 ∝ λ3. But in a 2-dim. vector
space three vectors cannot be linearly independent, so

λ1 = αλ2 + βλ3 ⇒ λ1 ∝ λ2 ∝ λ3 ⇒ xi = 0 ∀i

Or all xi are zero, or all yi are zero.
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For real kinematics (xi = 0 = yi) a 3p amplitude for massless
particles is zero, so the complex 3p amplitude had better go to
zero in this limit, rather than exploding. This selects

M{hj} = gH x
h1−h2−h3
1 xh2−h3−h12 xh3−h1−h23 for h1+h2+h3 <0

M{hj} = gA y
h2+h3−h1
1 yh3+h1−h2

2 yh1+h2−h3
3 for h1+h2+h3 >0

For h1+h2+h3 = 0 the answer is left undetermined (there are
claims that such interactions cannot exist).
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Let’s now extend the same successful strategy to massive particles.
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To-Do list

• LG scaling for massive particles

• Spinor-Helicity formalism for massive momenta
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To-Do list

• LG scaling for massive particles

• Spinor-Helicity formalism for massive momenta
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Spinor formalism for massive momenta

A time-like momentum can be always decomposed into two
light-like ones

P = λλ̃+ µµ̃

with P 2 = −m2 = 〈λ, µ〉[λ̃, µ̃]

Crucial disadvantages with respect to the massless case:

• The on-shell condition was built-in in the spinor formalism for
massless particles, here we have to impose it

• The decomposition is not unique, so we are introducing some
non-physical redundancy

But we can still keep the advantage of having LG differential
equations in a simple and effective form!
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LG equations for massive particles

JI0 Mn(λj λ̃j ; ak) = σIMn(λj λ̃j ; ak) equivalent of helicity eq.

JI±Mn(λj λ̃j ; ..., σI , ...) = σ±I Mn(λj λ̃j ; ..., σI ± 1, ...)

j = 1, . . . , n+ # of massive particles

The latter equations relate different amplitudes! What we wish is
to have a system with a maximal number of equations acting on a
unique function...
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Equations for the “lowest-spin” amplitude

Solution: let’s take σI = −sI for every massive particle. (helicities
of possible massless legs are still free to vary)
Then

JI−Mn = 0

JI0 Mn = −sIMn

(JI+)2sI+1Mn = 0

The third equation is not as simple as the others, let’s keep it for
the end. So

2 eq.s for every massive leg + 1 eq. for every massless leg
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Massive LG equations in spinor formalism

If we take the transformation(
λ
µ

)
→ U

(
λ
µ

) (
λ̃ µ̃

)
→
(
λ̃ µ̃

)
U † U ∈ U(2)

under which the massive momentum is invariant (LG), then

J+ = −µ ∂

∂λ
+ λ̃

∂

∂µ̃

J0 = −1

2

(
λ
∂

∂λ
− λ̃ ∂

∂λ̃
− µ ∂

∂µ
+ µ̃

∂

∂µ̃

)
J− = −λ ∂

∂µ
+ µ̃

∂

∂λ̃



Motivations Poincaré representations and LG Massless 3-point amplitude Massive 3-point amplitude Summary and outlook

Massive LG equations in spinor formalism

and so

(
λI

∂

∂λI
− λ̃I

∂

∂λ̃I
− µI

∂

∂µI
+ µ̃I

∂

∂µ̃I

)
Mn = 2sIMn

(
λI

∂

∂µI
− µ̃I

∂

∂λ̃I

)
Mn = 0
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1-massive 2-massless 3-point amplitude

p1 = λ1λ̃1 p2 = λ2λ̃2 P3 = λ3λ̃3 + λ4λ̃4

〈3, 4〉[3, 4] = −m3
2

1 + 1 + 2 = 4 eq.s

4 · 3
2

angle prod.s +
4 · 3

2
square prod.s = 12 spinor prod.s
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Kinematic Constraints
n∑
i=1

λiλ̃i = 0 (n = 3 + # of mass. particles)

Schouten identity (linear dependency in 2 dim. vector sp.):

〈j, k〉λi + 〈k, i〉λj + 〈i, j〉λk = 0

Choose λ1 and λ2, and express all the spinor products in term of

〈1, 2〉 , 〈1, i〉 , 〈2, i〉 , with i = 3, . . . , n

and then we use momentum conservation for the tilded spinors

λ̃1 = −
n∑
i=3

〈i, 2〉
〈1, 2〉

λ̃i λ̃2 = −
n∑
i=3

〈1, i〉
〈1, 2〉

λ̃i
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Kinematic Constraints

If n>5 there is still room for using Schouten on tilded variables as
well.

So eventually the total number of independent variables is


2n− 3 + 1

2(n− 2)(n− 3) = 1
2n (n− 1) if n ≤ 5

2n− 3 + 2n− 7 = 2 (2n− 5) if n > 5
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1-massive 2-massless 3-point amplitude

p1 = λ1λ̃1 p2 = λ2λ̃2 P3 = λ3λ̃3 + λ4λ̃4

〈3, 4〉[3, 4] = −m3
2

1 + 1 + 2 = 4 eq.s

4 · 3
2

angle prod.s +
4 · 3

2
square prod.s = 12 spinor prod.s

momentum conservation: 12 −→ 6

mass on-shell condition: 6 −→ 5
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1-massive 2-massless 3-point amplitude

Mh1, h2,−s3 = 〈1, 2〉−s3−h1−h2〈2, 3〉h1−h2+s3〈3, 1〉h2−h1+s3 f1

(
〈3, 4〉

)
all angle products!

〈3, 4〉 on the real-momenta limit is basically the mass, so f1, by
matching the right dimensions, can be reduced to dimensionless
constant

f1(〈3, 4〉) = gm
1+h1+h2−s3−[g]
3 f̃1

(
〈3, 4〉
m3

)

1-massive 2-massless 3-point amplitude fixed up to 1 constant
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1-massive 2-massless 3-point amplitude

Why f1(〈3, 4〉) should be a constant?

Redundancy in our description of time-like momentum:

λ3λ̃3 + λ4λ̃4

After we have fixed a frame by a LG transformation, we have still
the freedom to rotate λ4λ̃4 independently of λ3λ̃3

λ4 → t λ4 λ̃4 → t−1λ̃4

Such transformation is not physical, so the amplitude must be
invariant under it ⇒ f3 constant
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1-massive 2-massless 3-point amplitude

Mh1, h2,−s3 = 〈1, 2〉−s3−h1−h2 〈2, 3〉h1−h2+s3 〈3, 1〉h2−h1+s3 f1

This amplitude is physically allowed for real momenta!
⇒ full non-perturbative result

If we apply the third LG equation

(J3
+)2s3+1Mh1, h2,−s3 = 0

we get the following condition on the allowed helicities

|h1 − h2| ≤ s3

“conservation of the spin”!



Motivations Poincaré representations and LG Massless 3-point amplitude Massive 3-point amplitude Summary and outlook

1-massive 2-massless 3-point amplitude

Mh1, h2,−s3 = 〈1, 2〉−s3−h1−h2 〈2, 3〉h1−h2+s3 〈3, 1〉h2−h1+s3 f1

This amplitude is physically allowed for real momenta!
⇒ full non-perturbative result

If we apply the third LG equation

(J3
+)2s3+1Mh1, h2,−s3 = 0

we get the following condition on the allowed helicities

|h1 − h2| ≤ s3

“conservation of the spin”!
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2-massive 1-massless 3-point amplitude

P1 = λ1λ̃1 + λ5λ̃5 P2 = λ2λ̃2 + λ4λ̃4 p3 = λ3λ̃3

〈1, 5〉[1, 5] = −m1
2 〈2, 4〉[2, 4] = −m2

2

2 + 2 + 1 = 5 eq.s

5 · 4 = 20 spinor prod.s

momentum conservation: 20 −→ 10

mass on-shell conditions: 10 −→ 8
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2-massive 1-massless 3-point amplitude

M−s1,−s2, h3 =

〈1, 2〉s1+s2+h3 〈3, 1〉s1−s2−h3 〈2, 3〉s2−s1−h3 f2

(
〈1, 5〉, 〈2, 4〉, [4, 5]

〈1, 2〉

)

Again from dimensional considerations

f2 = gm
1−s1−s2+h3−[g]
1 f̃2

(
〈1, 5〉
m1

,
〈2, 4〉
m2

,
[4, 5]

〈1, 2〉

)

Using the third LG equation: (JI+)2sI+1Mn = 0 for I = 1, 2

f̃2 =

2s1∑
k=0

ak

(
〈1, 5〉
m1

,
〈2, 4〉
m2

)(
m2

m1
+
〈1, 5〉
m1

〈2, 4〉
m2

[4, 5]

〈1, 2〉

)s1+s2+h3−k

f̃2 =

2s2∑
k=0

bk

(
〈1, 5〉
m1

,
〈2, 4〉
m2

)(
m1

m2
+
〈1, 5〉
m1

〈2, 4〉
m2

[4, 5]

〈1, 2〉

)s1+s2+h3−k
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2-massive 1-massless 3-point amplitude
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m2

m1
+
〈1, 5〉
m1

〈2, 4〉
m2
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f̃2 =
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〈1, 5〉
m1
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+
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2-massive 1-massless 3-point amplitude

f̃2 =

2s1∑
k=0

ak

(
〈1, 5〉
m1

,
〈2, 4〉
m2

)(
m2

m1
+
〈1, 5〉
m1

〈2, 4〉
m2

[4, 5]

〈1, 2〉

)s1+s2+h3−k

f̃2 =

2s2∑
k=0

bk

(
〈1, 5〉
m1

,
〈2, 4〉
m2

)(
m1

m2
+
〈1, 5〉
m1

〈2, 4〉
m2

[4, 5]

〈1, 2〉

)s1+s2+h3−k

If s1 6=s2, requiring the two different expression to be consistent,
we get the following condition on the spins/helicities

|h3| ≤ s1 + s2

2-mass. 1-massless 3p ampl. fixed up to max. 2smin+1 const.s
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Remark:

If the two massive particles are the same
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Remark:

If the two massive particle are the same the two expressions are the
same

f̃2 =

2s∑
k=0

ak

(
〈1, 5〉
m

,
〈2, 4〉
m

)(
1 +
〈1, 5〉
m

〈2, 4〉
m

[4, 5]

〈1, 2〉

)2s+h3−k

So we cannot match, and we cannot derive any condition on
spins...

But this amplitude is zero for real momenta!
So analogously to the massless case there are no constraints on
spins and helicities
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3-massive 3-point amplitude

P1 = λ1λ̃1 + λ3λ̃3 P2 = λ2λ̃2 + λ4λ̃4 P3 = λ3λ̃3 + λ6λ̃6

〈1, 4〉[1, 4] = −m1
2 〈2, 4〉[2, 4] = −m2

2 〈3, 6〉[3, 6] = −m3
2

2 + 2 + 2 = 6 eq.s

6 · 5 = 30 spinor prod.s

momentum conservation: 30 −→ 14

mass on-shell conditions: 14 −→ 11
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3-massive 3-point amplitude

M−s1,−s2,−s3 =

〈1, 2〉s1+s2−s3 〈3, 1〉s3+s1−s2 〈2, 3〉s2+s3−s1×

× f3

(
〈1, 4〉, 〈2, 5〉, 〈3, 6〉; [4, 5]

〈1, 2〉
,

[6, 4]

〈3, 1〉

)

Again from dimensional considerations

f3 = gm
1−s1−s2−s3−[g]
1 f̃3

(
〈1, 4〉
m1

,
〈2, 5〉
m2

,
〈3, 6〉
m3

;
[4, 5]

〈1, 2〉
,

[6, 4]

〈3, 1〉

)

Here the third equations are more involved, since f3 depends on
two scaling variables. J2

+ acts only on [4,5]
〈1,2〉 , J

3
+ acts only on [6,4]

〈3,1〉 ,

while J1
+ acts on both.
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3-massive 3-point amplitude

From (JI+)2sI+1Mn = 0 for I = 2, 3

f3

(
. . . ; ξ2, ξ3

)
= xs1−s2−s3

2sI∑
k=0

c
(I)
k

(
. . . ; ξĪ

)
xk

with ξ2 =
[4, 5]

〈1, 2〉
, ξ3 =

[6, 4]

〈3, 1〉
, x = 〈2, 5〉 ξ2 + 〈3, 6〉 ξ3−

m1
2

〈1, 4〉

The action of J1
+ is more complicated...

... but can be worked out case by case
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Looking backward...

Summary

We have determined the most general Poincaré invariant 3-point
amplitude where massive particles are involved, in spinor-helicity
formalism.

We have it for the lowest value of the spin projection, but

JI+M
...,−sI ,...
3 = M ...,−sI+1,...

3

For given interactions these theoretical expressions match existing
results in the literature.
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... and forward

Outlook

• Massive BCFW recursion relations

• 4 particle-test to constrain the remaining undetermined
constants

• Massive Higher-Spins amplitudes in 4 dimensions
[E. Conde et al. 1605.07402]
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¡Gracias!
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Detail of the massive LG

The direct translation of the massive LG transformations in spinor
language would be

λ, µ→ t λ, µ λ̃, µ̃→ t−1 λ̃, µ̃

while the scaling we use is

λ, µ̃→ t λ, µ λ̃, µ→ t−1 λ̃, µ

Nonetheless the two groups of transformations are isomorphic(
Rλ
Rµ

)
1−1←−−→ U

(
λ
µ

)
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