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Motivation
o

Motivation

@ Higher-derivative theories possess nice renormalisation properties.

@ The Pais-Uhlenbeck oscillator is a toy model for higher-derivative theories.
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Motivation
o

Motivation

Higher-derivative theories possess nice renormalisation properties.

@ The Pais-Uhlenbeck oscillator is a toy model for higher-derivative theories.

@ The PU oscillator appears in the context of AdS/CFT correspondence, for
instance in the Pilch-Warner supergravity solution!

o Ostrogradsky's Hamiltonian is unbounded from below, hence ghost
problem in quantum theory.
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Motivation
o

Motivation

@ Higher-derivative theories possess nice renormalisation properties.
@ The Pais-Uhlenbeck oscillator is a toy model for higher-derivative theories.

@ The PU oscillator appears in the context of AdS/CFT correspondence, for
instance in the Pilch-Warner supergravity solution!

o Ostrogradsky's Hamiltonian is unbounded from below, hence ghost
problem in quantum theory.

o Nevertheless, several alternative Hamiltonian formulations exist!
@ The PU oscillator is conformally invariant for frequencies wi = (2k + 1)wo.

@ Stable coherent states, which have constant dispersions and a modified
Heisenberg uncertainty relation.
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Pais-Uhlenbeck
@000

An alternative Hamiltonian

The EoM of the PU oscillator of order 2n can be obtained by varying the action

a2
/dta:z (dt2 —I—wk)
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Pais-Uhlenbeck
@000

An alternative Hamiltonian

The EoM of the PU oscillator of order 2n can be obtained by varying the action

/dta:z (dt2 —I—wk)

Ansatz for an alternative Hamiltonian as a linear combination of integrals of
motion according to Noether's theorem (aj, # 0):

n—1
Hn = Z Ozkjk.
k=0
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Pais-Uhlenbeck
@000

An alternative Hamiltonian

The EoM of the PU oscillator of order 2n can be obtained by varying the action

/dta:z (dt2 —I—wk)

Ansatz for an alternative Hamiltonian as a linear combination of integrals of
motion according to Noether's theorem (aj, # 0):

n—1
Hn = Z Ozkjk.
k=0

H,, can play the role of Hamiltonian for the compatible Poisson structure

2n—1

{A7B} = Z Wsm

s,m=0

0A OB
8%23) 8$§m) .
The variables, which satisfy the structure relations {xf,p;"} = 0i;0km, are

/7 k diﬁf

m#k
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Pais-Uhlenbeck
0e00

Set-up: ring of PU oscillators

P ;X
=3 Z sgn k) (pupM + w, kxﬁxﬁ) + 3 Z Eﬁll,xﬁxf,

-




Pais-Uhlenbeck
[e]e] o]

Diagonalisation

The Hamiltonian can be written in matrix form as

w C 0 C
c w C 0
1 t/Q 0 _
HN*§77 (O 12N>7], Q=10 C
SR
c 0 c w
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Pais-Uhlenbeck
[e]e] o]

Diagonalisation

The Hamiltonian can be written in matrix form as

w C 0 C
c w C 0
1 1/Q 0 _
R O KA K
: : Lo C
c o ... C W

Symmetric block circulant matrices with symmetric blocks are diagonalised by
Discrete Fourier Transform (DFT):
Q =U"'QU = diag[D1, Ds, ..., Dx],
1 T
Upt = \/—Nez N1y, k0=0,1,...,N -1,
where the eigenvalues of ) are given by

Dyy1 =W +2cos (2nk/N) C.
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Pais-Uhlenbeck
[e]e]e] ]

Building the Fock space

The creation and annihilation operators are defined by

1 " s
_\/ﬁ(\//\»jijr _Vﬁ(\/xj

i PN
\/A—jpj> ) \/)\—ij> .

The diagonalised Hamiltonian is equivalent to that of 2N harmonic oscillators

HN_Zh)\ (aaj )
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Pais-Uhlenbeck
[e]e]e] ]

Building the Fock space

The creation and annihilation operators are defined by

1 7 1 7
— A."‘, . — )\.A. — . .
V2h (V 3%+ m”]) ’ V2h (V 7% m“)

The diagonalised Hamiltonian is equivalent to that of 2N harmonic oscillators

HN_Zh)\ (aaj )

The Fock space is built up from the vacuum
2N (aT)nj

H{n;}) = H \/Jm

The excited states are orthonormal, ({m;}[{n;}) = 0gm,3,(n,}-

1{0}), Hnj}) =In1) @ @ |nan).
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Quantum entanglement
[ leJele]e]

— an idea and definitions

Discrete system (spin chain) Quantum field theory
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Quantum entanglement
[ leJele]e]

Entanglement entropy — an idea and definitions

Discrete system (spin chain) Quantum field theory

Density matrix (pure state): Von Neumann entropy:
Prot = [V (. Sa=—Trapalogpa.
Reduced density matrix: EE at finite temperature 7 = 8~ 1:
pa = Trpeot. Phermal = € 1.
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Quantum entanglement
(o] Jelele]

Holographic entanglement entropy

Black hole entropy [Bekenstein ‘73,
Hawking ‘75]:
S — Area(X)
BH — 4GN .

Holographic entanglement entropy
[Ryu-Takayanagi ‘06]:

S Area(va)

A= —— .
Telan

EE in quantum field theories:

Area(0A)

@ +subleading terms,
P

Sa=v

where a is ultraviolet cut off.
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Quantum entanglement
(o] Jelele]

Holographic entanglement entropy

Black hole entropy [Bekenstein ‘73,

Hawking ‘75]:
Area(X)
SBH = T
N y Minimal Surface
Holographic entanglement entropy
[Ryu-Takayanagi ‘06]: X 7
S Area(va) ,
A= —— .
Teltand /
EE in quantum field theories: AdS g1 >
+
A A z
Sa = 'yre(iigi)—&—subleading terms, Boun/lc/zry
a

where a is ultraviolet cut off.
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Quantum entanglement
00e00

Thermo-field dynamics (TFD)

Having the Hamiltonian diagonalised, the standard density matrix is:

1
oo (K i) = —BHN Z(K.:) := Trrae PHN .
Pea(K;5) Z(Kj)e ) (Kj) rgze

TFD explores double Hilbert space with basis {|n) ® |7)} = {|n,n)}.
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Quantum entanglement
00e00

Thermo-field dynamics (TFD)

Having the Hamiltonian diagonalised, the standard density matrix is:

1
oo (K i) = —BHN Z(K.:) := Trrae PHN .
Pea(K;5) Z(Kj)e ) (Kj) rgze

TFD explores double Hilbert space with basis {|n) ® |7)} = {|n,n)}.

o Statistical state:

0) = 3= Vb)),

n
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Quantum entanglement
00e00

Thermo-field dynamics (TFD)

Having the Hamiltonian diagonalised, the standard density matrix is:

1
oo (K i) = —BHN Z(K.:) := Trrae PHN .
Pea(K;5) Z(Kj)e ) (Kj) rgze

TFD explores double Hilbert space with basis {|n) ® |7)} = {|n,n)}.

o Statistical state:

0) = 3= Vb)),

o Extended density matrix:
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Quantum entanglement
00e00

Thermo-field dynamics (TFD)

Having the Hamiltonian diagonalised, the standard density matrix is:

1
oo (K i) = —BHN Z(K.:) := Trrae PHN .
Pea(K;5) Z(Kj)e ) (Kj) rgze

TFD explores double Hilbert space with basis {|n) ® |7)} = {|n,n)}.

o Statistical state:

0) = 3= Vb)),

o Extended density matrix:

@ Renormalised extended density matrix:

p1,2(Kj) = Trs, . 2anp(Kj).
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Quantum entanglement
00e00

Thermo-field dynamics (TFD)

Having the Hamiltonian diagonalised, the standard density matrix is:

1
oo (K i) = —BHN Z(K.:) := Trrae PHN .
Pea(K;5) Z(Kj)e ) (Kj) rgze

TFD explores double Hilbert space with basis {|n) ® |7)} = {|n,n)}.

o Statistical state:

0) = 3= Vb)),

o Extended density matrix:

@ Renormalised extended density matrix:
p12(K;) = Trs, onp(Kj).
o Extended entanglement entropy:

§1,2 = —kgTr1,2 [p1,2log p1,2] - 5@?
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Quantum entanglement
[e]e]e] Jo]

EE of PU oscillators

Entanglement entropy:

~ k K K: K K
S1,2(K1,K2) = 2B coth =L coth 72 [Kl (1 + coth Tl) + Ko (1 + coth 72)

~2log (K1 —1) (= - 1)] |
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Quantum entanglement
[e]e]e] Jo]

EE of PU oscillators

Entanglement entropy:

~ k K K: K K
S1,2(K1,K2) = ?B coth Tl coth 72 [Kl (1 + coth Tl) + Ko (1 + coth 72)

0.
B,

™

Figure: The entanglement entropy as function of K7 and Ka in units kg = 1. &@E
Evidently, the Nernst heat theorem is satisfied.

Stefan Mladenov, smladen uni-sofia.bg Entanglement entropy of PU oscillators and excited holographic states



Quantum entanglement
0000e

Information space metric

Riemannian metric defined on a smooth statistical manifold whose point are
probability measures.

@ Infinitesimal form of the relative entropy (Hessian of the Kullback-Leibler
divergence).

@ Induced by flat space Euclidean metric after appropriate change of
variables.

ey,
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Quantum entanglement
0000e

Information space metric

Riemannian metric defined on a smooth statistical manifold whose point are
probability measures.
@ Infinitesimal form of the relative entropy (Hessian of the Kullback-Leibler
divergence).
@ Induced by flat space Euclidean metric after appropriate change of
variables.
@ Fubini-Study metric on complex projective Hilbert space.
@ Written in mixed states it becomes the quantum Bures metric.
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Quantum entanglement
0000e

Information space metric

Riemannian metric defined on a smooth statistical manifold whose point are
probability measures.
@ Infinitesimal form of the relative entropy (Hessian of the Kullback-Leibler
divergence).
@ Induced by flat space Euclidean metric after appropriate change of
variables.
@ Fubini-Study metric on complex projective Hilbert space.
@ Written in mixed states it becomes the quantum Bures metric.

Fisher metric g, (K1, K3) = 0,0,S(K1, K»):

g11 = —kB coth —Csch2 {Kl (3+ 500th2 — + 7 csch? z ) + 4 ta nh—
K K> Ky Ko
+4c0th7 (K1+K275+Kgcoth77210g [(e 71) (e 71>] s

1 K K K K
gi2 = @kB csch? Tlcsch2 72 [Kl (1 + 2 coth Tl) + Ko (1 + 2 coth 72) —4

~2log [(e%1 1) (X2 - 1)] |.
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Holographic models
@00

Penrose limit of the PW solution

Consider a null geodesic corresponding to the moduli space of a D3-brane probe
in the IR point of PW background. The bosonic part of the pp-wave action is

Sp = — 1 /dT do [,fggaﬁ (2aaUaﬁv + A X X7 0,U85U + aaxiaﬁxi)

Y dod
—2VBE? (X1 0, U85 X° — X2aaU86X4)] 7

where A;; = diag][1, 1,4] is the pp-wave spectrum matrix.
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Holographic models
@00

Penrose limit of the PW solution

Consider a null geodesic corresponding to the moduli space of a D3-brane probe
in the IR point of PW background. The bosonic part of the pp-wave action is
1

Sp= -1 / dr do [,fggaﬁ (2aaUaﬁv + A X X7 0,U85U + aaxiaﬁxi)

—2VBE? (X1 0, U85 X° — X2aaU86X4)] 7
where A;; = diag][1, 1,4] is the pp-wave spectrum matrix.

The ansatz X*(7,0) = e*“x;(r) decouples the system of second-order partial
differential EoM to the system of ODEs:

o) + (5M* +2) o + (4M* +2M° + 1) &, = 0,
1:5,2) + (M2 + 1) zp =0,

where M = Eo’p™, ¢ = 1,2 and the directions p = 5,6, 7, 8 stay unaffected by
the B-field.
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Holographic models
o] lo}

Quadratic fluctuations around classical solutions

The Lagrangian describing quadratic fluctuations around the classical solutions
of rotating strings in the PW geometry (the five-sphere part wherein the
B-field is turned on) is

L% = 8,0°C* + M*? (<2 +c4) <4M2 + 29’2> (43 +<5)
+2v3M (5218155 - 555153) ;

where M? = 2(cg + ¢y +cg)” depends on the angular velocities cg, ¢, and ¢
of the rotating string.
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Holographic models
o] lo}

Quadratic fluctuations around classical solutions

The Lagrangian describing quadratic fluctuations around the classical solutions
of rotating strings in the PW geometry (the five-sphere part wherein the
B-field is turned on) is

zﬁ:a@%%A+M%£+§)+GMﬂddﬁ(Q+Q)
+2v3M (5218155 - 555153) ;

where M? = 2(cg + ¢y +cg)” depends on the angular velocities cg, ¢, and ¢
of the rotating string.

Using the ansatz f; = ¢'y,;(7) in the limiting cases of short and long strings
(7"* = const), the EoM take the form:

. 3 - - y 3 -
yﬁtrFM2+2+§ﬁﬂyftkPM4+2M2+1+(M2+1)5ﬂﬂyp:Q

v 4y =0 p=24

ﬁﬁ
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Holographic models
[ele] J

Instabilities and phase transitions

The dynamics of two free PU oscillators each of fourth order is driven by the
following two ODEs:

2D+ (A + A 2P A A =0,
e + (A A1) 2P + A Az =0

Stefan Mladenov, smladen uni-sofia.bg Entanglement entropy of PU oscillators and excited holographic states



Holographic models
[ele] J

Instabilities and phase transitions

The dynamics of two free PU oscillators each of fourth order is driven by the
following two ODEs:

2D+ (A + A 2P A A =0,
e + (A A1) 2P + A Az =0

We have shown that this system is a particular representation of a system of
two minimally interacting PU oscillators of fourth order. The frequencies are
determined by the diagonalisation of the Hamiltonian:

1 1

Aot = 5 [wo + w1 + (co +c1)] £ 5\/203 + [co — 1 + (wo — w1)]?,
1 1

A+ = 3 [wo+ w1 —(co+c1)] £ 5\/20% + [co — e1 — (wo — w1)]?.

Instabilities appear when the frequencies become imaginary:

263 < [co — c1 % (wo — w1)]2
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Holographic models
[ele] J

Instabilities and phase transitions

The dynamics of two free PU oscillators each of fourth order is driven by the
following two ODEs:

2D+ (A + A 2P A A =0,
e + (A A1) 2P + A Az =0

We have shown that this system is a particular representation of a system of
two minimally interacting PU oscillators of fourth order. The frequencies are
determined by the diagonalisation of the Hamiltonian:

1 1

Aot = 5 [wo + w1 + (co +c1)] £ 5\/203 + [co — 1 + (wo — w1)]?,
1 1

A+ = 3 [wo+ w1 —(co+c1)] £ 5\/20% + [co — e1 — (wo — w1)]?.

Instabilities appear when the frequencies become imaginary:

263 < [co — c1 % (wo — w1)]2

The instabilities due to occurrence of critical point of the B-field in the PW 7
background are related to instabilities in the system of two interacting PUO! $@
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Excited states
@00

Excited holographic states

According to the holographic conjecture, the states that capture the
gravitational sector of the dual theory are:

Id~1,T,0"T, T TO'T, ... .

Consider conformal transformation z — w = f(z) realised by an unitary
operator Uy. The primary operators ®4 transform as:

hn hn
@ee- ) = (LE) T (U @y e (s
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Excited holographic states

According to the holographic conjecture, the states that capture the
gravitational sector of the dual theory are:

Id~1,T,0"T, T TO'T, ... .

Consider conformal transformation z — w = f(z) realised by an unitary
operator Uy. The primary operators ®4 transform as:

hn hn
@ee- ) = (LE) T (U @y e (s

The Rényi entropy can be calculated using replica trick:

1

exp (1= m)S) = (4 ()2 (22)) =

The vacuum entanglement entropy is obtained in the limit n — 1:

— 1 (n) _ ¢
Svac - 7111311 Svac - 12 IOg

Z1 — 22

52
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Aharonov invariants

In the same manner, entanglement entropy of excited states
exp ((1 - n)ng)) = (f|P+(21)P—(22)|f) is given by:

f'(z10)f (2z2) ‘
82 (f(z21) — f(22))*

_ n) _ ¢
S'cx—rlll_)ml.S'ex =13 log
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Excited states
oeo

Aharonov invariants

In the same manner, entanglement entropy of excited states
exp ((1 - n)S(")) = (f|P+(21)P—(22)|f) is given by:

f'(z10)f (2z2) ‘
82 (f(z21) — f(22))*

For f(z) being non- constant meromorphic function on a domain D C C, the
quantity G(¢, z) = W has the expansion (f(z) # oo, f'(z) # 0):

Z z)"il.

Evaluating OG/9¢, one can easily express the contributions of excited states to
the vacuum EE in terms of the Aharonov invariants 1, [f](z).

_ n) _ ¢
S'Cx—rlll_)ml.S'ex =13 log

G(¢ 2)

Contributions of excited states in terms of Aharonov invariants:
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Excited states
[e]e] J

Faber polynomials & Grunsky coefficients

The following two sets of functions are correspondingly univalent in
neighbourhoods of 0 and oo:

{f(z)zZanz", a17$0} and {g(z)zbz—i—anz_"}.

The Faber polynomials are defined via:

M_ 3 w)z "t w) = w™
g(z)—w*;q’"( ) , Pa(w) b ™.

m=0
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Faber polynomials & Grunsky coefficients

The following two sets of functions are correspondingly univalent in
neighbourhoods of 0 and oo:

{f(z)zZanz", a17$0} and {g(z)zbz—i—anz_"}.

The Faber polynomials are defined via:
Z Dp(w)z™" Y, Dp(w) =Y bpmw™.
m=0
On the other hand, by taking second derivative 3 6( on both sides of

logL Z bon,—m2" ",

n,m=0

one can readily find the EE in terms of the Grunsky coefficients b_,, —m

Contributions of excited states in terms of Grunsky coefficients:

_ £ . o 2 G n—1,m-—1
Sex — Svac = 5 log <1 (¢ —2) Z nmb_n _mz"" ¢ )

n,m=1
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Perspectives
[ ]

Conclusion and perspectives

o Generalisations to odd/higher-order PUOs and more complex interactions.

e Entanglement entropy of A = 2 supersymmetric PU oscillator.
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Conclusion and perspectives

Generalisations to odd/higher-order PUOs and more complex interactions.

Entanglement entropy of N' = 2 supersymmetric PU oscillator.

@ Non-equilibrium (time-dependent) systems of PU oscillators.

Studying information-geometric characteristics of systems of PUOs, i.e.
Fisher information metric, Kullback-Leibler divergence etc.
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Conclusion and perspectives

Generalisations to odd/higher-order PUOs and more complex interactions.

Entanglement entropy of N' = 2 supersymmetric PU oscillator.

@ Non-equilibrium (time-dependent) systems of PU oscillators.

Studying information-geometric characteristics of systems of PUOs, i.e.
Fisher information metric, Kullback-Leibler divergence etc.

@ Entanglement entropy as order parameter and phase transitions.
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Perspectives
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Conclusion and perspectives

o Generalisations to odd/higher-order PUOs and more complex interactions.
e Entanglement entropy of A = 2 supersymmetric PU oscillator.
@ Non-equilibrium (time-dependent) systems of PU oscillators.

o Studying information-geometric characteristics of systems of PUOs, i.e.
Fisher information metric, Kullback-Leibler divergence etc.

@ Entanglement entropy as order parameter and phase transitions.
@ Holographic entanglement entropy: Ryu-Takayanagi proposal.

@ Emergent spacetime from causal diamonds or integral geometry.
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Perspectives
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Conclusion and perspectives

o Generalisations to odd/higher-order PUOs and more complex interactions.
e Entanglement entropy of A = 2 supersymmetric PU oscillator.
@ Non-equilibrium (time-dependent) systems of PU oscillators.

o Studying information-geometric characteristics of systems of PUOs, i.e.
Fisher information metric, Kullback-Leibler divergence etc.

@ Entanglement entropy as order parameter and phase transitions.
@ Holographic entanglement entropy: Ryu-Takayanagi proposal.

@ Emergent spacetime from causal diamonds or integral geometry.

Thank you for your attention!
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Replica trick

(a)

(b)
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