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Introduction and motivation

Physical setup

Active galactic nuclei (AGN)
are the brightest regions at the center of a galaxy.

Spinning supermassive black holes
are believed to be hosted at the center of the AGN.

AGN is a wonderful playground
of high-energy physics phenomena in strong gravity
regime, yet to be fully understood. Among them:

1. matter accretion onto the black hole;
2. collimated jets;

3. magnetospheres with different field lines
topologies: radial, vertical, parabolic, hyperbolic.
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Introduction and motivation

Theoretical setup

Some important facts to know:

> a rotating black hole immersed in an external magnetic field induces an
electric field with Lorentz invariant Fj, F*” # 0 [Wald ('74)];

> a pair-production mechanism operates to produce a plasma-filled

magnetosphere until F,, F** =0;

> the magnetosphere is force-free. It means that the plasma rest-mass
density is negligible with respect to the electromagnetic energy density;

» force-free magnetosphere extracts electromagnetically energy and angular
momentum from the rotating black hole [Blandford, Znajek ('77)].
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L Derivation of FFE equations

Derivation of FFE equations (1)

Let g.. be the background spacetime metric and A, be the gauge potential.
The Maxwell field is F,, = V, A, — V,A,. It obeys Maxwell’s equations:

V[OFMV] =0, Vo, F* = j*
with j# being the electric current density.
The full energy-momentum tensor is
T = Te“ni/ + Trﬁ:tter

Assumption 1: we neglect any backreaction to the spacetime geometry.

The energy-momentum conservation
0= vlf Téfr;/ + VV Trl;wLautter = _FHVJ.V + vV Trlntal'/tten

governs the transfer of energy and momentum between the electromagnetic
field and the matter content.



Near-horizon extreme Kerr magnetospheres
Force-free electrodynamics (FFE)

Derivation of FFE equations

Derivation of FFE equations (2)

Assumption 2: the exchange of energy and momentum from the EM field and
the matter is negligible.

Then, energy-momentum conservation implies that

the Lorentz force density is zero.

Thus, FFE equations are

VieFuy =0, VoF"™ =" Fu.j"=0,

or, eliminating j*,

VieFu) =0,  FuV.F"7 =0.
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L Some properties

Some properties

FFE equations:
VigFu =0, V., F* = j*, Fuvj” =0,

or, in differential form,

\dF:o, dxF = %J, JA*F:O,\

1. Any vacuum Maxwell solution (j* = 0) is trivially force-free;
2. Assume j* # 0.
Because F,..j” =0, then Fy,, Fo )/’ =0= Fu,Fop) =0 (FAF=0)
In other words, force-free fields are degenerate: F., = o, — . fBy;
3. FFE is nonlinear = no general superposition principle.
A sufficient condition for linear superposition of two solutions F1 and F, is
to have collinear currents Ji &< J, up to an arbitrary function.
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L~ NHEK metric and properties

NHEK metric and properties

NHEK spacetime describes the region near the horizon of the extreme Kerr.
It can be derived from extreme Kerr (a = M) metric, performing the scaling

A r—m
T%2I\/I R — M

In Poincaré coordinates, NHEK metric reads

t
=0 oy

dR?

ds® = 2M°T(6) FR%T2 3

+ d6 +~2(0)(d + RdT)ﬂ ,
Its main properties are:
1. it has an enhanced isometry group SL(2,R) x U(1) generated by:
Q = 0o, Hy =207, Ho= Tdr — ROk,
H_ = \6{ (T2+ 7) dr — TROR — %aq,} ,
obeying [Ho, Hi] = FHx, [Hy H-]=2Ho, [Qo, H] =0 = [Qo, Ho].

2. it has no globally timelike Killing vectors. 9t is timelike for 42(8) < 1 and
becomes null at the velocity of light surface 4(8) = 1.
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Defining the problem

Defining the problem

We want to find solutions to FFE equations around NHEK spacetime,
|dF =0,

dxF =x%J,
further obeying the highest-weight (HW) conditions:

JA*FZOJ

|Lu F =0, LwF=hF, LoF =iqF,|

where h € C is the weight of F, while g € Z is the U(1)-charge.
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Solving FFE around NHEK

1. Define real SL(2,R) covariant basis for:
1-form ', such that Ly, p' =0 = Lu,p', and
2-form w/, such that Ly, w =0, Lpyyw = w/;

2. Consider A, F and J in the HW representation and expand them:
Ang) = Pnaai(O1's  Fing = Pn-1.9fi(0)w', g = Prai(@)n,

where Hy ®(p.q) = 0 = 9oP(n,q), HoP(h,q) = hP(h,q), QP(h,q) = iqP(n,q)-
Maxwell's equations constraint the functions f; and j; in terms of a;.
3. Fix the gauge a; = 0, Vh.

4. Rewrite the force-free condition J A xF = 0 to get three nonlinear ODEs in
terms of a1, a2, as.

5. Classify solutions according to their HW representation labeled by (h, q).
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Potentially physical solutions (definition)

Thus far, we have a list of complex (and therefore) unphysical solutions.
A potentially physical solution must be

1. real;
2. magnetically dominated or null, i.e., we demand that the Lorentz scalar

invariant x(F A xF) = —2F*"F,, <0;
3. such that the energy and angular momentum flux densities to be finite
£ =T n.(0r)" < E(0)R*",
T = V=T nu(06)" x JO)R ",
(with n* the unit normal and ~ induced metric on constant R surface)

3.1. either at the spatial boundary of the NHEK spacetime, or
3.2. with respect to an asymptotically flat observer.



R

Near-horizon extreme Kerr magnetospheres
L FFE around NHEK

Potentially physical solutions

Potentially physical solutions
(finite energy and angular momentum, 1st class)

A potentially physical solution must be
3. such that the energy and angular momentum flux densities to be finite
E=/—yT" n.(87)" x E(O)R*™",
T =T n.(0s)" o JO)R' ",

at the spatial boundary R — oo of the NHEK spacetime implies

Such class of solutions might be useful to discuss holography in near-horizon
geometries and we call them near-horizon solutions.
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Potentially physical solutions
(finite energy and angular momentum, 2nd class)

A potentially physical solution must be

3. such that the energy and angular momentum flux densities to be finite
E=/—yT " n.(87)" x E(O)R*™",
T =T n.(0s)" < JO)R ",

with respect to an asymptotically flat observer.
An asymptotically flat observer measures

!’ ’ 2—2h o ! 1-2h ;4
E out — Qextj out ™ A (‘:, J out ™ A J

Here, the prime means derivative wrt the asymptotically observer's time.
Hence, solutions which admit finite and nonvanishing fluxes are those with [see
also 1602.01833]

L cRe(h) <1, and (Re(h) - %) J(0) = 0.

N
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Maximally symmetric solution and Meissner-like effect

Invariance under the full isometry group SL(2,R) x U(1) implies
A= Ao(0)(RAT + do).

Force-free condition J A xF = 0 implies AjO[Ao] = 0.

The solution corresponding to Ay = const is electrically dominated.
The other one with O[Ao] = 0 is a solution to vacuum electrodynamics:

O[Ao] =0 = Ag(f) = Qe cos [t + 2arctan(cos(d))], Q. : electric charge

For Kerr black hole Q. = 0 and therefore there is no electromagnetic field close

to the horizon region at extremality.
This is the so-called Meissner-like effect for black holes [see also Bicak, Janis

(1985) and 1602.01833].
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(h

= 1,9 = 0) regular solution

This solution is the only one that we found to be regular at the future horizon:

1
A(h:l,q:O) = a(@)d (T — ﬁ) s

where a(#) is a function of the polar coordinate, obeying the Znajek's boundary
condition at the horizon:

3(9) =2M [(Q — QH)&;\I/]

r=ry?
with Q is the angular velocity of the magnetic lines and W is the magnetic flux.

Moreover, by a different analysis in [1602.01833], this solution was shown to be
the universal near-horizon limit for force-free plasma around extreme Kerr
spacetime and might be astrophysically relevant.
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Summary

» we solved FFE around NHEK;
» we refined and extended the list of formal solutions;
» we introduced physical criteria to select potentially physical solutions;

» we realised that not all the NHEK spacetime is physical due to the
presence of the velocity of light surface: physical regions are those close to
the north and south poles.

One of the main left questions is how to glue these near-horizon solutions to
asymptotically flat spacetime.
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Thank you for your attention
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Potentially physical solutions (reality condition)

A potentially physical solution must be

1. real

Since A, ) = e _qyar '

1.1. if he R, g =0, and a; is real then the solution is real;

1.2. if J and J* are collinear, then one can linearly superpose the two solutions
F and F* to get the real solution;

1.3. otherwise, no general superposition principle and one might attempt to
construct real solutions in different ways.
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Potentially physical solutions (magnetically dominated or null)

A potentially physical solution must be

2. magnetically dominated or null.

We demand that the Lorentz scalar invariant x(F A xF) < 0.

Physically, for electrically dominated solutions there exists a local inertial frame
where the magnetic field is zero. This, in turn, means that drift velocity of
charged particles is superluminal.

Mathematically, FFE equations with x(F A xF) > 0 are not deterministic (not
hyperbolic).
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