Roberto Oliveri

Université Libre de Bruxelles

V Postgraduate Meeting On Theoretical Physics 17th November 2016

[mainly based on hep-th:1509.07637 with G. Compère, w/ ref to hep-th:1602.01833 by Lupsasca, Gralla, Strominger and astro-ph:1401.6159 by Gralla, Jacobson]

ULB

うしゃ 本語 アメヨア 山田 ものくの

### Outline

#### Introduction and motivation

Force-free electrodynamics (FFE)

Derivation of FFE equations Some properties

Near-horizon extreme Kerr (NHEK) geometry

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

NHEK metric and properties

#### FFE around NHEK

Defining the problem Solving FFE around NHEK Potentially physical solutions Two notable solutions

# Physical setup

Active galactic nuclei (AGN) are the brightest regions at the center of a galaxy. Spinning supermassive black holes are believed to be hosted at the center of the AGN.

AGN is a wonderful playground of high-energy physics phenomena in strong gravity regime, yet to be fully understood. Among them:

- 1. matter accretion onto the black hole;
- 2. collimated jets;
- magnetospheres with different field lines topologies: radial, vertical, parabolic, hyperbolic.



### Theoretical setup

Some important facts to know:

- ▶ a rotating black hole immersed in an external magnetic field induces an electric field with Lorentz invariant  $\tilde{F}_{\mu\nu}F^{\mu\nu} \neq 0$  [Wald ('74)];
- ► a pair-production mechanism operates to produce a plasma-filled magnetosphere until  $\tilde{F}_{\mu\nu}F^{\mu\nu} = 0$ ;
- the magnetosphere is force-free. It means that the plasma rest-mass density is negligible with respect to the electromagnetic energy density;
- force-free magnetosphere extracts electromagnetically energy and angular momentum from the rotating black hole [Blandford, Znajek ('77)].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Force-free electrodynamics (FFE)

Derivation of FFE equations

### Outline

#### Introduction and motivation

#### Force-free electrodynamics (FFE) Derivation of FFE equations

Some properties

Near-horizon extreme Kerr (NHEK) geometry NHEK metric and properties

#### FFE around NHEK

Defining the problem Solving FFE around NHEK Potentially physical solutions Two notable solutions

## Derivation of FFE equations (1)

Let  $g_{\mu\nu}$  be the background spacetime metric and  $A_{\mu}$  be the gauge potential. The Maxwell field is  $F_{\mu\nu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}$ . It obeys Maxwell's equations:

$$\nabla_{[\sigma}F_{\mu\nu]}=0,\qquad \nabla_{\nu}F^{\mu\nu}=j^{\mu}$$

with  $j^{\mu}$  being the electric current density.

The full energy-momentum tensor is

$$T^{\mu\nu} = T^{\mu\nu}_{em} + T^{\mu\nu}_{matter}$$

Assumption 1: we neglect any backreaction to the spacetime geometry. The energy-momentum conservation

$$0 = \nabla_{\nu} T^{\mu\nu}_{em} + \nabla_{\nu} T^{\mu\nu}_{matter} = -F^{\mu\nu} j_{\nu} + \nabla_{\nu} T^{\mu\nu}_{matter},$$

governs the transfer of energy and momentum between the electromagnetic field and the matter content.

ULB

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

### Derivation of FFE equations (2)

Assumption 2: the exchange of energy and momentum from the EM field and the matter is negligible.

Then, energy-momentum conservation implies that

$$F_{\mu\nu}j^{\nu}=0,$$

the Lorentz force density is zero.

Thus, FFE equations are

$$\nabla_{[\sigma}F_{\mu\nu]}=0, \qquad \nabla_{\nu}F^{\mu\nu}=j^{\mu}, \qquad F_{\mu\nu}j^{\nu}=0,$$

or, eliminating  $j^{\mu}$ ,

$$abla_{[\sigma}F_{\mu
u]}=0, \qquad F_{\mu
u}
abla_{\sigma}F^{
u\sigma}=0.$$

もうてい 正則 スポットポット (型)・スロッ

Near-horizon extreme Kerr magnetospheres - Force-free electrodynamics (FFE) - Some properties

## Outline

#### Introduction and motivation

### Force-free electrodynamics (FFE)

Derivation of FFE equations

Some properties

Near-horizon extreme Kerr (NHEK) geometry NHEK metric and properties

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

#### FFE around NHEK

Defining the problem Solving FFE around NHEK Potentially physical solutions Two notable solutions

# Some properties

FFE equations:

$$\nabla_{[\sigma} F_{\mu\nu]} = 0, \qquad \nabla_{\nu} F^{\mu\nu} = j^{\mu}, \qquad F_{\mu\nu} j^{\nu} = 0,$$

or, in differential form,

$$dF = 0, \qquad d \star F = \star J, \qquad J \wedge \star F = 0,$$

- 1. Any vacuum Maxwell solution  $(j^{\mu} = 0)$  is trivially force-free;
- 2. Assume  $j^{\mu} \neq 0$ . Because  $F_{\mu\nu}j^{\nu} = 0$ , then  $F_{[\mu\nu}F_{\sigma\rho]}j^{\rho} = 0 \Rightarrow F_{[\mu\nu}F_{\sigma\rho]} = 0$  ( $F \land F = 0$ ) In other words, force-free fields are degenerate:  $F_{\mu\nu} = \alpha_{\mu}\beta_{\nu} - \alpha_{\nu}\beta_{\mu}$ ;
- 3. FFE is nonlinear  $\Rightarrow$  no general superposition principle. A sufficient condition for linear superposition of two solutions  $F_1$  and  $F_2$  is to have collinear currents  $J_1 \propto J_2$ , up to an arbitrary function.

Near-horizon extreme Kerr (NHEK) geometry

- NHEK metric and properties

### Outline

#### Introduction and motivation

Force-free electrodynamics (FFE) Derivation of FFE equations Some properties

#### Near-horizon extreme Kerr (NHEK) geometry NHEK metric and properties

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

#### FFE around NHEK

Defining the problem Solving FFE around NHEK Potentially physical solutions Two notable solutions

Near-horizon extreme Kerr (NHEK) geometry

- NHEK metric and properties

### NHEK metric and properties

NHEK spacetime describes the region near the horizon of the extreme Kerr. It can be derived from extreme Kerr (a = M) metric, performing the scaling

$$T 
ightarrow rac{\lambda}{2M} t, \quad R 
ightarrow rac{r-M}{\lambda M}, \quad \Phi 
ightarrow \phi - rac{t}{2M};$$

In Poincaré coordinates, NHEK metric reads

$$ds^{2} = 2M^{2}\Gamma(\theta)\left[-R^{2}dT^{2} + \frac{dR^{2}}{R^{2}} + d\theta^{2} + \gamma^{2}(\theta)(d\Phi + RdT)^{2}\right],$$

Its main properties are:

1. it has an enhanced isometry group  $SL(2,\mathbb{R}) \times U(1)$  generated by:

$$\begin{split} Q_0 &= \partial_{\Phi}, \quad H_+ = \sqrt{2}\partial_T, \quad H_0 &= T\partial_T - R\partial_R, \\ H_- &= \sqrt{2}\left[\frac{1}{2}\left(T^2 + \frac{1}{R^2}\right)\partial_T - TR\partial_R - \frac{1}{R}\partial_{\Phi}\right], \end{split}$$

obeying  $[H_0, H_{\pm}] = \mp H_{\pm}, \quad [H_+, H_-] = 2H_0, \quad [Q_0, H_{\pm}] = 0 = [Q_0, H_0].$ 

2. it has no globally timelike Killing vectors.  $\partial_{\tau}$  is timelike for  $\gamma^2(\theta) < 1$  and ULB becomes null at the velocity of light surface  $\gamma^2(\theta) = 1$ .

### Outline

#### Introduction and motivation

Force-free electrodynamics (FFE) Derivation of FFE equations Some properties

Near-horizon extreme Kerr (NHEK) geometry NHEK metric and properties

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

# FFE around NHEK

#### Defining the problem

Solving FFE around NHEK Potentially physical solutions Two notable solutions

# Defining the problem

We want to find solutions to FFE equations around NHEK spacetime,

$$dF = 0, \qquad d \star F = \star J, \qquad J \wedge \star F = 0,$$

further obeying the highest-weight (HW) conditions:

$$\mathcal{L}_{H_+}F = 0, \quad \mathcal{L}_{H_0}F = hF, \quad \mathcal{L}_{Q_0}F = iqF,$$

where  $h \in \mathbb{C}$  is the weight of *F*, while  $q \in \mathbb{Z}$  is the U(1)-charge.

ULB (ロ) (荷) (さ) (さ) ミュ つくの

# Outline

#### Introduction and motivation

Force-free electrodynamics (FFE) Derivation of FFE equations

Near-horizon extreme Kerr (NHEK) geometry NHEK metric and properties

#### FFE around NHEK

Defining the problem Solving FFE around NHEK Potentially physical solutions Two notable solutions

## Solving FFE around NHEK

- 1. Define real  $SL(2, \mathbb{R})$  covariant basis for: 1-form  $\mu^i$ , such that  $\mathcal{L}_{H+}\mu^i = 0 = \mathcal{L}_{H_0}\mu^i$ , and 2-form  $w^j$ , such that  $\mathcal{L}_{H+}w^j = 0$ ,  $\mathcal{L}_{H_0}w^j = w^j$ ;
- 2. Consider A, F and J in the HW representation and expand them:

$$A_{(h,q)} = \Phi_{(h,q)}a_i(\theta)\mu^i, \quad F_{(h,q)} = \Phi_{(h-1,q)}f_i(\theta)w^i, \quad J_{(h,q)} = \Phi_{(h,q)}j_i(\theta)\mu^i,$$

where  $H_+\Phi_{(h,q)} = 0 = \partial_{\theta}\Phi_{(h,q)}$ ,  $H_0\Phi_{(h,q)} = h\Phi_{(h,q)}$ ,  $Q_0\Phi_{(h,q)} = iq\Phi_{(h,q)}$ . Maxwell's equations constraint the functions  $f_i$  and  $j_i$  in terms of  $a_i$ .

- 3. Fix the gauge  $a_4 = 0$ ,  $\forall h$ .
- 4. Rewrite the force-free condition  $J \wedge \star F = 0$  to get three nonlinear ODEs in terms of  $a_1$ ,  $a_2$ ,  $a_3$ .
- 5. Classify solutions according to their HW representation labeled by (h, q).

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

FFE around NHEK

Potentially physical solutions

### Outline

#### Introduction and motivation

Force-free electrodynamics (FFE) Derivation of FFE equations

Near-horizon extreme Kerr (NHEK) geometry NHEK metric and properties

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

#### FFE around NHEK

Defining the problem Solving FFE around NHEK Potentially physical solutions

Two notable solutions

# Potentially physical solutions (definition)

Thus far, we have a list of complex (and therefore) unphysical solutions. A potentially physical solution must be

- 1. real;
- 2. magnetically dominated or null, i.e., we demand that the Lorentz scalar invariant  $\star(F \wedge \star F) = -\frac{1}{2}F^{\mu\nu}F_{\mu\nu} \leq 0$ ;
- 3. such that the energy and angular momentum flux densities to be finite

$$\begin{split} \dot{\mathcal{E}} &\equiv \sqrt{-\gamma} T^{\mu}_{\ \nu} n_{\mu} (\partial_{\tau})^{\nu} \propto \mathcal{E}(\theta) R^{2-2h}, \\ \dot{\mathcal{J}} &\equiv \sqrt{-\gamma} T^{\mu}_{\ \nu} n_{\mu} (\partial_{\Phi})^{\nu} \propto J(\theta) R^{1-2h}, \end{split}$$

(with  $n^{\mu}$  the unit normal and  $\gamma$  induced metric on constant R surface) 3.1. either at the spatial boundary of the NHEK spacetime, or 3.2. with respect to an asymptotically flat observer.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Potentially physical solutions (finite energy and angular momentum, 1st class)

A potentially physical solution must be

3. such that the energy and angular momentum flux densities to be finite

$$\begin{split} \dot{\mathcal{E}} &\equiv \sqrt{-\gamma} T^{\mu}_{\ \nu} n_{\mu} (\partial_{\tau})^{\nu} \propto \mathcal{E}(\theta) R^{2-2h}, \\ \dot{\mathcal{J}} &\equiv \sqrt{-\gamma} T^{\mu}_{\ \nu} n_{\mu} (\partial_{\Phi})^{\nu} \propto J(\theta) R^{1-2h}, \end{split}$$

at the spatial boundary  $R 
ightarrow \infty$  of the NHEK spacetime implies

$$\operatorname{Re}(h) > 1.$$

Such class of solutions might be useful to discuss holography in near-horizon geometries and we call them near-horizon solutions.

Potentially physical solutions

# Potentially physical solutions (finite energy and angular momentum, 2nd class)

A potentially physical solution must be

3. such that the energy and angular momentum flux densities to be finite

$$\begin{split} \dot{\mathcal{E}} &\equiv \sqrt{-\gamma} T^{\mu}_{\ \nu} n_{\mu} (\partial_{\tau})^{\nu} \propto \mathcal{E}(\theta) R^{2-2h}, \\ \dot{\mathcal{J}} &\equiv \sqrt{-\gamma} T^{\mu}_{\ \nu} n_{\mu} (\partial_{\Phi})^{\nu} \propto \mathcal{J}(\theta) R^{1-2h}, \end{split}$$

with respect to an asymptotically flat observer. An asymptotically flat observer measures

$$\mathcal{E'}_{out} - \Omega_{ext} \mathcal{J'}_{out} \sim \lambda^{2-2h} \dot{\mathcal{E}}, \quad \mathcal{J'}_{out} \sim \lambda^{1-2h} \dot{\mathcal{J}}$$

Here, the prime means derivative wrt the asymptotically observer's time. Hence, solutions which admit finite and nonvanishing fluxes are those with [see also 1602.01833]

$$rac{1}{2} \leq {\sf Re}(h) \leq 1, \quad {\sf and} \quad \left({\sf Re}(h) - rac{1}{2}
ight) J( heta) = 0.$$

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

# Outline

#### Introduction and motivation

Force-free electrodynamics (FFE) Derivation of FFE equations

Near-horizon extreme Kerr (NHEK) geometry NHEK metric and properties

#### FFE around NHEK

Defining the problem Solving FFE around NHEK Potentially physical solutions

Two notable solutions

### Maximally symmetric solution and Meissner-like effect

Invariance under the full isometry group  $SL(2,\mathbb{R}) \times U(1)$  implies

$$A = A_0(\theta)(RdT + d\Phi).$$

Force-free condition  $J \wedge \star F = 0$  implies  $A'_0 O[A_0] = 0$ .

The solution corresponding to  $A_0 = const$  is electrically dominated. The other one with  $O[A_0] = 0$  is a solution to vacuum electrodynamics:

$$O[A_0] = 0 \Rightarrow A_0(\theta) = Q_e \cos [\theta_0 + 2 \arctan(\cos(\theta))], \quad Q_e: electric charge$$

For Kerr black hole  $Q_e = 0$  and therefore there is no electromagnetic field close to the horizon region at extremality.

This is the so-called Meissner-like effect for black holes [see also Bicak, Janis (1985) and 1602.01833].

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

# (h = 1, q = 0) regular solution

This solution is the only one that we found to be regular at the future horizon:

$$A_{(h=1,q=0)} = a(\theta)d\left(T-rac{1}{R}
ight),$$

where  $a(\theta)$  is a function of the polar coordinate, obeying the Znajek's boundary condition at the horizon:

$$a(\theta) = 2M \left[ (\Omega - \Omega_H) \partial_{\theta} \Psi \right]_{r=r_H},$$

with  $\Omega$  is the angular velocity of the magnetic lines and  $\Psi$  is the magnetic flux. Moreover, by a different analysis in [1602.01833], this solution was shown to be the universal near-horizon limit for force-free plasma around extreme Kerr spacetime and might be astrophysically relevant.

# Summary

- we solved FFE around NHEK;
- we refined and extended the list of formal solutions;
- we introduced physical criteria to select potentially physical solutions;
- we realised that not all the NHEK spacetime is physical due to the presence of the velocity of light surface: physical regions are those close to the north and south poles.

One of the main left questions is how to glue these near-horizon solutions to asymptotically flat spacetime.

Summary and conclusions

# Thank you for your attention

### Potentially physical solutions (reality condition)

#### A potentially physical solution must be

1. real

Since 
$$A_{(h,q)}^* = \Phi_{(h^*,-q)} a_i^* \mu^i$$
:

1.1. if  $h \in \mathbb{R}$ , q = 0, and  $a_i$  is real then the solution is real;

- 1.2. if J and  $J^*$  are collinear, then one can linearly superpose the two solutions F and  $F^*$  to get the real solution;
- 1.3. otherwise, no general superposition principle and one might attempt to construct real solutions in different ways.

### Potentially physical solutions (magnetically dominated or null)

A potentially physical solution must be

2. magnetically dominated or null.

We demand that the Lorentz scalar invariant  $\star(F \wedge \star F) \leq 0$ .

Physically, for electrically dominated solutions there exists a local inertial frame where the magnetic field is zero. This, in turn, means that drift velocity of charged particles is superluminal.

Mathematically, FFE equations with  $\star(F \wedge \star F) > 0$  are not deterministic (not hyperbolic).

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの