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Introduction and motivation

Physical setup

Active galactic nuclei (AGN)
are the brightest regions at the center of a galaxy.

Spinning supermassive black holes
are believed to be hosted at the center of the AGN.

AGN is a wonderful playground
of high-energy physics phenomena in strong gravity
regime, yet to be fully understood. Among them:

1. matter accretion onto the black hole;

2. collimated jets;

3. magnetospheres with different field lines
topologies: radial, vertical, parabolic, hyperbolic.
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Introduction and motivation

Theoretical setup

Some important facts to know:

I a rotating black hole immersed in an external magnetic field induces an
electric field with Lorentz invariant F̃µνF

µν 6= 0 [Wald (’74)];

I a pair-production mechanism operates to produce a plasma-filled
magnetosphere until F̃µνF

µν = 0;

I the magnetosphere is force-free. It means that the plasma rest-mass
density is negligible with respect to the electromagnetic energy density;

I force-free magnetosphere extracts electromagnetically energy and angular
momentum from the rotating black hole [Blandford, Znajek (’77)].
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Force-free electrodynamics (FFE)

Derivation of FFE equations

Derivation of FFE equations (1)

Let gµν be the background spacetime metric and Aµ be the gauge potential.
The Maxwell field is Fµν = ∇µAν −∇νAµ. It obeys Maxwell’s equations:

∇[σFµν] = 0, ∇νFµν = jµ

with jµ being the electric current density.

The full energy-momentum tensor is

Tµν = Tµν
em + Tµν

matter

Assumption 1: we neglect any backreaction to the spacetime geometry.

The energy-momentum conservation

0 = ∇νTµν
em +∇νTµν

matter = −Fµν jν +∇νTµν
matter ,

governs the transfer of energy and momentum between the electromagnetic
field and the matter content.
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Force-free electrodynamics (FFE)

Derivation of FFE equations

Derivation of FFE equations (2)

Assumption 2: the exchange of energy and momentum from the EM field and
the matter is negligible.

Then, energy-momentum conservation implies that

Fµν j
ν = 0,

the Lorentz force density is zero.

Thus, FFE equations are

∇[σFµν] = 0, ∇νFµν = jµ, Fµν j
ν = 0,

or, eliminating jµ,

∇[σFµν] = 0, Fµν∇σF νσ = 0.
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Force-free electrodynamics (FFE)

Some properties

Some properties

FFE equations:

∇[σFµν] = 0, ∇νFµν = jµ, Fµν j
ν = 0,

or, in differential form,

dF = 0, d ? F = ?J, J ∧ ?F = 0,

1. Any vacuum Maxwell solution (jµ = 0) is trivially force-free;

2. Assume jµ 6= 0.
Because Fµν j

ν = 0, then F[µνFσρ]j
ρ = 0⇒ F[µνFσρ] = 0 (F ∧ F = 0)

In other words, force-free fields are degenerate: Fµν = αµβν − ανβµ;

3. FFE is nonlinear ⇒ no general superposition principle.
A sufficient condition for linear superposition of two solutions F1 and F2 is
to have collinear currents J1 ∝ J2, up to an arbitrary function.
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Near-horizon extreme Kerr (NHEK) geometry

NHEK metric and properties

NHEK metric and properties
NHEK spacetime describes the region near the horizon of the extreme Kerr.
It can be derived from extreme Kerr (a = M) metric, performing the scaling

T → λ

2M
t, R → r −M

λM
, Φ→ φ− t

2M
;

In Poincaré coordinates, NHEK metric reads

ds2 = 2M2Γ(θ)

[
−R2dT 2 +

dR2

R2
+ dθ2 + γ2(θ)(dΦ + RdT )2

]
,

Its main properties are:

1. it has an enhanced isometry group SL(2,R)× U(1) generated by:

Q0 = ∂Φ, H+ =
√

2∂T , H0 = T∂T − R∂R ,

H− =
√

2

[
1

2

(
T 2 +

1

R2

)
∂T − TR∂R −

1

R
∂Φ

]
,

obeying [H0,H±] = ∓H±, [H+,H−] = 2H0, [Q0,H±] = 0 = [Q0,H0].

2. it has no globally timelike Killing vectors. ∂T is timelike for γ2(θ) < 1 and
becomes null at the velocity of light surface γ2(θ) = 1.
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FFE around NHEK

Defining the problem

Defining the problem

We want to find solutions to FFE equations around NHEK spacetime,

dF = 0, d ? F = ?J, J ∧ ?F = 0,

further obeying the highest-weight (HW) conditions:

LH+F = 0, LH0F = hF , LQ0F = iqF ,

where h ∈ C is the weight of F , while q ∈ Z is the U(1)-charge.
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FFE around NHEK

Solving FFE around NHEK

Solving FFE around NHEK

1. Define real SL(2,R) covariant basis for:
1-form µi , such that LH+µ

i = 0 = LH0µ
i , and

2-form w j , such that LH+w
j = 0, LH0w

j = w j ;

2. Consider A, F and J in the HW representation and expand them:

A(h,q) = Φ(h,q)ai (θ)µi , F(h,q) = Φ(h−1,q)fi (θ)w i , J(h,q) = Φ(h,q)ji (θ)µi ,

where H+Φ(h,q) = 0 = ∂θΦ(h,q), H0Φ(h,q) = hΦ(h,q), Q0Φ(h,q) = iqΦ(h,q).

Maxwell’s equations constraint the functions fi and ji in terms of ai .

3. Fix the gauge a4 = 0, ∀h.

4. Rewrite the force-free condition J ∧ ?F = 0 to get three nonlinear ODEs in
terms of a1, a2, a3.

5. Classify solutions according to their HW representation labeled by (h, q).
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FFE around NHEK

Potentially physical solutions

Potentially physical solutions (definition)

Thus far, we have a list of complex (and therefore) unphysical solutions.
A potentially physical solution must be

1. real;

2. magnetically dominated or null, i.e., we demand that the Lorentz scalar
invariant ?(F ∧ ?F ) = − 1

2
FµνFµν ≤ 0;

3. such that the energy and angular momentum flux densities to be finite

Ė ≡
√
−γTµ

νnµ(∂T )ν ∝ E(θ)R2−2h,

J̇ ≡
√
−γTµ

νnµ(∂Φ)ν ∝ J(θ)R1−2h,

(with nµ the unit normal and γ induced metric on constant R surface)

3.1. either at the spatial boundary of the NHEK spacetime, or
3.2. with respect to an asymptotically flat observer.
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FFE around NHEK

Potentially physical solutions

Potentially physical solutions
(finite energy and angular momentum, 1st class)

A potentially physical solution must be

3. such that the energy and angular momentum flux densities to be finite

Ė ≡
√
−γTµ

νnµ(∂T )ν ∝ E(θ)R2−2h,

J̇ ≡
√
−γTµ

νnµ(∂Φ)ν ∝ J(θ)R1−2h,

at the spatial boundary R →∞ of the NHEK spacetime implies

Re(h) > 1.

Such class of solutions might be useful to discuss holography in near-horizon
geometries and we call them near-horizon solutions.



Near-horizon extreme Kerr magnetospheres

FFE around NHEK

Potentially physical solutions

Potentially physical solutions
(finite energy and angular momentum, 2nd class)

A potentially physical solution must be

3. such that the energy and angular momentum flux densities to be finite

Ė ≡
√
−γTµ

νnµ(∂T )ν ∝ E(θ)R2−2h,

J̇ ≡
√
−γTµ

νnµ(∂Φ)ν ∝ J(θ)R1−2h,

with respect to an asymptotically flat observer.
An asymptotically flat observer measures

E ′out − ΩextJ ′out ∼ λ2−2hĖ , J ′out ∼ λ1−2hJ̇

Here, the prime means derivative wrt the asymptotically observer’s time.
Hence, solutions which admit finite and nonvanishing fluxes are those with [see
also 1602.01833]

1

2
≤ Re(h) ≤ 1, and

(
Re(h)− 1

2

)
J(θ) = 0.
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FFE around NHEK

Two notable solutions

Maximally symmetric solution and Meissner-like effect

Invariance under the full isometry group SL(2,R)× U(1) implies

A = A0(θ)(RdT + dΦ).

Force-free condition J ∧ ?F = 0 implies A′0O[A0] = 0.

The solution corresponding to A0 = const is electrically dominated.
The other one with O[A0] = 0 is a solution to vacuum electrodynamics:

O[A0] = 0⇒ A0(θ) = Qe cos [θ0 + 2 arctan(cos(θ))], Qe : electric charge

For Kerr black hole Qe = 0 and therefore there is no electromagnetic field close
to the horizon region at extremality.
This is the so-called Meissner-like effect for black holes [see also Bicak, Janis
(1985) and 1602.01833].



Near-horizon extreme Kerr magnetospheres

FFE around NHEK

Two notable solutions

(h = 1, q = 0) regular solution

This solution is the only one that we found to be regular at the future horizon:

A(h=1,q=0) = a(θ)d

(
T − 1

R

)
,

where a(θ) is a function of the polar coordinate, obeying the Znajek’s boundary
condition at the horizon:

a(θ) = 2M [(Ω− ΩH)∂θΨ]r=rH
,

with Ω is the angular velocity of the magnetic lines and Ψ is the magnetic flux.

Moreover, by a different analysis in [1602.01833], this solution was shown to be
the universal near-horizon limit for force-free plasma around extreme Kerr
spacetime and might be astrophysically relevant.
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Summary and conclusions

Summary

I we solved FFE around NHEK;

I we refined and extended the list of formal solutions;

I we introduced physical criteria to select potentially physical solutions;

I we realised that not all the NHEK spacetime is physical due to the
presence of the velocity of light surface: physical regions are those close to
the north and south poles.

One of the main left questions is how to glue these near-horizon solutions to
asymptotically flat spacetime.
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Summary and conclusions

Thank you for your attention
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Potentially physical solutions (reality condition)

A potentially physical solution must be

1. real

Since A∗(h,q) = Φ(h∗,−q)a
∗
i µ

i :

1.1. if h ∈ R, q = 0, and ai is real then the solution is real;

1.2. if J and J∗ are collinear, then one can linearly superpose the two solutions
F and F ∗ to get the real solution;

1.3. otherwise, no general superposition principle and one might attempt to
construct real solutions in different ways.
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Potentially physical solutions (magnetically dominated or null)

A potentially physical solution must be

2. magnetically dominated or null.

We demand that the Lorentz scalar invariant ?(F ∧ ?F ) ≤ 0.

Physically, for electrically dominated solutions there exists a local inertial frame
where the magnetic field is zero. This, in turn, means that drift velocity of
charged particles is superluminal.
Mathematically, FFE equations with ?(F ∧ ?F ) > 0 are not deterministic (not
hyperbolic).
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