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Introduction

General relativity:

• Gravity is a curvature effect.

• Free particles follow geodesics.
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Introduction

Spacetime: D-dimensional time-orientable Lorentzian manifold
equipped with:

• Metric gµν .

• Levi-Civita connection:

Γρ
µν =

{

ρ
µν

}

=
1

2
gρλ (∂µgλν + ∂νgµλ − ∂λgµν) .
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Introduction

Spacetime: D-dimensional time-orientable Lorentzian manifold
equipped with:

• Metric gµν .

• Levi-Civita connection:

Γρ
µν =

{

ρ
µν

}

=
1

2
gρλ (∂µgλν + ∂νgµλ − ∂λgµν) .

Properties:

T ρ
µν = Γρ

µν − Γρ
νµ = 0, ∇µgνρ = 0.

Geodesic curves (affine and metric):

ẍµ + Γµ
νρẋν ẋρ = 0.
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Introduction

Action:

S =

∫

d
Dx

√

|g |

[

1

2κ
gµνRµν + LM(φ, g)

]

.
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Action:

S =

∫

d
Dx

√

|g |

[

1

2κ
gµνRµν + LM(φ, g)

]

.

Equations of motion:

Rµν −
1

2
gµνR = −κTµν .
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Action:

S =

∫

d
Dx

√

|g |

[

1

2κ
gµνRµν + LM(φ, g)

]

.

Equations of motion:

Rµν −
1

2
gµνR = −κTµν .

Geodesic curves:
ẍµ + Γµ

νρẋν ẋρ = 0.
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Mathematical reasons:

• Absence of torsion.

• Metric compatibility.
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• We want metric geodesics = affine geodesics ⇒ Sρ
µν = 0.

Are they enough?

• Although these are valid reasons, it seems that L-C is put by
hand.

• It would be perfect if there was a physical mechanism that
selects Levi-Civita over other possibilities.
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Introduction

Mathematical reasons:

• Absence of torsion.

• Metric compatibility.

• Uniqueness.

Physical reasons:
(

Γρ
µν(p) =

{

ρ
µν

}

+ Sρ
µν + T ρ

µν

)

• Equivalence principle: Γρ
µν(p) = 0⇒ T ρ

µν = 0.

• We want metric geodesics = affine geodesics ⇒ Sρ
µν = 0.

Are they enough?

• Although these are valid reasons, it seems that L-C is put by
hand.

• It would be perfect if there was a physical mechanism that
selects Levi-Civita over other possibilities.

• If I find a variational principle that have L-C as a solution, is it
unique? Which one is the most general solution?
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Palatini formalism

Metric gµν and connection Γρ
µν independent, as in differential

geometry. Action dependent on both:

S = S(g , Γ) =

∫

d
Dx

√

|g |

[

1

2κ
gµνRµν(Γ) + LM(φ, g)

]

.

•
δS

δg
→ Einstein equation.

•
δS

δΓ
→ Connection equation.
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Palatini formalism

Metric gµν and connection Γρ
µν independent, as in differential

geometry. Action dependent on both:

S = S(g , Γ) =

∫

d
Dx

√

|g |

[

1

2κ
gµνRµν(Γ) + LM(φ, g)

]

.

•
δS

δg
→ Einstein equation.

•
δS

δΓ
→ Connection equation.

What do we expect? We hope to find Levi-Civita as the unique
solution.
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General solution

S =

∫

d
Dx

√

|g |

[

1

2κ
gµνRµν(Γ) + LM(φ, g)

]

.

Equations of motion:

R(µν) −
1

2
gµνR = −κTµν , R = gρλRρλ,

∇λgµν − T σ
νλgσµ −

1

D − 1
T σ

σλgµν −
1

D − 1
T σ

σνgµλ = 0.
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General solution

S =

∫

d
Dx

√

|g |

[

1

2κ
gµνRµν(Γ) + LM(φ, g)

]

.

Equations of motion:

R(µν) −
1

2
gµνR = −κTµν , R = gρλRρλ,

∇λgµν − T σ
νλgσµ −

1

D − 1
T σ

σλgµν −
1

D − 1
T σ

σνgµλ = 0.

General solution:
Γρ

µν =
{

ρ
µν

}

+Aµδρ
ν .
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Geometrical properties

Palatini connections:

Γ̄ρ
µν =

{

ρ
µν

}

+Aµδρ
ν .
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Geometrical properties

Palatini connections:

Γ̄ρ
µν =

{

ρ
µν

}

+Aµδρ
ν .

Torsion and metric derivative:

T̄ ρ
µν = Aµδρ

ν −Aνδρ
µ, ∇̄ρgµν = −2Aρgµν .
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Geometrical properties

Palatini connections:

Γ̄ρ
µν =

{

ρ
µν

}

+Aµδρ
ν .

Torsion and metric derivative:

T̄ ρ
µν = Aµδρ

ν −Aνδρ
µ, ∇̄ρgµν = −2Aρgµν .

Curvature tensors:

R̄µνρ
λ = Rµνρ

λ + Fµνδλ
ρ , R̄µν = Rµν + Fµν , R̄ = R,

where
Fµν = ∂µAν − ∂νAµ = ∇µAν −∇νAµ.
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Geometrical properties

Affine geodesic equation:

ẋρ∇̄ρẋµ = 0⇔ ẋρ∇ρẋµ = −Aρẋρẋµ

⇔ ẋρ∇ρẋµ =

(

s̈

ṡ

)

ẋµ, s(λ) =

∫ λ

0
e

−
∫ λ′

0
ẋρAρ dλ′′

dλ′
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Geometrical properties

Affine geodesic equation:

ẋρ∇̄ρẋµ = 0⇔ ẋρ∇ρẋµ = −Aρẋρẋµ

⇔ ẋρ∇ρẋµ =

(

s̈

ṡ

)

ẋµ, s(λ) =

∫ λ

0
e

−
∫ λ′

0
ẋρAρ dλ′′

dλ′

Same trajectories but with different parametrisation.
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Geometrical properties

Parallel transport:

ẋρ∇̄ρV µ − ẋρ∇ρV µ = ẋρAρV µ



Introduction Palatini formalism General solution Geometrical properties Physical observability Future work Conclusions

Geometrical properties

Parallel transport:
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Γ̄
(λ) = e−G(λ)V µ(λ),
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Geometrical properties

Parallel transport:

ẋρ∇̄ρV µ − ẋρ∇ρV µ = ẋρAρV µ ⇒ V
µ

Γ̄
(λ) = e−G(λ)V µ(λ),

• Consequence of non metric compatibility.

• Similar to L-C transport composed with homothety.

• Uniqueness.
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Physical observability

Let’s summarise:

• General solution

Γ̄ρ
µν =

{

ρ
µν

}

+Aµδρ
ν .

• Curvature tensors are the same plus terms involving Fµν . In
particular:

R̄µν = Rµν + Fµν .
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Let’s summarise:

• General solution

Γ̄ρ
µν =

{

ρ
µν

}

+Aµδρ
ν .

• Curvature tensors are the same plus terms involving Fµν . In
particular:

R̄µν = Rµν + Fµν .

• Homothetic parallel transport.
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Physical observability

Same rough physics:

• Same solutions to Einstein equation:

R̄(µν) = Rµν ⇒ Rµν −
1

2
gµνR = −κTµν .
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Physical observability

Same rough physics:

• Same solutions to Einstein equation:

R̄(µν) = Rµν ⇒ Rµν −
1

2
gµνR = −κTµν .

• Same spacetime trajectories of free-falling test particles:

ẋρ∇ρẋµ = −Aρẋρẋµ =

(

s̈

ṡ

)

ẋµ

• Equivalence Principle preserved.
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Physical observability

Same rough physics:

• Same solutions to Einstein equation:

R̄(µν) = Rµν ⇒ Rµν −
1

2
gµνR = −κTµν .

• Same spacetime trajectories of free-falling test particles:

ẋρ∇ρẋµ = −Aρẋρẋµ =

(

s̈

ṡ

)

ẋµ

• Equivalence Principle preserved.
• Same tidal forces (geodesic deviation).
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Physical observability

• Parallel transport with homothety ←→ Staticity:

r

t
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• The norm of a parallel transported vector cannot be physically
measured.

• Usually we define a unit (say, a rod) and we transport it. Key
point: the forces are not the geometrical ones.
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Physical observability

• Parallel transport with homothety ←→ Staticity:

r

t

• There aren’t any curvature effects except for the change of
norm.

• Could be interpreted as non-staticity, but that’s because
usually we work with metric-compatible connections.

• The norm of a parallel transported vector cannot be physically
measured.

• Usually we define a unit (say, a rod) and we transport it. Key
point: the forces are not the geometrical ones.

Moral: Compare directions with the connection and norms
with the metric.
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Future work

Next step: Lovelock Gravities:

• Action of orden n in curvature but second order differential
equations.
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Future work

Next step: Lovelock Gravities:

• Action of orden n in curvature but second order differential
equations.

In particular, Gauss-Bonnet,

S =

∫

d
Dx

√

|g |
[

RµνρλRµνρλ − 4RµνRµν + R2
]

.

We have already obtained the variations of the action and have
seen that Palatini connections are solutions.
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Summarising:

• Most general solution: Γ̄ρ
µν =

{

ρ
µν

}

+Aµδρ
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same physics. Freedom of geodesic parametrisation.
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Conclusions

Summarising:

• Most general solution: Γ̄ρ
µν =

{

ρ
µν

}

+Aµδρ
ν .

• Same pregeodesics and same Einstein equation.

• Unique with parallel transport homothetic to the L-C one.

• No physical observable effects, so Palatini formalism yields an
exact variational characterisation of such basic physics.

• Relation between spacetimes with different geometry but
same physics. Freedom of geodesic parametrisation.

Thanks for your attention!
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