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Scattering amplitudes . ..

Scattering amplitudes are central objects in QFT. Interesting
@ as an intermediate step to compute observables;

@ as a means to gain insight into the formal structure of a
specific model.

How are they traditionally computed?
© Stare at Lagrangian and extract the Feynman rules;

@ draw every possible Feynman diagram contributing to the
process of interest;

© evaluate each one of those and add up the results.

Straightforward enough. What could possibly go wrong?
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... are complicated?

Consider tree-level gluon amplitudes in QCD.

2¢g =+ 2g : 4 diagrams
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... are complicated?

Consider tree-level gluon amplitudes in QCD.

2¢g —3g : 25 diagrams
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... are simpler than expected!

Consider tree-level gluon amplitudes in QCD.

2¢ — 3g : 10 colour-ordered diagrams

AgreE(]_:I:’ 2:|:’ 3:|:’4:f:7 5:|:) — 0
ALeS(1F,2%,3% 4% 55) =0
12)*
AFee(17,27,3%,47 57) = <
5 (1,27,37,47,57) (12)(23)(34)(45)(51)
N 3+
) NI 2
(i) = canX?X) = 32 3 4
1
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... are simpler than expected!

Consider tree-level gluon amplitudes in QCD.

2¢ —+3g : 10 colour-ordered diagrams

AgreE(]_:I:’ 2:|:’ 3:|:’4:f:7 5:|:) — 0
ALeS(1F,2%,3% 4% 55) =0
Atree(lf 2~ 3+ 4+ 5+) — <12>4
5 T ot (12)(23)(34)(45)(51)
' 4
ARVt i i nh) = (i)
n ( ) 7I b 7.] b 7n ) <12><23> . <n1>

MHV = maximally helicity-violating [Parke, Taylor]
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The simplest quantum field theory

Most symmetric theory in 4D is planar N' = 4 super Yang-Mills.

@ Maximal susy: spectrum is organized in a single supermultiplet
with 2 gluons (g ), 8 gluinos (1), 6 scalars (;»), all massless.
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The simplest quantum field theory

Most symmetric theory in 4D is planar N' = 4 super Yang-Mills.

@ Maximal susy: spectrum is organized in a single supermultiplet

with 2 gluons (g ), 8 gluinos (1), 6 scalars (;»), all massless.

@ (Ordinary + Dual) superconformal symmetries give rise to an
infinite-dimensional Yangian algebra Y (psu(2,2|4))

[Drummond, Henn, Plefka]
At weak coupling  : more constrained, easier to compute
At strong coupling : amenable to AdS/CFT techniques
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The simplest quantum field theory

Most symmetric theory in 4D is planar N' = 4 super Yang-Mills.
@ Maximal susy: spectrum is organized in a single supermultiplet
with 2 gluons (g ), 8 gluinos (1), 6 scalars (;»), all massless.

@ (Ordinary + Dual) superconformal symmetries give rise to an
infinite-dimensional Yangian algebra Y (psu(2,2|4))

[Drummond, Henn, Plefka]

At weak coupling  : more constrained, easier to compute
At strong coupling : amenable to AdS/CFT techniques

N =4 SYM is a supersymmetric version of QCD:
@ Tree-level gluon amplitudes coincide

@ One-loop gluon amplitudes satisfy

cD N=4 N=1 I
ARPL = AN=E — 4 AN 4 AR
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The power of momentum twistors

“Masslessness” of the spectrum + conformal symmetry —>
introduce momentum supertwistors for describing the kinematics.

Instead of four-momenta p* ©w=20,1,2,3 and
Grassmann-odd n A=1,23,4
. " _ (a,a=0,1,0,1
use mom. supertwistors Z A= ( A—1234

The geometry of momentum twistor superspace CP3* ensures
masslessness of momenta and momentum conservation.

Generating function for every tree-level N' = 4 SYM amplitude

1 d*ne,, 4|4
'C"’k:GL(k)/(1---k)(2---k+1)~--(n---k—1)5l(C'Z)

[(Arkani-Hamed, Cachazo, Cheung, Kaplan) (Mason, Skinner)]
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Towards the amplituhedron

Two remarkable results inspired the amplituhedron:

1 dkxncai ala
Lok = GL(k)/(1~-~k)(2~-~k+1)~--(n-~-k—1)6|(C'Z)

One-to-one correspondence between residues of £, and
cells of the positive Grassmannian G (k, n).

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka]

NMHYV tree-level amplitudes can be thought of
as volumes of polytopes in twistor space.

[Hodges]
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© Introduction to the tree-level Amplituhedron
@ Positive geometry
@ Amplitudes as volumes
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Positive means inside

Zs Triangle in RPP?

Zy

Interior of a triangle

YA = c121A S CQZé4 = C3Z::;4 5 c1,c,c3 >0

Points inside are described by the positive triple

(c1 @ ¢3)/GL(1)
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Positive means inside

Simplex in RP"!

Interior of a simplex

YA=> "¢zt . >0

Points inside are described by the positive n-tuple

(ci1c2 ... cn)/GL(1) , apointin G.(1.n).
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Positive also means convex

Polygon in RP™

Interior of a n-gon with vertices Z3,...,Z, is only canonically
defined if
z2 oz ..z
Z = : : : € My(1+m,n)

1+m 1+m 14+m
Vi aally S N
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Tree-level amplituhedron

Interior of an n-polyhedron in RP™

ree C= (Cl 000 Cn) S G+(]-a n)
frlm[z] { A:ZCiZiAa 7

=(Z1 ... Z,) e M (1+ m,n)
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Tree-level amplituhedron

Interior of an n-polyhedron in RP™

C= ... ¢cp) € Go(1,
WL (2= | vA= Y azp, 54 )€ Gl
- Z= (4 ... Z,) € My (1+ m,n)

l Generalize this picture
to account for N\MHV amplitudes

Tree-level amplituhedron

C € G.(k, n)
Z e M+(k+m,n)

n,k;m

aAtree 2] = {YEGMjﬂm:Y:CZ,

[Arkani-Hamed, Trnka)
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The volume form

Top-dimensional differential form Q( ) defined on Qltr
with only logarithmic smgulantles on its boundarles

top-dimensional  : Y € G(k,k+ m) — SN?E,"L) is an mk-form
gy d

log-singularity : approaching any boundary, QST"L) ~ %

’ o
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The volume form

Top-dimensional differential form 5257"}() defined on A
with only logarithmic singularities on its boundaries.

top-dimensional  : Y € G(k,k+ m) — SN?E,"L) is an mk-form
gy d

log-singularity : approaching any boundary, Qf:;() ~ Eoz

Z>

fY =121+ axlo+ 23,

23 oy dog o dan 1 (123)7 (Yd2Y)
o) - don oz _

2 o1 o 2(Y12)(Y23)(Y31)
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The volume form

Top-dimensional differential form 5257"}() defined on A
with only logarithmic singularities on its boundaries.

top-dimensional  : Y € G(k,k+ m) — SN?E,"L) is an mk-form
gy d
log-singularity : approaching any boundary, QST"L) ~ %
’ a
Z
; fY =121+ 00Zo+ s,
4 1 123)2
S o1 (123) =[123]
17 2 (v12)(v23)(Y31)

V4

Area of (dual) triangle
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Get to the amplitude

k oy, z
An 0 /Q[tree n’k ( )

n,k;m

“Scattering amplitudes are volumes of (dual) amplituhedra”

The physics, i.e. the kinematics of scattering particles, is encoded
in ZA variables, bosonized version of momentum supertwistors ZA.

A
i (A, fi%)  are bosonic d.o.f. of ZA4
Z,-A = | é1-xi ,  with X',A are fermionic d.o.f. of Z4

: Ph are auxiliary fermionic d.o.f.
P - Xi
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Get to the amplitude

Precisely . ..

An,k

- /d”"% Q) (v*, 2)

“Scattering amplitudes are volumes of (dual) amplituhedra”

The physics, i.e. the kinematics of scattering particles, is encoded
in ZA variables, bosonized version of momentum supertwistors ZA.

A
i (A, fi%)  are bosonic d.o.f. of ZA4
Z,-A = | é1-xi ,  with X',A are fermionic d.o.f. of Z4

: Ph are auxiliary fermionic d.o.f.
P - Xi
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© NMHV volume forms from symmetry
o Capelli differential equations
@ The k =1 solution
@ Examples of NMHV volume forms
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Covariance and scaling properties

Integral representation of the volume

m dk><n i .
2502 | g 102 - ezt

a=1

Look for symmetry properties: obvious ones are

* GL(k + m)-covariance

m 1 m
QEy,k)(Y'&Z'g) = W QS; k)(Y Z)
* GLy (k) ® GL{(1) ® - - - ® GL4(1)-scaling
W(h-Y,\-Z)= 1 (v, z)

(d et h)k+m
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The Capelli differential equations

New observation:

Capelli equations

9 m
det A ng)(Y,Z):O ) WaA:(Y(faZIA)
BW‘—,,H” 1<v<k+1l
1<u<k+1
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The Capelli differential equations

New observation:

Capelli equations

0 m
det A ng)(Y,Z):O ) WaA:(Y(faZIA)
OWay J1<v<k+1
1<u<k+1

Example: m=2,k=1,n=4

det oo ay2 8212 8222 8232 822
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The Capelli differential equations

New observation:

Capelli equations

9 m
det A ng)(Y,Z):O ) WaA:(Y(faZIA)
BW‘—,,H” 1<v<k+1l
1<u<k+1

Example: m=2,k=1,n=4

Dya O Dyn O
v oz oA ey, z)=0

)

91(12%(\/72) =0 ,

)

dys  0Oze Oz8 Ozs
i 1 J

for all values of A,B=1,2,3
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All k = 1 volume forms

Master formula

+0 /14m
Q(nf’;)(Y,Z):/ <H dsA> YT H o(s - Z))
0

i=m+2

. dey ... de,
to be compared with  QU(Y, Z) = / G- -Cn srimyA _ . 7A)
vy

C1-'"Cn
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All k = 1 volume forms

Master formula

+0 /14m
Q(nf’;)(Y,Z):/ <H dsA> YT H 0(s - Z;)
0

i=m+2

dC1 ...dC,,

to be compared with  QU)(Y,Z) = / S (YA — 67

C1-'"Cn

o New integral lives in the dual Grassmannian G(1,1+ m).
Fixed number of integration variables s, ..., S .

@ integration domain Df,m) is shaped by #-functions.

o Integrand (s - Y)~ (1™ is free of singularities.



NMHYV volume forms from symmetry
°

All k = 1 volume forms

Master formula

+0 /14m
Q(nf’;)(Y,Z):/ <H dsA> YT H o(s - Z))
0

i=m+2

dcy...dc,

to be compared with  QU)(Y,Z) = / S (YA — 67
ol

C1-'"Cn

Known results are
Q@ =SN"niiv1y QW ="nii+1jj+1
i i<j

1ii41)2 Liit1jient
Lii+1]= aii+1) . [ii+ljje1]= Qii+1jit1)
(Y1iy(Yii+1)(Yi+11) (YL1ii+1j) - (Yj+1lii+1)
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Two-dimensional examples

Toy model: m = 2, useful for visualization purposes.

Three-point volume form

+oo
2) d52 dS3 .
Q7] = 2/0 GYp - [123]
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Two-dimensional examples

Toy model: m = 2, useful for visualization purposes.

Four-point volume form

@) 0(s - Za) _
Q4’1 = 2/0 dsy ds3 —(s‘ ok =[123]+[134]

lz,

> 52
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Two-dimensional examples

Toy model: m = 2, useful for visualization purposes.

n-point volume form

+00 n—1
G = /0 dszds% Z;[liiJrl]

53
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Physical examples

Realistic case: m = 4, hard to visualize.

Five-point volume form

+oo
(4): | d52 ...d55 _
Qs 4./0 e YE [12345]

54
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Physical examples

Realistic case: m = 4, hard to visualize.

Six-point volume form

0(s - Z
Qg? = / d52 d55 y
0

54
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Physical examples

Realistic case: m = 4, hard to visualize.

Six-point volume form

a=1+s3+s5
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Physical examples

Realistic case: m = 4, hard to visualize.

Six-point volume form

Qi) = [12345] + [12356] +[13456]

S4 S4 S4 S4
= hw - +
52 52 — 52 52




Conclusions and outlook

Summarizing,

@ The amplituhedron construction allows to think of scattering
amplitudes in planar ' = 4 SYM as volumes of “polytopes”.

@ Volume forms corresponding to tree-level NMHV amplitudes
are fully constrained by symmetry — Capelli equations.

@ Our master formula explicitely computes the “volume” of a
region in a dual Grassmannian.



Conclusions and outlook

Summarizing,

@ The amplituhedron construction allows to think of scattering
amplitudes in planar ' = 4 SYM as volumes of “polytopes”.

@ Volume forms corresponding to tree-level NMHV amplitudes
are fully constrained by symmetry — Capelli equations.

@ Our master formula explicitely computes the “volume” of a
region in a dual Grassmannian.

What needs to be done?

* Understand whether the Capelli equations hint at a realization
of Yangian symmetry in the amplituhedron framework.

* Use this knowledge to move beyond NMHV volume forms.
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Thank you!
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