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Supergravity in 11-dimensions

Cremmer and Julia (1978)
The bosonic fields of N = 1,d = 11 supergravity are:{

ˆ̂eˆ̂µ

ˆ̂a, ˆ̂Cˆ̂µ ˆ̂ν ˆ̂ρ

}
.

The field strength of the 3-form is

ˆ̂G = 4∂
ˆ̂C ,

and is obviously invariant under the gauge transformations

δ
ˆ̂C = 3∂ ˆ̂χ ,

where ˆ̂χ is a 2-form.
The action for these bosonic fields is

ˆ̂S =
∫

d11 ˆ̂x

√
|ˆ̂g |

[
ˆ̂R− 1

2·4!
ˆ̂G2− 1

64
1√
|ˆ̂g |

ˆ̂ε∂
ˆ̂C∂

ˆ̂C ˆ̂C

]
.

.
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Supergravity in 8-dimensions

Alonso-Alberca, Messen and Ort́ın (2000)
After compactification on T 3 we get:

Bosonic fields of 8−dimensional supergravity

{gµν ,C ,Bm,A1m,A2m,a,ϕ,Mmn} ,

The action:

S =
∫
d8x

√
|gE |

{
RE + 1

4 Tr
(
∂MM−1

)2
+ 1

4 Tr
(
∂W W −1

)2

− 1
4F

i mMmnWijF
j n + 1

2·3!HmMmnHn− 1
2·4!e

−ϕG2 ,

− 1
63·24

1√
|gE |

ε
[
GGa−8GHmA2m + 12G(F 2m +aF 1m)Bm

−8εmnpHmHnBp−8G∂aC −16Hm(F 2m +aF 1m)C
]}

.
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With Field Strengths:

G = 4∂C + 6F 1mBm ,

Hm = 3∂Bm + 3εmnpF
1nA2p ,

F 2m = 2∂A2m ,

leading to the following non-trivial Bianchi identities:

∂G = 2F 1mHm ,

∂Hm = 3
2 εmnpF

1nF 2p ,
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Goals

The construction of a generic (up to second order in derivatives) 8-dimensional
theories with Abelian gauge symmetry and non-trivial Chern-Simons terms
compatible with the existence of a group of electric-magnetic duality rotations of the
equations of motion(in 8 dimensions it must be a subgroup of the symplectic group).
There are previous works in different dimensions,d=3,d=4,d=5,d=6,d=9.
Bergshoeff, Hartong, Hohm, Hubscher, Ort́ın, 2009. Hartong, Hohm, Hubscher,
Ort́ın, 2009. Hubscher, Ort́ın, Shahbazi, 2014. Hubscher, Ort́ın, Shahbazi, 2014.
Fernandez-Melgarejo,Ort́ın, Torrente-Lujan, 2012.

The general gauging of the global symmetry group using the embedding-tensor
fomalism including the possibility of adding Stückelberg couplings consistent with
the above-mentioned electric-magnetic duality.

A simplification/sitematization of the construction of maximal 8-dimensional
supergravities with SO(3) gaugings. Salam and Sezgin (1985),
Alonso-Alberca,Messen, Ort́ın (2000), Alonso-Alberca,Bergshoeff, Gran, Linares,
Ort́ın (2003)
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Óscar Lasso Andino (IFT-UAM/CSIC) 8-dimensional field theories November 16, 2016 6 / 56



Goals

The construction of a generic (up to second order in derivatives) 8-dimensional
theories with Abelian gauge symmetry and non-trivial Chern-Simons terms
compatible with the existence of a group of electric-magnetic duality rotations of the
equations of motion(in 8 dimensions it must be a subgroup of the symplectic group).
There are previous works in different dimensions,d=3,d=4,d=5,d=6,d=9.
Bergshoeff, Hartong, Hohm, Hubscher, Ort́ın, 2009. Hartong, Hohm, Hubscher,
Ort́ın, 2009. Hubscher, Ort́ın, Shahbazi, 2014. Hubscher, Ort́ın, Shahbazi, 2014.
Fernandez-Melgarejo,Ort́ın, Torrente-Lujan, 2012.

The general gauging of the global symmetry group using the embedding-tensor
fomalism including the possibility of adding Stückelberg couplings consistent with
the above-mentioned electric-magnetic duality.

A simplification/sitematization of the construction of maximal 8-dimensional
supergravities with SO(3) gaugings. Salam and Sezgin (1985),
Alonso-Alberca,Messen, Ort́ın (2000), Alonso-Alberca,Bergshoeff, Gran, Linares,
Ort́ın (2003)
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Ungauged d = 8 theories

The field content of a generic d = 8 theory:

the metric gµν ,

scalar fields φx ,

1-form fields AI = AI
µdx

µ ,

2-form fields Bm = 1
2Bmµνdx

µ ∧dxν and

3-form fields Ca = 1
3!C

a
µνρdx

µ ∧dxν ∧dxρ .

The way

Which is the simplest theory one can construct with these fields?.
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The most simple action with its field strengths

The simplest field strengths are the exterior derivatives:

F I ≡ dAI , Hm ≡ dBm , Ga ≡ dCa .

They are invariant under the gauge transformations

δσA
I = dσ

I , δσBm = dσm , δσC
a = dσ

a ,

where the local parameters σ I ,σm,σa are, respectively, 0-, 1-, and 2-forms.

The most general gauge-invariant action

S =
∫ {

?1R + 1
2 Gxydφx ∧?dφy − 1

2 MIJF
I ∧?F J + 1

2 MmnHm ∧?Hn

− 1
2 ℑmNabG

a ∧?Gb− 1
2 ℜeNabG

a ∧Gb
}
,

where the kinetic matrices Gxy ,MIJ ,M
mn,ℑmNab as well as the matrix ℜeNab are

scalar-dependent.
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Equations of motion

The equations of motion of the 3-forms Ca are

δS

δCa
=−d δS

δGa
= 0 ,

δS

δGa
= Ra ≡−ℜeNabG

b−ℑmNab ?G
b .

These equations can be solved locally by introducing a set of dual 3-forms Ca.

dCa ≡ Ra .

Moreover, we can built a vector containing the fundamental and dual 3-forms:

(C i )≡
(

Ca

Ca

)
, G i ≡ dC i ,

so that the equations of motion and the Bianchi identities for the fundamental field
strengths take the simple form

dG i = 0 .
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First abelian deformation.

Ga = dCa +da
I
mF IBm ,

δσA
I = dσ

I , δσBm = dσm , δσC
a = dσ

a−da
I
mF I

σm .

Problems!

The action remains gauge-invariant but the formal symplectic invariance is broken: if
we do not modify the action, the dual 4-form field strengths are just Ga = dCa and
Sp(2n3,R) cannot rotate these into Ga

Furthermore, the 1-form and 2-form equations of motion do not have a
symplectic-invariant form.

Solution:Add a CS term to the action

SCS =
∫
{−daI mdCaF IBm} ,
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Many things change

New equation of motion:

−d δS

δdCa
= 0 ,

δS

δdCa
= Ra−daI

mdCaF IBm .

The local solution is now

dCa ≡ Ra−daI
mdCaF IBm ,

The dual, gauge-invariant, field strength now is:

Ra = dCa +daI
mdCaF IBm ≡ Ga .

(C i ) =
(
C a

Ca

)
transforms linearly as a symplectic vector if (d i

I
m)≡

(
da

I
m

daI
m

)
also does.
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We can define the symplectic vector of 4-form field strengths

G i = dC i +d i
I
mF IBm ,

invariant under the deformed gauge transformations

δσA
I = dσ

I , δσBm = dσm , δσC
i = dσ

i −d i
I
mF I

σm .

Problem!

The deformed gauge transformations do not leave invariant the CS term.

Solution

Add another term of the form

SCS =
∫
{−daI mdCaF IBm− 1

2daI
mda

J
mF IJBmn} ,

Constraints

da(I
[mda

J)
m] = 0 , so di(I

(md i
J)

m) = 0 .
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Checking the symplectic invariance

Using the duality relation Ra = Ga the equations of motion of the 1-forms can be written
in the form

δS

δAI
= d

{
MIJ ?F

J +diI
mG iBm + 1

2diI
md i

J
mF JBmn

}
= 0 ,

The solution

F̃I ≡ dÃI +diI
mG iBm + 1

2diI
md i

J
mF JBmn ,

F̃I = −MIJ ?F
J ,

dF̃I = diI
mG iHm ,

where ÃI is a set of 5-forms.
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EOM for the 1-forms

The equations of motion are of the 1-forms given by the Bianchi identities of the dual
6-form field strengths up to duality relations:

δS

δAI
=−

{
dF̃I −diI

mG iHm

}
.

The Solution

Using the duality relation Ra = Ga and following the same steps for the 2-forms , we find

H̃m = dB̃m +d i
I
mF ICi ,

H̃m = Mmn ?Hn ,

dH̃m = −diI mG iF I ,
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The equations of motion of the 2-forms are given by the Bianchi identities of the dual
5-form field strengths up to duality relations:

δS

δBm
=−

{
dH̃m +diI

mG iF I
}
.

This completes the first abelian deformation
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Second abelian deformation

Deforming Hm

Hm = dBm−dmIJF
IAJ ,

which is invariant under the gauge transformations

δσA
I = dσ

I , δσBm = dσm +dmIJF
I
σ
J ,

and satisfies the Bianchi identity

dHm =−dmIJF
IJ .

The deformed G i

G i = dC i +d i
I
mF IBm− 1

3d
i
I
mdmJKA

IF JAK ,

δσC
i = dσ

i −d i
I
mF I

σm + 1
3d

i
I
mdmJK (σ

IF JAK −AIF J
σ
K ) ,

dG i = d i
I
mF IHm ,

Restriction

d i
(I |

mdm|JK) = 0 .

A New C-S has to be introduced in the action

SCS =−
∫
{dCa∆Ga + 1

2 ∆Ga∆Ga} .

where G i = dC i + ∆G i

Restriction

d i
(I |

mdi |J)
n =−2dmnpdpIJ .
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The 6-form potentials and their 7-form field strengths

Bandos,Ort́ın 2016,....

The 6-form potentials are expected to be the duals of the scalars. However,
maintaining the manifest invariances of the theory in the dualization procedure
requires the introduction of as many 6-forms DA as generators of global
transformations δA leaving the equations of motion (not just the action) invariant.
Hence, the index A labels the adjoint representation of the duality group.

The 7-form field strengths KA are the Hodge duals of the piece j
(σ)
A (φ) of the

Noether–Gaillard–Zumino (NGZ) conserved 1-form currents jA = j
(σ)
A (φ) + ∆jA

associated to those symmetries (or, better, dualities) which only depend on the
scalar fields

KA ≡ ?j
(σ)
A ,
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The Bianchi identities:

dKA = d ? j
(σ)
A = d ? (jNGZA −∆jA) =−d ?∆jA ,

We can rewrite that equation locally as the conservation of the NGZ current

d ? jNGZA = 0 , jNGZA ≡ j
(σ)
A + ∆jA ,

where ∆jA is a very long and complicated expression. A local solution is provided by

?[j
(σ)
A + ∆jA] =−dDA for the 6-form potential DA and we get the definiton of the

7-form field strength

?j
(σ)
A =−dDA +?∆jA ≡ KA .

Finally, the Bianchi identity becomes

dKA =−d ? j
(σ)
A = TA

I
JF

J F̃I +TA
m
nH̃

nHm− 1
2TAijG

ij .
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Field strengths

F I = dAI .

Hm = dBm−dmIJF
IAJ ,

G i = dC i +d i
I
mF IBm− 1

3d
i
I
mdmJKA

IF JAK ,

H̃m = dB̃m +d i
I
mCiF

I +dmnpBn(Hp + ∆Hp) + 1
12d

i
I
mdiJ

nAIJ∆Hn ,

F̃I = dÃI + 2dmIJA
J(H̃m− 1

2 ∆H̃m)−
(
d i

I
mBm− 1

3d
i
J
mdmIKA

JK
)

(Gi − 1
2 ∆Gi )

− 1
3

(
d i

I
mdmJK −d i

K
mdmIJ

)
F JAKCi −dmnpdmIJA

JBnHp

+ 1
24

(
d i

K
mdiL

ndmIJ + 2d i
[I |

mdi |K ]
ndmJL

)
F JAKLBn + 1

24d
i
J
mdiK

ndmILA
JKLdBn

− 1
180d

i
L
ndiQ

mdmIJdnPKA
JKLQFP ,

KA = ?????
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Bianchi identities

dF I = 0 ,

dHm = −dmIJF
IJ ,

dG i = d i
I
mF IHm ,

dH̃m = d i
I
mGiF

I +dmnpHnp ,

dF̃I = 2dmIJF
J H̃m +diI

mG iHm ,

dKA = TA
I
JF

J F̃I +TA
m
nH̃

nHm− 1
2TAijG

ij .
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Duality Relations

?G i = ΩijWjkG
k ,

?H̃m = MmnHn ,

?F̃I = MIJF
J ,

?KA = −j(σ)
A ,

?L] = − ∂V

∂c]
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Non-Abelian and massive deformations: the tensor hierarchy

Gauging the global symmetries of the theory

The most general possibilities can be explored using the embedding tensor formalism

Cordaro, Fré,Gualtieri, Termonia and Trigiante (1998). Nicolai and Samtleben (2001).De
Wit and Samtleben (2001). De Wit, Samteblen and Trigiante (2003)

Bonus

The tensor hierarchy

De Wit and Samtleben (2005). De Wit, Nicolai and Samteblen (2008). Bergshoeff,
hartong, Hohm,Huubscher and Ort́ın (2009). De Wit and Zalk (2009)
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The embedding tensor formalism

A convenient tool to study gaugings of supergravity theories in a universal and
general way, that does not require a case-by-case analysis.

Formally maintains covariance with respect to the global invariance group G of the
ungauged theory, even though in general G will ultimately be broken by the gauging
to the subgroup that is gauged.

It turns out that all couplings that deform an ungauged supergravity into a gauged
one, can be given in terms of the embedding tensor.

Gauged supergravities are classified by the embedding tensor, subject to a number of
algebraic or group-theoretical constraints.
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The embedding tensor ΘM
α pairs the generators tα of the group G with the vector

fields Aµ
M used for the gauging. The indices α,β , . . . label the adjoint representation

of G and the indices M,N, . . . label the representation RV of G , in which the vector
fields that will be used for the gauging transform. Thus, the choice of ΘM

α , which
generally will not have maximal rank, determines which combinations of vectors

Aµ
MΘM

α ,

can be seen as the gauge fields associated to (a subset of) the generators tα of the
group G , and, simultaneously, or alternatively, which combinations of group
generators

XM = ΘM
α tα

can be seen as the generators of the gauge group. Consequently, the embedding
tensor can be used to define covariant derivatives

Dµ = ∂µ −Aµ
M ΘM

α tα = ∂µ −Aµ
M XM ,

which shows that the embedding tensor can also be interpreted as a set of gauge
coupling constants of the theory.
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The EOMs invariant under a global symmetry group with infinitesimal generators {TA}
satisfying the algebra

[TA,TB ] = fAB
CTC .

The group acts linearly on all the forms of rank ≥ 1, if (Ci ) =
(
C a

Ca

)
.

The generators are: {TA
I
J},{TA

m
n},{TA

i
j}

The adjoint generators are: TA
B
C = fAC

B .
The matrices TA

i
j are generators of the symplectic group

We have:

δαA
I = αATA

I
JA

J ,
δαBm =−αATA

n
mBn ,

δαC
i = αATA

i
jC

j ,

δα ÃI =−αATA
J
I ÃJ ,

δα B̃
m = αATA

m
nB̃

n ,

δAMIJ =−2TA
K

(IMJ)K ,

δAMmn = 2TA
(m

pM n)p ,
δAWij =−2TA

k
(iWj)k ,
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The k-form field strengths will transform in the same representation as the
corresponding (k−1)-form potential, but only if the d-tensors dmIJ ,d

i
I
m,dmnp are

invariant under the global symmetry group, i.e. they must satisfy

δAdmIJ = −TA
n
mdnIJ −2TA

K
(Idn|J)K = 0 ,

δAd
i
I
m = TA

i
jd

j
I
m−TA

J
Id

i
J
m +TA

m
nd

i
I
n = 0 ,

δAd
mnp = 3TA

[m|
q dq|np] = 0 .

The theories we have constructed are invariant under Abelian gauge transformations
with 0-, 1- and 2-form parameters σ I ,σm,σ i :

δσA
I ∼ dσ

I , δσBm ∼ dσm , δσC
i ∼ dσ

i .
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The gauging of the global symmetry

We promote the global parameters αA to local ones αA(x) and we make the
identification:

The embedding tensor

α
A ≡ σ

I
ϑI

A .

The gauge transformation for the the kinetic matrices MIJ ,M
mn,Wij become:

δσ MIJ =−2σ
LXL

K
(IMJ)K , δσ Mmn = 2σ

ITI
(m

pM n)p , δσ Wij =−2σ
IXI

k
(iWj)k ,

where:

XI
J
K ≡ ϑI

ATA
J
K , XI

m
n ≡ ϑI

ATA
m
n , XI

i
j ≡ ϑI

ATA
i
j .
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The embedding tensor and the 1− forms

The gauge fields for these symmetries are given by

AA ≡ AI
ϑI

A .

The covariant derivative of a field Φ transforming as δAΦ is given by

DΦ≡ dΦ−AA
δAΦ .

Then

DMmn = dMmn−2AIXI
(m

pM n)p ,

DMIJ = dMIJ + 2ALXL
K

(IMJ)K ,

DWij = dWij + 2AIXI
k

(iWj)k .

Óscar Lasso Andino (IFT-UAM/CSIC) 8-dimensional field theories November 16, 2016 28 / 56



The first Constraint and the 1-forms

The derivatives transform covariantly under gauge transformations δσ = σ IϑI
AδA

provided that the embedding tensor is gauge-invariant

δσ ϑI
A = 0 ,

and provided that the 1-forms transform as

δσA
I = Dσ

I + ∆AI , where


∆AIϑI

A = 0 ,

Dσ I = dσ I −AJXJ
I
KσK ,

The gauge invariance of the embedding tensor leads to the so-called quadratic constraint

ϑJ
B
[
TB

K
IϑK

A− fBC
A

ϑI
C
]

= 0 .

To determine ∆AI we have to construct the gauge-covariant 2-form field strengths F I .
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2-form field strengths

Use Ricci identities

DDMmn =−F I
ϑI

A
δAMmn ,

F I = dAI − 1
2XJ

I
KA

JK +Z I mBm ,

δσF
I = σ

JXJ
I
KF

K ,

δσA
I = Dσ

I −Z I m
σm ,

δσBm = −σ
IXI

n
mBn +Dσm + 2dmJK

(
F J

σ
K − 1

2A
J

δσA
K
)

+ ∆Bm ,

with Z I m∆Bm = 0.
In the ungauged limit ϑI

A = Z I m = 0 we get the Abelian gauge transformations.

Óscar Lasso Andino (IFT-UAM/CSIC) 8-dimensional field theories November 16, 2016 30 / 56



Field Strengths

F I = dAI − 1
2XJ

I
KA

JK +Z I mBm ,

Hm = DBm−dmIJdA
IAJ + 1

3XJ
M

KA
IJK +ZimC i ,

G i = DC i +d i
I
n
[
F IBn− 1

2Z
I pBnBp + 1

3dnJKdA
JAKI + 1

12dmMJXK
M

LA
IJKL

]
−ZimH̃m ,

H̃m = DB̃m−diI
mF IC i +dmnpBn

(
Hp + ∆Hp−2ZipC

i
)

+dm
IJKdA

IdAJAK

+
(

1
12diJ

md j
K
ndnIL− 3

4d
m
IJMXK

M
L

)
dAIAJKL

+
(

3
20d

m
NPMXI

N
J − 1

60diM
md i

I
ndnPJ

)
XK

P
LA

IJKLM

+Z ImÃI ,

F̃I = ?

KA = ?
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Bianchi Identities

DF I = Z I mHm ,

DHm = −dmIJF
IJ +ZimG i ,

DG i = d i
I
mF IHm−Z i

mH̃m ,

DH̃m = −diI mG iF I +dmnpHnp +dm
IJKF

IJK +Z I mF̃I ,

D F̃I = 2dmIJF
J H̃m +diI

mG iHm−3dm
IJKF

JKHm−ϑI
AKA ,

DKA = +TA
K
JF

J F̃K +TA
m
nH̃

nHm− 1
2TAijG

ij +YAI
BLB

I +YA
ImLIm +YAimLim ,

DL] = ?
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Constraints

First of all we have the gauge-invariance constraints

QIJ
A , QI

Jm , QIim ,

Secondly, we have the global-invariance constraints

QAmIJ , QA
i
I
m ,

Thridly we have the orthogonality constraints between the three deformation tensors

QmA ≡ −Z Im
ϑI

A ,

Qi
I ≡ ZimZ Im ,

Qmn ≡ ZimZ i
n .
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Next, we have the constraints relating the gauge transformations to the d-tensors

QI
J
K ≡ X(I

J
K)−ZKmdmIJ ,

QI
m
n ≡ XI

m
n + 2dmIJZ

Jn +Zimd i
I
m ,

QIij ≡ −XIij −2Z(i |md|j)I
m ,

Finally, we have the constraints that related the d-tensors amongst them

Qimn ≡ d i
I
[m|Z I |n] +Z i

pd
pmn ,

QIJ
mn ≡ 1

2d
i
(I |

mdi |J)
n +dmnpdpIJ + 3d [m|

IJKZ
K |n] ,

QiIJK ≡ Zimdm
IJK −di(I |

mdm|JK) .
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Consistency

We get equations which guarantee the consistency of the whole construction of the
tensor hierarchy that we have carried out.

∂QIJ
A

∂ϑK
B

[
DM IJ

A +F ILA
J
]

+
∂QmA

∂ϑK
B

[DMmA +HmKA]

+
∂QI

J
K

∂ϑK
B

[
DM I

J
K +F IK F̃J

]
+

∂QI
m
n

∂ϑK
B

[
DM I

m
n +F I H̃mHn

]
+

∂QIij

∂ϑK
B

[
DM Iij +F IG ij

]
= 0 .
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Noether identities.

−Z i
m

δS

δC i
+D

δS

δ B̃m
= 0

−Zim
δS

δBm
+D

δS

δC i
= 0

D
δS

δBn
− δS

δC j
d i n

I F I +Z InB(ÃI ) = 0

− δS

δC j
d i n

I Hn +
δS

δBm
2dmJIF

J +DB(ÃI )+υ
A
I B(φ

x ) = 0

where

B(ÃI ) =
δS

δAI
− δS

δBm
AKdmKI +

δS

δC j
(−d i n

I Bn +
1

3
d i n

J dnIKA
JK )

υ
A
I B(φ

x ) = υ
A
I (

δS

δφx
k x
A (φ)− δS

δC j
T j
A iCj −

δS

δBm
T n
I mBn)
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EOMs and Bianchi identities

δS

δBm
= B(Bm)

δS

δC i
= B(Ci )

δS

δAI
= B(ÃI ) +B(Bm)AKdmKI −B(Ci )(−d i n

I Bn +
1

3
d i n

J dnIKA
JK )

υ
A
I k

x
A (φ)

δS

δφx
= υ

A
I (B(φ

x ) +B(Ci )T
j

A iCj +B(Bm)T n
I mBn)

where

υ
A
I B(φ

x ) = υ
A
I (DKA +T I

A JF
J F̃I +T m

A nH̃
nHm−

1

2
TAij

G ij )

B(ÃI ) =−D F̃I + 2dmIJF
J H̃m +d m

i IG
iHm−3dm

IJKF
JKHm + υ

A
I KA

B(Bm) =−DH̃m−d m
j I G

jF I +dmnpHnp +dm
IJKF

IJK +Z ImF̃I

B(Ci ) =−DGi +d m
i IF

IHm−ZimH̃m
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The 8-dimensional supergravities with SO(3) gaugings

All these theories will be equivalent from an 8-dimensional point of view: they are all
related by SL(2,R) duality transformations that can be understood as a different
changes of variables.Dibietto,Fernández-Melgarejo,Marquéz,Roest (2012).

The simplest mechanical procedure to obtain them from 11-dimensional supergravity
would be to perform the standard Scherk-Schwarz reduction that gives an
8-dimensional SO(3)-gauged maximal supergravity in which the 3 Kaluza-Klein
vectors play the role of gauge fields and then perform the SL(2,R) duality
transformations mentioned above. Salam and Sezgin (1985).

Problem!

Technically complicated (because of electric-magnetic duality). The Kaluza-Klein triplet
of vector fields are the first component of a SL(2,R) doublet and, after the duality
transformations, the gauge fields are no longer the first component of that doublet, but a
general linear combination of the first and the second.
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The 8-dimensional SL(2,R) duality transformations have no clear 11-dimensional
counterpart, though, and the SO(3)-gauged maximal supergravities in which the
triplet of gauge fields are not the first component of the SL(2,R) doublet obtained
in this way cannot be uplifted to 11 dimensions.

The only way to uplift an 8-dimensional solution of these theories would be to undo first
the SL(2,R) rotation converting the solution in a solution of the Salam-Sezgin theory.

There is no known way of dimensional reducing 11-dimensional supergravity to
obtain directly any of the SL(2,R)-rotated SO(3)-gauged 8-dimensional maximal
supergravities.

One exception: the SO(3)-gauged 8-dimensional maximal supergravity in which the
triplet of gauge fields are the second component of the SL(2,R) doublet (they are,
precisely, those coming from the reduction of the 11-dimensional 3-form).
Alonso-Alberca, et al.(2001)

Maybe find more general non-covariant deformations of 11-dimensional supergravity
leading to the rest of SO(3)-gauged 8-dimensional maximal supergravities.
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N = 2, d = 8 supergravity

N = 2, d = 8 supergravity can be obtained by direct dimensional reduction of
11-dimensional supergravity on T 3.

The scalars of the theory parametrize the coset spaces SL(2,R)/SO(2) and
SL(3,R)/SO(3) and the U-duality group of the theory is SL(2,R)×SL(3,R) and its
fields are either invariant or transform in the fundamental representations of both
groups.

We use the indices i , j ,k = 1,2 for SL(2,R) doublets and m,n,p = 1,2,3 for SL(3,R)
triplets.

The bosonic fields are

gµν ,C ,Bm,Ai m,a,ϕ,Mmn,

where C is a 3-form, Bm a triplet of 2-forms, Ai m, a doublet of triplets of 1-forms
(six in total), a and ϕ are the axion and dilaton fields which can be combined into
the axidilaton field

τ ≡ a+ ie−ϕ ,

or into the SL(2,R)/SO(2) symmetric matrix
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(
Wij

)
≡ eϕ

(
|τ|2 a
a 1

)
, with inverse

(
W ij

)
≡ eϕ

(
1 −a
−a |τ|2

)
,

Mmn is an SL(3,R)/SO(3) symmetric parametrized in terms of the scalars.

The bosonic action, Alonso-Alberca et. al., is

S =
∫
d8x

√
|g |
{
R + 1

4 Tr
(
∂MM−1

)2
+ 1

4 Tr
(
∂W W −1

)2

− 1
4F

i mMmnWijF
j n + 1

2·3!HmMmnHn− 1
2·4!e

−ϕG2 ,

− 1
63·24

1√
|g |

ε
[
GGa−8GHmA2m + 12G(F 2m +aF 1m)Bm

−8εmnpHmHnBp−8G∂aC −16Hm(F 2m +aF 1m)C
]}

,
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where the field strengths are given by

F i m = 2∂Ai m .

Hm = 3∂Bm + 3εmnpF
1nA2p ,

G = 4∂C + 6F 1mBm ,

We want to use differential-form language and a different basis of forms with better
transformation properties under the duality groups (in particular, under SL(2,R))

We redefine the potentials as

Bm −→ Bm− 1
2 εmnpA

1n ∧A2p ,

C −→ C1 + 1
2 εmnpA

1m ∧A1n ∧A2p .
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The bosonic action becomes

S =
∫ {
−?R + 1

4 Tr
(
dMM−1∧?dMM−1

)
+ 1

4 Tr
(
dW W −1∧?dW W −1

)
+ 1

2 WijMmnF
im ∧?F jn + 1

2 MmnHm ∧?Hn + 1
2e
−ϕG1∧?G1− 1

2aG
1G1

+ 1
3G

1
[
HmA2m−BmF 2m + 1

2 εmnpF
2mA1nA2p

]
+ 1

3HmF 2m
[
C1 + 1

6 εmnpA
1mA1nA2p

]
+ 1

3! εmnpHmHn
(
Bp− 1

2 εpqrA
1qA2r

)}
.

and the field strengths

F im = dAim ,

Hm = dBm + 1
2 εijεmnpF

inAjp ,

G1 = dC1 +F 1mBm + 1
6 εijεmnpA

1mF inAjp .
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The SO(3) gaugings of N = 2, d = 8 supergravity

The only structure constants that we need to know explicitly are those of the SO(3)
subgroup

[Tm,Tn] = fmn
pTp =−εmn

pTp ,

The SO(3) generators in the fundamental/adjoint representation are the matrices

Tm
n
p = εm

n
p =−εmpn .

The coset space SL(3,R)/SO(3) is a symmetric space and the structure constants
with mixed indices fma

b provide a representation of SO(3) acting on the
SL(3,R)/SO(3) indices a,b, · · · :

Tm
a
b = fmb

a .

For the generators of SL(2,R)∼Sp(2,R) in the fundamental representation Tα
i
j we

just need to know the property

Tα
k

[jεi ]k ≡ Tα [ij] = 0 ,
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The indices I ,J, . . . must be replaced by composite indices im, jn etc. where
i , j , . . . = 1,2 and m,n, . . . = 1,2,3 are indices in the fundamental representations of
SL(2,R) and SL(3,R), respectively.

The electric 3-forms carry an index a which is the upper component of a symplectic
index denoted by i , j , . . .. In the case at hands, a takes only one value: 1 (C1) which
will be sometimes omitted (C). The lower index 1 is equivalent to an upper index 2:

C1 = ε12C
2 = C2 and, therefore (C i ) =

(
C 1

C1

)
=
(
C 1

C 2

)
. On the other hand,

Ci ≡ εijC
j .

Comparing the field strengths of this theory with those of the generic ungauged
theory we get that the d-tensors can be constructed entirely in terms of the
U-duality invariant tensors δ i

j ,εij ,δ
m
n,εmnp :

dmIJ → dmin jp =− 1
2 εmnpεij ,

d i
I
m → d i

jn
m = δ i

jδ
m
n .

Moreover

d i
(I |

mdi |J)
n =−2dmnpdpIJ , ⇒ dmnp = + 1

2 ε
mnp .
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In this theory, the embedding tensor has the form ϑim
A. We know there are at least

two possible SO(3)⊂ SL(3,R) gaugings of this theory:

1 Salam and Sezgin’s (SS), in which the 3 vector fields A1m coming from the metric of
11-dimensional supergravity (that is, the 3 Kaluza-Klein (KK) vector fields) are used
as gauge fields.

2 The AAMO gauging in which the 3 gauge fields are the A2m coming from the 3-form
of 11-dimensional supergravity.

The Salam-Sezgin gauging corresponds to choosing an embedding tensor whose only
non-vanishing components are ϑim

n = gδi
1δm

n where g is the coupling constant,
and the AAMO gauging corresponds to the choice ϑim

n = gδi
2δm

n.

From the 8-dimensional supergravity point of view, one could use any other SL(2,R)
transformed of the A1m triplet as gauge fields.The corresponding embedding tensor
has the form

ϑim
n = viδm

n ,

where vi is a 2-component vector transforming in the fundamental of the
electric-magnetic SL(2,R) duality group

The SO(3) gauge fields are combinations of the two triplets of vector fields

ϑin
mAin = viA

im ,

and include, as limiting cases, the SS and the AAMO theories.
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From 11-dimensional to 8-dimensional supergravity

Salam and Sezgin, (1985),
Alonso-Alberca,Messen, Ort́ın, (2001),
Alonso-Alberca, Bergshoeff, Gran, Linares, Ort́ın, Roest, (2003),
Puigdomènech, de Roo, (2008).
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Solving the constraints

The two first constraints
ϑim

BYB jn
A = 0 ,

ϑ(im|
ATA

jn
|kp) = Z jnqdq imjp .

There are five constraints more relating the three deformation tensors ϑim
A,Z imn

and Zim among themselves and to the d-tensors

ϑim
ATA

p
n + 2dn imjqZ

jqp +Zjnd
j
im

p = 0 ,

ϑim
ATAjk + 2Z(j |nd|k)im

n = 0 ,

d i
jp

[m|Z jp|n] +Z i
pd

pmn = 0 ,

1
2d

k
(ip|

mdk|jq)
n +dmnpdp ip jq + 3d [m|

ip jq lrZ
lr |n] = 0 ,

Zimdm
jnkp lq−di(jn|

mdm|kp lq) = 0 ,

We have found a set of deformation parameters which are a solution for all contraints

ϑim
n = viδm

n , Z imn = v iδmn , Zim = 0
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A 1-parameter family of SO(3)gauged supergravity

The tensor hierarchy

From Noether identities

kA
x δS

δφx
= B(KA) , A = m,a,α ,

δS

δAim
= B(F̃im) +

(
δ

1
iBm− 1

6 εmnpA
1nAjp

)
B(G2)− 1

2 εmnpεijA
jnB(H̃p) ,

δS

δBm
= B(H̃m) ,

δS

δC1
= B(G2)

.

Óscar Lasso Andino (IFT-UAM/CSIC) 8-dimensional field theories November 16, 2016 49 / 56



We find

δS

δAim
= −D(WijMmn ?F

jn)− εmnpεijF
jnM pq ?Hq− (δi

1G̃ −δi
2G)Hm

−viKm +
(

δ
1
iBm− 1

6 εmnpA
1nAjp

)
δS

δC
− 1

2 εmnpεijA
jn δS

δBp
,

δS

δBm
= −D(Mmn ?Hn) +F 1mG̃ −F 2mG + 1

2 ε
mnpHnHp +v iWijMmn ?F

jn ,

δS

δC
= −dG̃ +F 2mHm .

the scalar equations of motion are

δS

δφy
= −GxyD ?Dφy + 1

2 ∂x
{
WijMmnF

im ∧?F jn +MmnHm ∧?Hn

+e−ϕG ∧?G −aG ∧G −V (φ)
}
.
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The action

The kinetic terms in the action

S(0) =
∫ {
−?R + 1

4 Tr
(
DMM−1∧?DMM−1

)
+ 1

4 Tr
(
dW W −1∧?dW W −1

)
+ 1

2 WijMmnF
im ∧?F jn + 1

2 MmnHm ∧?Hn + 1
2e
−ϕG ∧?G − 1

2aG ∧G −V
}
.

We add

S(1) =
∫ {
−dC1∆G2− 1

2 ∆G1∆G2− 1
12 εmnpBmDBnDBp + 1

4 εmnpBmHnHp

− 1
24 εijA

imAjn∆HmDBn
}
,

Another correction

S(2) =
∫ {
− 1

12vi (F
im−v iBm)BmBnBn + 1

4 εmnpBm∆Hn∆Hp− 1
2 εij�G i�F jmBm

+ 1
24 εijA

imAinDBm∆Hn
}
.
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The scalar potential

The scalar potential must satisfy:

kA
x ∂V

∂φx
= YA

] ∂V

∂c]
,

where the index ] labels the deformations c], which, in this case, are just ϑim
A,Z imn and

Zim.

No general rules available in the literature to construct the fermion shifts of any gauged
supergravity. Castellani, Ceresole, Ferrara, DAuria, Fré and Maina,(1986), (1985).
Bandos and Ortn (2016).

They can be written in terms of the dressed structure constants of the gauge group.

The fermion shifts of SO(3)-gauged N = 2,d = 8 supergravity theory can be written in
terms of

fmn
p ≡ Lm

mLn
nLp

pfmn
p ,

where fmn
p = εmnp , the matrix Lm

n is the SL(3,R)/SO(3) coset representative, and
Lm

nis its inverse.
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They can be written in terms of the dressed structure constants of the gauge group.

The fermion shifts of SO(3)-gauged N = 2,d = 8 supergravity theory can be written in
terms of

fmn
p ≡ Lm

mLn
nLp

pfmn
p ,

where fmn
p = εmnp , the matrix Lm

n is the SL(3,R)/SO(3) coset representative, and
Lm

nis its inverse.
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The structure of the fermion shifts and of the entire supersymmetry transformations in
SS theory does not show the transformation properties of the spinors under the
R-symmetry group SO(2)×SO(3)∼U(1)×SU(2), because the fermions obtained in the
dimensional reduction from 11 dimensions are not symplectic-Majorana.

We use symplectic-Majorana spinors in our proposal: gravitini ψµI , dilatini λ I
m and

supersymmetry parameters ε I and we are going to define the fermion shifts SIJ ,Nm
I
J

δε ψµI ∼ ·· ·+SIJεJ ,

δε λ I
m ∼ ·· ·+Nm

I
JεJ .

We propose V M
IJ where the index M labels the vectors available in the theory (electric

and magnetic in 4 dimensions) and the indices I ,J are R-symmetry indices in the
representation carried by the spinors (the fundamental of SU()N ) to be written as

V im
IJ ≡ V iLm

m
εIKσ

mK
J , and V im

m ≡ V iLm
m ,

where we have introduced

(Vi )≡ eϕ/2(τ 1) ,

which transforms linearly under SL(2,R) up to a U(1) phase.
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The fermion shifts are

SIJ = V im
[I |Kϑim

nPn
p(σ

p)K |J] ,

Nm
I
J = V in

rϑin
pPp

s (
δ
r
mδ

q
s− 1

2 δm
q
δ
r
s
)

(σ
q)I J ,

where the (σp) are Pauli’s sigma matrices.

For the class of gaugings that we are considering, with embedding tensor ϑim
n = viδm

n

SIJ = V iviLn
mPm

n
εIJ ,

Nm
I
J = V ivi

(
Lm

nPn
p− 1

2 δm
pLq

nPn
q)(σ

p)I J .

The dressed structure constants can be expressed in these two different ways:

fmn
p =

 Lm
qΓAdj(L

−1)q
A(TA)n

p ,

εmnqT
qp ,

where we have defined Tmn ≡ Lp
mLp

nΓ
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We can express the fermion shifts entirely in terms of Tmn:

SIJ = εIJV
iviT ,

Nm
I
J = V ivi

(
Tmp− 1

2 δmpT
)

(σ
p)I J ,

The scalar potential

V =− 1
4SIJS

∗ IJ + 1
8 δ

mnNm
I
JN
∗
n I

J =− 1
2 W ijvivj

[
Tr(M )2−2Tr(M 2)

]
,

where W ij is the SL(2,R)/SO(2) symmetric matrix, and where we have used

Mmn ≡ Lm
pLn

p , so that T = Tr(M ) , and TmnTmn = Tr(M 2) .
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Thank you.
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