Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

Intersecting surface defects and 2d Conformal Field Theory

Yiwen Pan

Uppsala University

[1610.03501] Gomis, Le Floch, YP, Peelaers [1612.xxxxx] YP, Peelaers

Nov 17 2016 Oviedo

Yiwen Pan (Yiwen Pan)

Intersecting defects & 2d CFT

2016 Nov 1 / 27

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

Outline

- Introduction: class- \mathcal{S} , CFT, partition functions, AGT
- Surface defects and their intersection
 - Construction
 - Two simplest intersecting defect systems
 - Partition functions, correlators, dualities
 - Higgsing
- Summary, conjectures
- Open problems

Introduction	Intersecting surface defects	Summary	Open problems
•000000	000000000	0000	0

Introduction

class- $\ensuremath{\mathcal{S}}$ theories

Liouville/Toda

AGT

surface defect (class-S construction)

AGT with surface defect

Yiwen Pan (Yiwen Pan)

Intersecting defects & 2d CFT

2016 Nov 3 / 27

Motivations

- QFTs are well studied on smooth spaces (Sⁿ, Sⁿ × S¹, ...), spaces with boundaries (Dⁿ, ℝ^k,...)
- Explore QFTs on intersecting spaces, e.g., $\mathbb{R}^2_{x_1,x_2=0} \cup \mathbb{R}^2_{x_3,x_4=0} \subset \mathbb{R}^4$, $\mathbb{R}^2_{x_1,x_2=0} \cap \mathbb{R}^2_{x_3,x_4=0} = (0,0,0,0)$
- Enrich the family of surface defects in four dimensions
- Generalize AGT correspondence to include intersecting surface defects
- Explore new dualities

Introduction	Intersecting surface defects	Summary	Open problems
000000	000000000	0000	0

Class S of type A_{n_f} [Gaiotto]

- ${\ \bullet \ }$ 4d ${\ }{\ }{\ }{\ }{\ }$ 2 theories on M^4
- Labeled by punctured Riemann surfaces $\Sigma_{g,n} \Rightarrow \mathcal{T}_{g,n}$ on M^4
- $\bullet~M^4$ unrelated to Σ
- ${\, \bullet \,}$ Some of them in weak coupling regime \Rightarrow quiver gauge theories

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

Class S of type A_{n_f} [Gaiotto]

- ${\ \bullet \ }$ 4d ${\ }{\ }{\ }{\ }{\ }$ 2 theories on M^4
- Labeled by punctured Riemann surfaces $\Sigma_{g,n} \Rightarrow \mathcal{T}_{g,n}$ on M^4
- $\bullet~M^4$ unrelated to Σ
- ${\, \bullet \,}$ Some of them in weak coupling regime \Rightarrow quiver gauge theories
- Examples: consider Riemann spheres

Yiwen Pan (Yiwen Pan)

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

Partition functions Z^M

- $\bullet\,$ For QFTs ${\mathcal T}$ on space M who have Lagrangians
- Defined formally as path integral

$$Z^{M}(\mathcal{T}) \equiv \int \mathcal{D}[\text{fields}] e^{-S_{M}[\text{fields}]}$$

 $\bullet\,$ For some theories of class- ${\cal S}$, simplified to ordinary integrals/sums

$$Z^{M}(\mathcal{T}) = \sum Z_{\rm cl}(\Phi) Z_{\rm 1-loop}(\Phi) Z_{\rm instanton}(\Phi)$$

Examples will be shown later

Yiwen Pan (Yiwen Pan)

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

Liouville/Toda CFT [Teschner, '95; Zamolodchikov, Zamolodchikov, '96;]

- Liouville theory: 2d CFT on $\Sigma_{g,n}$; Toda, the generalized version
- Depend on a param $b \iff central charge)$
- Liouville $\leftrightarrow W_2 \sim Virasoro$, Toda $\leftrightarrow W_{n_{\rm f}}$
- Vertex operators $V_{lpha}(x)$:
 - \bullet Location: x
 - Momentum: α
- Special ones: degenerate vertex op. $V_{\alpha_{deg}}(x)$
 - Pick \mathcal{R} : irrep of $\mathfrak{su}(n_{\mathrm{f}})$
 - deg. momentum $\alpha_{\rm deg} \propto \Omega_{\cal R}$
- Insert $V_{\alpha}(x)$ at the punctures
- Correlation functions $\langle V_{\alpha_0}(0)V_{\beta_1}(x_1)...V_{\beta_n}(x_n)V_{\alpha_1}(1)V_{\alpha_{\infty}}(\infty)\rangle$

Yiwen Pan (Yiwen Pan)

Introduction	Intersecting surface defects	Summary	Open problems
00000000	00000000	0000	0

AGT relation [Alday, Gaiotto, Tachikawa]

• S_b^4 -partition functions (of $\mathcal{T}_{g,n}$) = Liouville/Toda correlators (on $\Sigma_{g,n}$);

Yiwen Pan (Yiwen Pan)

Introduction	Intersecting surface defects	Summary	Open problems
00000000	000000000	0000	0

Surface defect (class-S construction) [Gomis, Le Floch; Gadde, Gukov; Gaiotto, Kim, ...]

- Insert degenerate puncture(s)/vertex operator(s);
- Labeled by a representation \mathcal{R} of $\mathfrak{su}(n_{\mathrm{f}})$ with highest weight $\Omega_{\mathcal{R}}$;

Introduction	Intersecting surface defects	Summary	Open problems
00000000	000000000	0000	0

Surface defect (class-S construction) [Gomis, Le Floch; Gadde, Gukov; Gaiotto, Kim, ...]

- o Insert degenerate puncture(s)/vertex operator(s);
- Labeled by a representation \mathcal{R} of $\mathfrak{su}(n_{\mathrm{f}})$ with highest weight $\Omega_{\mathcal{R}}$;
- Examples (before)

Introduction	Intersecting surface defects	Summary	Open problems
00000000	000000000	0000	0

Surface defect (class-S construction) [Gomis, Le Floch; Gadde, Gukov; Gaiotto, Kim, ...]

- o Insert degenerate puncture(s)/vertex operator(s);
- Labeled by a representation \mathcal{R} of $\mathfrak{su}(n_{\mathrm{f}})$ with highest weight $\Omega_{\mathcal{R}}$;

Examples (after), *R* determines 2d quiver (inside dashed box) ۲ 2d n_f^2 Free hypers + defect (n_{ν}) ... $n_{\rm f}$ 2d $\stackrel{\mathcal{R}}{\times}$ $SU(n_{\rm f})$ SQCD + defect $n_{\rm f}$

Yiwen Pan (Yiwen Pan)

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

AGT relation with one defect [Gomis, Le Floch; ...]

• $S^2 \subset S_b^4$ -partition function = Liouville/Toda deg. correlators;

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

AGT relation with one defect [Gomis, Le Floch; ...]

• $S^2 \subset S_b^4$ -partition function = Liouville/Toda deg. correlators;

• Example: $lpha_{
m deg}=-b\Omega_{
m symm^{n}\,\square}=-nbh_{1}$, $x\propto e^{-2\pi\xi_{
m FI}}$,

Introduction	Intersecting surface defects	Summary	Open problems
0000000	•00000000	0000	0

Intersecting surface defects

One surface defect (QFT construction)

Intersecting surface defect (QFT construction)

Couplings

The example

Higgsing

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

QFT Construction

 ${\scriptstyle \bullet \,}$ 4d bulk space M^4 , ${\cal N}=2$ theory $\,{\cal T}^{\rm 4d}$.

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

- \circ 4d bulk space M^4 , $\mathcal{N}=2$ theory $\mathcal{T}^{
 m 4d}$.
- \circ 2d subspace $D \subset M^4$, $\mathcal{N} = (2,2)$ theory \mathcal{T}^{2d}
- \mathcal{T}^{4d} , \mathcal{T}^{2d} couple supersymmetrically.

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

- 4d bulk space M^4 , $\mathcal{N}=2$ theory $\mathcal{T}^{\mathrm{4d}}$.
- \circ 2d subspace $D \subset M^4$, $\mathcal{N} = (2,2)$ theory \mathcal{T}^{2d}
- \mathcal{T}^{4d} , \mathcal{T}^{2d} couple supersymmetrically.

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

QFT Construction

- 4d bulk space M^4 , $\mathcal{N}=2$ theory \mathcal{T}^{4d} .
- $\circ~$ 2d subspace $D\subset M^4$, $\mathcal{N}=(2,2)$ theory $~\mathcal{T}^{\rm 2d}$
- \mathcal{T}^{4d} , \mathcal{T}^{2d} couple supersymmetrically.

• Physical quantity: the partition function of the 4d-2d coupled system

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

QFT Construction

• bulk M^4 , $\mathcal{N}=2$ theory \mathcal{T}^{4d} .

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000		

- bulk M^4 , $\mathcal{N} = 2$ theory \mathcal{T}^{4d} . $D_L \subset M^4$, $\mathcal{N} = (2, 2)$ theory \mathcal{T}_L^{2d} .

•
$$D_{\mathrm{R}} \subset M^4$$
, $\mathcal{N} = (2,2)$ theory

$$\mathcal{T}_{
m L}^{
m 2d}$$
 . $\mathcal{T}_{
m R}^{
m 2d}$.

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000		

• bulk
$$M^4$$
, $\mathcal{N} = 2$ theory \mathcal{T}_{L}^{4d} .
• $D_L \subset M^4$, $\mathcal{N} = (2, 2)$ theory \mathcal{T}_{L}^{2d} .
• $D_R \subset M^4$, $\mathcal{N} = (2, 2)$ theory \mathcal{T}_{R}^{2d} .
• $P \equiv D_L \cap D_R \subset M^4$, $\operatorname{Od} \mathcal{N} = 2$ theory \mathcal{T}^{0d} (Od $\mathcal{N} = 2$ Fermi or chiral).

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000		

• bulk
$$M^4$$
, $\mathcal{N} = 2$ theory \mathcal{T}^{4d}_L .
• $D_L \subset M^4$, $\mathcal{N} = (2, 2)$ theory \mathcal{T}^{2d}_L .
• $D_R \subset M^4$, $\mathcal{N} = (2, 2)$ theory \mathcal{T}^{2d}_R .
• $P \equiv D_L \cap D_R \subset M^4$, $\operatorname{Od} \mathcal{N} = 2$ theory \mathcal{T}^{0d} (Od $\mathcal{N} = 2$ Fermi or chiral).
• \mathcal{T}^{4d} , $\mathcal{T}^{2d}_{L,R}$ and \mathcal{T}^{0d} couple supersymmetrically.

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

QFT Construction

• Physical quantity: the partition function of the 4d-2d-0d coupled system

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

Coupling across dimensions

• Two basic operations: gauging and superpotential.

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

Coupling across dimensions

- Two basic operations: gauging and superpotential.
- Decompose: $f^{4d \mathcal{N}=2}(x_1, \dots, x_4) \to f^{\mathcal{N}=(2,2)}_{x_3,x_4}(x_1, x_2) \to f^{\mathsf{Od} \mathcal{N}=2}_{x_1,x_2,x_3,x_4}$
- Examples $(\mathbb{R}^4 \supset \mathbb{R}^2_{x_3,x_4} \supset \{0\})$:

$$\begin{split} \mathcal{A}^{\mathrm{4d}\ \mathcal{N}=2} &\to \mathcal{A}_{x_3,x_4}^{\mathcal{N}=(2,2)} \oplus \Phi_{x_3,x_4}^{\mathcal{N}=(2,2)}, \qquad \mathcal{Q}^{\mathcal{N}=2} \to \Phi_{x_3,x_4}^{\mathcal{N}=(2,2)} \oplus \tilde{\Phi}_{x_3,x_4}^{\mathcal{N}=(2,2)} \\ \mathcal{A}^{\mathcal{N}=(2,2)} &\to \mathcal{A}_{x_1,x_2}^{\mathrm{od}\ \mathcal{N}=2} \oplus \Phi_{x_1,x_2}^{\mathrm{od}\ \mathcal{N}=2}, \qquad \Phi^{\mathcal{N}=(2,2)} \to \Phi_{x_1,x_2}^{\mathrm{od}\ \mathcal{N}=2} \oplus \mathcal{F}_{x_1,x_2}^{\mathrm{od}\ \mathcal{N}=2} \end{split}$$

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

Coupling across dimensions

- Two basic operations: gauging and superpotential.
- Decompose: $f^{4d \mathcal{N}=2}(x_1, \dots, x_4) \to f^{\mathcal{N}=(2,2)}_{x_3,x_4}(x_1, x_2) \to f^{\mathsf{Od} \mathcal{N}=2}_{x_1,x_2,x_3,x_4}$
- Examples $(\mathbb{R}^4 \supset \mathbb{R}^2_{x_3,x_4} \supset \{0\})$:

$$\begin{split} \mathcal{A}^{\mathrm{4d}\ \mathcal{N}=2} &\to \mathcal{A}_{x_3,x_4}^{\mathcal{N}=(2,2)} \oplus \Phi_{x_3,x_4}^{\mathcal{N}=(2,2)}, \qquad \mathcal{Q}^{\mathcal{N}=2} \to \Phi_{x_3,x_4}^{\mathcal{N}=(2,2)} \oplus \tilde{\Phi}_{x_3,x_4}^{\mathcal{N}=(2,2)} \\ \mathcal{A}^{\mathcal{N}=(2,2)} &\to \mathcal{A}_{x_1,x_2}^{\mathrm{od}\ \mathcal{N}=2} \oplus \Phi_{x_1,x_2}^{\mathrm{od}\ \mathcal{N}=2}, \qquad \Phi^{\mathcal{N}=(2,2)} \to \Phi_{x_1,x_2}^{\mathrm{od}\ \mathcal{N}=2} \oplus \mathcal{F}_{x_1,x_2}^{\mathrm{od}\ \mathcal{N}=2} \end{split}$$

- Higher-dim vector multiplet gauge lower-dim global symmetries
- Bulk and defect fields superpotential \Rightarrow relations between \mathcal{R} -charges and masses.

Yiwen Pan (Yiwen Pan)

Introduction	Intersecting surface defects	Summary	Open problems
	00000000		

Example: the quivers

•
$$M^4 = S_b^4$$
, $D_L = S_L^2$, $D_R = S_R^2$, $\{N, S\} = S_L^2 \cap S_R^2$

Introduction	Intersecting surface defects	Summary	Open problems
0000000	00000000	0000	0

Example: the quivers

•
$$M^4 = S_b^4, D_L = S_L^2, D_R = S_R^2, \{N, S\} = S_L^2 \cap S_R^2$$

N
 $S_b^4, J_1 = S_L^2, D_R = S_R^2, \{N, S\} = S_L^2 \cap S_R^2$
 $S_b^4; \ell^{-2}(x_1^2 + x_2^2) + \tilde{\ell}^{-2}(x_3^2 + x_4^2) + r^{-2}x_5^2 = 1$
 $S_L^2; \ell^{-2}(x_1^2 + x_2^2) + r^{-2}x_5^2 = 1$
 $S_R^2; \ell^{-2}(x_1^2 + x_2^2) + r^{-2}x_5^2 = 1$
 $b^2 = \ell/\tilde{\ell}$

Introduction	Intersecting surface defects	Summary	Open problems
	00000000		

Example: the quivers

•
$$M^4 = S_b^4$$
, $D_L = S_L^2$, $D_R = S_R^2$, $\{N, S\} = S_L^2 \cap S_R^2$

• 4d-2d-0d coupled system: Fermi-type and Chiral-type quivers

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

Example: partition function

• The full partition function reads

$$\begin{split} Z^{S_{\mathrm{L}}^{2} \cap S_{\mathrm{R}}^{2} \subset S_{b}^{4}} &= Z_{\mathrm{freehyper}}^{S_{b}^{4}} \sum_{B^{\mathrm{L,R}}} \int d\sigma^{\mathrm{L,R}} \prod_{\alpha = \mathrm{L,R}} Z_{\mathrm{SQCD}(\mathrm{A})}^{S_{\alpha}^{2}}(\sigma^{\alpha}, B^{\alpha}) \\ &\times Z_{\mathrm{F/C}}^{\mathrm{N}}(\sigma, B) Z_{\mathrm{F/C}}^{\mathrm{S}}(\sigma, B) \end{split}$$

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

Example: partition function

• The full partition function reads

$$\begin{split} Z^{S_{\mathrm{L}}^{2} \cap S_{\mathrm{R}}^{2} \subset S_{b}^{4}} &= Z_{\mathrm{freehyper}}^{S_{b}^{4}} \sum_{B^{\mathrm{L,R}}} \int d\sigma^{\mathrm{L,R}} \prod_{\alpha = \mathrm{L,R}} Z_{\mathrm{SQCD}(\mathrm{A})}^{S_{\alpha}^{2}}(\sigma^{\alpha}, B^{\alpha}) \\ &\times Z_{\mathrm{F/C}}^{\mathrm{N}}(\sigma, B) Z_{\mathrm{F/C}}^{\mathrm{S}}(\sigma, B) \end{split}$$

• the 0d Fermi/chiral contribution at N- and S-poles

$$Z_{\rm F/C}^{\rm N/S}(\sigma,B) = \begin{cases} \prod_{a=1}^{n^{\rm R}} \prod_{b=1}^{n^{\rm L}} \Delta_{ab}^{\rm N/S} \\ \prod_{a=1}^{n^{\rm R}} \prod_{b=1}^{n^{\rm L}} \prod_{\pm} (\Delta_{ab}^{\rm N/S} \pm (b^2 + b^{-2})/2)^{-1} \end{cases}$$

where $\Delta_{ab}^{\rm N/S} \equiv b^{-1}(i\sigma_a^{\rm L} \pm B_a^{\rm L}/2) - b(i\sigma_b^{\rm R} \pm B_b^{\rm R}/2).$

Yiwen Pan (Yiwen Pan)

Introduction	Intersecting surface defects	Summary	Open problems
0000000	0000000000		0

• Liouville CFT on $\Sigma_{g=0} = S^2$; parameter b

• $\mathfrak{su}(2)$ fund. $\Box(=\mathrm{symm}^1\,\Box=\wedge^1\Box)$, highest weight $\Omega_{\Box}=1/2$.

Introduction	Intersecting surface defects	Summary	Open problems
0000000	0000000000	0000	0

• Liouville CFT on $\Sigma_{g=0} = S^2$; parameter b

• $\mathfrak{su}(2)$ fund. $\Box (= \operatorname{symm}^1 \Box = \wedge^1 \Box)$, highest weight $\Omega_{\Box} = 1/2$

• Consider 3 generic vertex op., 1 degenerate vertex, $\alpha_{
m deg} = -b/2 - b^{-1}/2$

 $\left\langle V_{\alpha_0}(0)V_{-b/2-b^{-1}/2}(x,\bar{x})V_{\alpha_1}(1)V_{\alpha_\infty}(\infty)\right\rangle$

Introduction	Intersecting surface defects	Summary	Open problems
0000000	0000000000	0000	0

• Liouville CFT on $\Sigma_{g=0} = S^2$; parameter b

• $\mathfrak{su}(2)$ fund. $\Box (= \operatorname{symm}^1 \Box = \wedge^1 \Box)$, highest weight $\Omega_{\Box} = 1/2$.

• Consider 3 generic vertex op., 1 degenerate vertex, $\alpha_{deg} = -b/2 - b^{-1}/2$

Introduction	Intersecting surface defects	Summary	Open problems
0000000	0000000000	0000	0

• Liouville CFT on $\Sigma_{g=0} = S^2$; parameter b

• $\mathfrak{su}(2)$ fund. $\Box(=\mathrm{symm}^1\,\Box=\wedge^1\Box)$, highest weight $\Omega_{\Box}=1/2$

• Consider 3 generic vertex op., 1 degenerate vertex, $\alpha_{\rm deg} = -b/2 - b^{-1}/2$

$$\langle V_{\alpha_0}(0) V_{-b/2-b^{-1}/2}(x,\bar{x}) V_{\alpha_1}(1) V_{\alpha_{\infty}}(\infty) \rangle$$

$$\stackrel{\text{5th}}{=} \frac{1}{A_{\mathrm{F}}(x,\bar{x})} Z^{S_{\mathrm{L}}^2 \cup S_{\mathrm{R}}^2 \subset S_{b}^4} \left[\underbrace{1}_{2} \underbrace{1}_{2$$

• $n_{\rm f} = 2$, $\xi_{\rm FI} = \xi'_{\rm FI} = \xi^{\rm R}_{\rm FI} = -\xi^{\rm L}_{\rm FI} \equiv \xi$.

Yiwen Pan (Yiwen Pan)

Introduction	Intersecting surface defects	Summary	Open problems
0000000	0000000000	0000	0

• Liouville CFT on $\Sigma_{g=0} = S^2$; parameter b

• $\mathfrak{su}(2)$ fund. $\Box(=\mathrm{symm}^1\,\Box=\wedge^1\Box)$, highest weight $\Omega_{\Box}=1/2$

• Consider 3 generic vertex op., 1 degenerate vertex, $lpha_{
m deg} = -b/2 - b^{-1}/2$

$$\langle V_{\alpha_0}(0)V_{-b/2-b^{-1}/2}(x,\bar{x})V_{\alpha_1}(1)V_{\alpha_{\infty}}(\infty)\rangle$$

$$\stackrel{\text{5th}}{=} \frac{1}{A_{\mathrm{F}}(x,\bar{x})} Z^{S_{\mathrm{L}}^2 \cup S_{\mathrm{R}}^2 \subset S_b^4} \left[\underbrace{1}_{2} \underbrace{1}$$

• $n_{\rm f} = 2$, $\xi_{\rm FI} = \xi'_{\rm FI} = \xi^{\rm R}_{\rm FI} = -\xi^{\rm L}_{\rm FI} \equiv \xi$.

• Left-right mass relations $b^{-1}m_i = bm'_i + \frac{i}{2}(b^2 - b^{-2})$, etc: superpotential

$$\label{eq:cft} \begin{array}{c|c} \mathsf{CFT} & \mathcal{R}, \mathcal{R}' = \Box & x & \alpha's \\ \hline \\ \hline \mathsf{Quiver} & n = n' = \ldots = 1 & e^{-2\pi\xi} & \mathsf{masses} \end{array}$$

Yiwen Pan (Yiwen Pan)

Intersecting defects & 2d CFT

2016 Nov 17 / 27

Introduction	Intersecting surface defects	Summary	Open problems
0000000	0000000000	0000	0

Seiberg-like duality

• Hint from previous slide: quivers of F-type and C-type have equal

partition function

Introduction	Intersecting surface defects	Summary	Open problems
0000000	0000000000	0000	0

Seiberg-like duality

Hint from previous slide: quivers of F-type and C-type have equal

partition function

Parameters relations

• $n = n^{R}$, $n' = n_{f} - n^{L}$ • $\xi_{FI} = \xi'_{FI} = \xi^{R}_{FI} = -\xi^{L}_{FI} \equiv \xi$ • Mass relations $m_{j} + i/2 = m^{R}_{j}$, $m'_{j} + i/2 = \tilde{m}^{L}_{j}$, etc.

Introduction	Intersecting surface defects	Summary	Open problems
0000000	0000000000	0000	0

Symmetry enhancement

- Round sphere limit $b \to 1$.
- $\alpha_{\text{deg}} = -b/2 b^{-1}/2 \rightarrow -b \sim \text{highest weight of } \mathcal{R} \equiv \text{symm}^2 \square_{\mathfrak{su}(2)}.$
- By [Gomis, Le Floch], intersecting defect $\xrightarrow{b \to 0}$ single defect on one S^2 :

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

Higgsing

Procedure of constructing surface defects [Gaiotto, Razamat, Rastelli; Gaiotto, Kim;].

•
$$\mathcal{T}_{\mathrm{UV}}^{\mathcal{N}=2} \xrightarrow{\mathsf{Higgsing}} \mathcal{T}_{\mathrm{IR}}^{\mathcal{N}=2} + \mathsf{surface defects}$$

- C-type Quiver from Higgsing, I.P.F. with surface defects from Higgsing
- ${\ \bullet \ }$ Factorization [Pan, Peelaers, to appear]: $Y \to Y^{\rm L}, Y^{\rm R}$,

$$Z_{\text{inst}}(Y) \sim Z_{\text{vortex}}(Y^{\text{L}}) Z_{\text{vortex}}(Y^{\text{R}}) Z_{\text{0dchiral}}(Y^{\text{L}}, Y^{\text{R}})$$

• Example:

Yiwen Pan (Yiwen Pan)

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

Summary/conjectures

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

The conjecture: ingredients

- Players
 - 4d-2d-0d coupled quiver gauge theories : F- and C-type
 Degenerate Liouville/Toda correlators

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	

The conjecture: ingredients

- Players
 - 4d-2d-0d coupled quiver gauge theories : F- and C-type
 Degenerate Liouville/Toda correlators
- Input: two reps $\mathcal{R}, \mathcal{R}'$ of $\mathfrak{su}(n_{\mathrm{f}})$:
 - determine 2d part of the quivers;
 - ${}_{\bullet}$ determine the deg. momentum: $\alpha_{\rm deg}=-b\Omega_{\cal R}-b^{-1}\Omega_{{\cal R}'}.$

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

The conjecture: ingredients

- Players
 - 4d-2d-0d coupled quiver gauge theories : F- and C-type
 Degenerate Liouville/Toda correlators
- Input: two reps $\mathcal{R}, \mathcal{R}'$ of $\mathfrak{su}(n_{\mathrm{f}})$:
 - determine 2d part of the quivers;
 - determine the deg. momentum: $\alpha_{deg} = -b\Omega_{\mathcal{R}} b^{-1}\Omega_{\mathcal{R}'}$.
- Other input: $\xi \leftrightarrow x, m, \tilde{m} \leftrightarrow \alpha_0, \alpha_\infty$
 - ξ: 2d FI parameter;
 - m, \tilde{m} : 2d masses;
 - x: position of the deg. vertex operator;
 - α_0, α_∞ momenta of other vertex operators.

Yiwen Pan (Yiwen Pan)

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

The conjecture: inputs \mathcal{R} , \mathcal{R}'

• \mathcal{R} , \mathcal{R}' determines 2d part of the F-type quivers:

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

The conjecture: inputs \mathcal{R} , \mathcal{R}'

• \mathcal{R} , \mathcal{R}' determines 2d part of the F-type quivers:

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

The conjecture: inputs \mathcal{R} , \mathcal{R}'

• \mathcal{R} , \mathcal{R}' determines 2d part of the F-type quivers:

• \mathcal{R} , \mathcal{R}' determines the degenerate momentum: $\alpha_{deg} = -b\Omega_{\mathcal{R}} - b^{-1}\Omega_{\mathcal{R}'}$:

$$\left\langle \hat{V}_{\alpha_0}(0)\hat{V}_{\alpha_{\mathrm{deg}}}(x,\bar{x})\hat{V}_{\alpha_1}(1)\hat{V}_{\alpha_{\infty}}(\infty)\right\rangle$$

Yiwen Pan (Yiwen Pan)

Intersecting defects & 2d CFT

2016 Nov 23 / 27

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

The conjectures

- Full $(S^4 \supset S^2_L \cup S^2_R)$ -partition function of the F-type quiver gauge theory = Liouvlle/Toda degenerate correlator with $\hat{V}_{-b\Omega_R-b^{-1}\Omega_{R'}}$
- A special set of F-type quivers are Seiberg-dual to C-type quivers:

where $n^{\mathrm{L}} + n' = n_{\mathrm{f}}$, $n = n^{\mathrm{R}}$.

Introduction	Intersecting surface defects	Summary	Open problems

Open problems

Introduction	Intersecting surface defects	Summary	Open problems
			•

Open problems

- F-type quiver from Higgsing ?
- Seiberg-like, hopping dualities when \mathcal{T}^{4d} is interacting ?
- Brane realization of the Seiberg-like duality (C-type \leftrightarrow F-type)?
- Generalize to intersecting Levi-type defects, and W_{ρ} correlators?
- What is the low energy effective theories for intersecting GLSM's? NLSM's on intersecting worldsheets?

Introduction	Intersecting surface defects	Summary	Open problems
0000000	000000000	0000	0

And ...

Thank you for your attention!