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Classical solutions — bosonic fields only
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N =2 d = 4 supergravity: field content

» Z' parametrize a special Kihler manifold, My, base of a
symplectic bundle with sections
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where XA = xA (Z’) and K is the Kahler potential, defining
the geometry.
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where XA = xA (Z”) and K is the Kahler potential, defining
the geometry.

» g% parametrize a quaternionic Kihler manifold, Myg.



N =2, d = 4 supergravity: the ungauged theory

e 1L = R+ 260, 2" 27" + 2Hyp0,q" "

+23m Ny FM R, — 2Re Npn FM « FE

where G;jx — metric of special Kihler,
H., — metric of quaternionic Kahler,

My = NasLZ, Dig M*% = Nax D L*>

= geometry determines the action.



N =2, d = 4 supergravity: possible gaugings

Gauging of the isometries of the special Kahler manifold
e VL =R+ 2G50, 2 DM 7" 4 2H,0,q M "
+23M Ny FMF® |, — 2Re Npn FMY « B,
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FA =dAMN + g fsrt A% A AT
krl = id"Py .
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N =2, d = 4 supergravity: possible gaugings

Gauging of the isometries of the quaternionic K&hler manifold
e L =R+ 26D, 2D 7" 4 2H,D "D g
+ 23N FA >, — 2Re Nan FMY « B>,

Ly

+39 (SmAN)THAE D Po262H, ka Ykt LA LY

1 .
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where ©,,¢" = 0,q" + gAAMkA“
= we need AAH transforming in the adjoint of the gauge group.

They come in multiplets with Z° = the gauge group must be a
subgroup of the isometry group of the special Kahler manifold.
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N =2, d = 4 supergravity: possible gaugings

Gauging of the isometries of the quaternionic Kahler manifold
e 1L = R+ 26D, 2D 7" 1 2H,,® 4" D" q"
+23m Ny FAFE L, — 2Re Nas FMY « ™,
410 (SmA) NS PPy 9 H e L
_%QQ (gij*fDiﬁArDj*E*Z - 3£*A£Z> P\ “Py?

where 2K, kp¥ = 0,PA" + €¥Y2AY, P A~
= if no hypermultiplets are present, P,* can still be constants
= Fayet-lliopoulos terms, satisfying €?¥*P,YPx? = fax! Pp?.
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N =2, d = 4 supergravity: ng =0

Possible gaugings if ny = 0:

» special Kahler isometries = SEYM, include non-Abelian fields,
known solutions;

» Fayet-lliopoulos terms

> U(1)-FI, admit AdS vacua, widely studied;

» SU(2)-FI, admit AdS vacua and include non-Abelian fields,
no known solutions.
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N =2, d = 4 supergravity: ng =0

Possible gaugings if ny = 0:

» special Kahler isometries = SEYM, include non-Abelian fields,
known solutions;

» Fayet-lliopoulos terms
» U(1)-FI, admit AdS vacua, widely studied;
» SU(2)-FI, admit AdS vacua and include non-Abelian fields,

no known solutions.

1 _
V=— 14" (SmA) S p, P

where P, = —4%.

There are no maximally supersymmetric vacua.



N =2, d = 4 supergravity: supersymmetric solutions

Aim — finding new supersymmetic solutions

» solve the equations provided by the general classification! of
timelike supersymmetric (at least %—BPS) solutions;

» dimensionally reduce known solutions, since d = 4,5,6
supergravities with 8 supercharges are related?.

1P. Meessen, T. Ortin, Nucl.Phys. B863 (2012) (arXiv:1204.0493)
2F’. A. Cano, T. Ortin, C. Santoli, arXiv:1607.02095
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Recipe from the classification:
M .
> Introduce X s.t. Y = RM +i7M .

. 7 _ RiT
> Scalars: Z' = 357

» Metric: ds? = €2V (dt + ©)? — e~ 2Uryppda™da™
where €2V = 2| X|?
Ymn = VIR VY5 0gy .

» Vectors: A}, = —\/LiewRA.

Choose a model — solve RM = RM (ZM),

v

Solve the coupled system for V=, , &, A%, , TM .

v



Solutions from classification: the CIP" model

Simplest model admitting an SU(2) gauging: CP
» 3 vector multiplets;

» the scalars Z* parametrize a % coset space;
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Solutions from classification: the CIP" model

Simplest model admitting an SU(2) gauging: CP
» 3 vector multiplets;

» the scalars Z* parametrize a % coset space;

vek—1-7iZ7i s 0< Y, |7 < 1;
» evaluate all the geometrical quantities for the Lagrangian:

g’L]* ) Va DZV7 NAE; (N)_”AE )

> Ra = smanT™, RN = =20"5Zg, map = (+———) .
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Gauging: SU(2) subgroup of the isometries of the Kahler manifold.
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Solutions from classification: the CIP" model

Gauging: SU(2) subgroup of the isometries of the Kahler manifold.
» Acts in the adjoint on X% and Z¢, leaves X invariant
=  k\"=08¢".2%,

Pr=0%ieN e, 2Y2%

D 2" = 0,2" — ge*y AY 27,
0 0
F° =20,A%,,
F* = 20,A%)) — ge*y AY|

WA

» Explicit construction of the potential = can be negative
we found no minima, no AdS, vacua.



Solutions from classification: the CIP" model

Assumption: 7y = R» =0
» Scalars: Z¢ = %Z .
» Metric: ds? = €2V (dt + @)% — e 2V ypdz™da™
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where 2V = 2|X|* =2 ((2°)* - T'T)
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» Vectors: A%, = 0.



Solutions from classification: the CIP" model

Assumption: 7y = R» =0
» Scalars: Z¢ = %Z :
» Metric: ds? = €2V (dt + @)% — e 2V ypdz™da™
where 2V = 2|X|* =2 ((2%)* —I"I">_1
do=0=setw=0.
» Vectors: A%, = 0.

» To determine f/fc A, AN, solve:

AV® — ge AV AV 4 %gzyw AV =0,

1 1
FO = =y | 010 + — ZOIZ) :
Y \/§Ey ( \/59
1 1
F oy = ——=€myw | DT’ + —zg (V6 + IVT7) | .
Y \@ey ( ﬁg(e ))



Solutions from classification: solution 1

Hedgehog Ansatz, radial symmetry

70 = Io(r) , I¥ = \/ixzf(r) , Vi = 5me(r)

A%y = @ mna™h(r), A%, = generalised Dirac monopole.



Solutions from classification: solution 1

Hedgehog Ansatz, radial symmetry

70 = Io(r), I* = \/i:czf(r), Vi =63,V (r)
A%y = @ mna™h(r), A%, = generalised Dirac monopole.
» No solutions with Z* = 0.
» Solution 1: AdSyxS?, depends on 2 parameters
- ds? = fpdr® — Bdp? — B33
» 0o p™t,  Zlocalpl
> AT o€l xp

where R1, Ry, j are functions of the parameters.



Solutions from classification: solution 2

Domain-wall Ansatz, x? dependence

IAZIA(II), Vzmz&th(Il), Azm:O.



Solutions from classification: solution 2

Domain-wall Ansatz, x? dependence
M =TM=Y), VO, =05V (ah), A%, =0.
» Solution 2:

> depends on 3 parameters, only some values give physical
solutions.

» IO Tt £ 0, 12,13 =0.

» Example of €2V for certain values of the parameters:




Solutions from classification: solution 3

Domain-wall Ansatz, 2! dependence

M =TMaY), VP =05V (2Y), A = “mnh"(2h).



Solutions from classification: solution 3

Domain-wall Ansatz, 2! dependence

h =T, Ve, =68V (2Y), A%, = € nnh(ah).

» Solution 3: R x H?, depends on the parameter b

2 2 2 b2 dz"dz" .
> dS —b—th —ﬁ (xl)g 3

P10 =2 TV 12 7% =0;

1
» A% 3 =const., A3 =—A% = (g2!)
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Dimensional reduction
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Dimensional reduction

6d : N =(1,0)
ny =9 . il 70,12 44 ~
: 5 AT, = (A%12 ) A4, r
5d COrs = %777“8 gu x d)
ny = 6
4d : ST[2, 6] g/'“/ AAM = (A2’172’3 ’AAM) ZZ



Dimensional reduction

6d :

5d :

4d -

N =

ny

(1,0)

=5

1
Cors = 317lrs




Dimensional reduction

6d : N = (1,0)

ny = 9

5d : COrs = %nrs

Ad: ST[2,6



Dimensional reduction

» SU(2)-FI gauging in all the theories related by dimensional
reduction;

» known solutions® of the N = (1,0),d = 6,SU(2)-FI gauged
theory with 2 isometries — can be reduced to solutions of:
» N'=2,d =5 with ny =5 and Cors = 377
» N'=2,d =4 with ny = 6,ST[2,6] model. The scalars

parametrize a Sé(()2(72]1§) X so?gc;(féfg(@ coset space;

» dictionary relating the fields;

» the coupling constants are related by g = v/12g5 = —%gll.

3M. Cariglia, O. A. P. Mac Conamhna, Class. Quant. Grav. 21 (2004) (arXiv:hep-th/0402055)



Dimensional reduction: solution 1

6d: M3 x S%, ¢ = const., A4 o4 (meron)

5d : My x S, constant scalars , A4oc 04 (meron)

4d : R x S%, constant scalars , A4oc 04 (meron)



Dimensional reduction: solution 2

6d : d3* = f(r)(dt* —dz?) — f(r) "1 (dr? + a?r?dQ3) (black string)
o #0, Adoc g (meron) | H electric and magnetic.

» Horizon at r = 0
» if r —> 0 = AdS3xS?;

» for certain parameters, AdSsxS? is a solution.
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Dimensional reduction: solution 2

6d : d3* = f(r)(dt* —dz?) — f(r) "1 (dr? + a?r?dQ3) (black string)
o #0, Adoc g (meron) | H electric and magnetic.
» Horizon at r = 0

» if r —> 0 = AdS3xS?;

» for certain parameters, AdSsxS? is a solution.
P 3

Isometries:
>z

2
» ¢in d0f =1 ((d¢> + cos 0di)? + d6? + sin? 9d¢)



Dimensional reduction: solution 2

6d : d3? = f(r)(dt?> —dz?) — f(r) "1 (dr? + a®r?dQ3) (black string)

©#0, Al g (meron) | H electric and magnetic.
| along =
5d : singular at » = 0, asymptotically — no known vacuum.
| along ¢

4d : same problems.



Dimensional reduction: solution 2

6d : d3? = f(r)(dt?> —dz?) — f(r)~1(dr® + a®r?2dQ3) (black string)

o #0, AAoc oA (meron) | H electric and magnetic.

l along ¢

5d: — regular at r = 0;
— if r — 0 = AdS3xS?;
— for certain parameters, AdS3xS? is a solution;
— not asymptotically AdS.

l along z

4d : same problematic solution as before.



Dimensional reduction: solution 2

More possibilities:

» $3is a U(1) fibration over S%;

» AdS3 is a U(1) fibration over AdSs.

AngXS3 along the fiber AdS, %S3 along the fiber AdS, %S2



Dimensional reduction: solution 2

More possibilities:

» $3is a U(1) fibration over S%;

» AdS3 is a U(1) fibration over AdSs.
AngXS3 along the fiber AdS, %S3 along the fiber AdS, %S2

» Rotate the 2 U(1) fibers and reduce along one of them.
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>

Explore the space of supersymmetric solutions to understand
the structure of N' = 2,d = 4 supergravity;

its possible gaugings, when coupled to vector multiplets;
SU(2)-FI gauging, no known solutions;
no maximally supersymmetric vacua;

the potential can be negative, but we found no AdS, vacua;

from classification, @3
» AdS,xS2?:
» R x H3:

from dimensional reduction, ST[2, 6]
» R x 83
» AdSy xS2.



