HIGGS-CURVATURE COUPLING AND POST-INFLATIONARY VACUUM STABILITY

> Francisco Torrentí, IFT UAM/CSIC with Daniel G. Figueroa and Arttu Rajantie (arXiv:1612.xxxx)

V Postgraduate Meeting on Theoretical Physics, Oviedo, 18th November 2016

1. THE HIGGS-CURVATURE COUPLING

- The Standard Model Lagrangian in *Minkowski spacetime* (6 quarks +6 leptons+gauge bosons+Higgs) possesses **19 free parameters**.
- Since the discovery of the Higgs in the LHC (2012), we have determined all of them with great precision.

m _e	Electron mass	511 keV	θ ₂₃	CKM 23-mixing angle	2.4°
mμ	Muon mass	105.7 MeV	θ ₁₃	CKM 13-mixing angle	0.2°
<i>m</i> _τ	Tau mass	1.78 GeV	δ	CKM CP-violating Phase	0.995
m ₁₁	Up quark mass	1.9 MeV	<i>g</i> ₁ or <i>g</i> ′	U(1) gauge coupling	0.357
m _d	Down quark mass	4.4 MeV	a or a	SU(2) gauge coupling	0.652
ms	Strange quark mass	87 MeV	92 01 9	SO(2) gauge coupling	0.032
m	Charm guark mass	1.32 GeV	$g_3 \text{ or } g_8$	SU(3) gauge coupling	1.221
m _b	Bottom quark mass	4.24 GeV	<i>H</i> _{QCD}	QCD vacuum angle	~0
mt	Top quark mass	172.7 GeV	V	Higgs vacuum expectation valu	246 GeV
0 12	CKM 12-mixing angle	13.1°	m _H	Higgs mass	~ 125 Ge

1. THE HIGGS-CURVATURE COUPLING

 In curved spacetime, there is one more possible term, required for the renormalisability of the theory:

$$\mathcal{L} = \frac{1}{2} M_{\rm pl}^2 R + \xi R \varphi^{\dagger} \varphi + \mathcal{L}_{\rm SM}$$

- The Higgs-curvature coupling ξ runs with energy, and cannot be set to 0.
- As the Ricci scalar R is very small today, constraints from particlephysics experiments are very weak:

LHC:
$$|\xi| \lesssim 2.6 imes 10^{15}$$
 (Atkins & Calmet 2012)

But in the early universe, R11, and its effects can be important.

(RGI) SM Higgs potential:

$$V(\varphi) = \frac{\lambda(\varphi)}{4}\varphi^4$$
$$v \sim \mathcal{O}(10^2) \text{GeV} \ll \varphi$$

- Potential has a maximum (barrier) at ϕ_{+} .
- For $\phi > \phi_+$, we have $\lambda(\phi) < 0$.
- Higgs develops a second vacuum at φ_>>φ₀,φ₊.

Running of $\lambda(\phi)$ is very sensitive to **top-quark mass**. world average: m_t = (173.34±0.76) GeV

(Note: For $m_t < 171.5 \text{GeV}; \phi_+, \phi_0 \longrightarrow +\infty$)

G. Degrassi et al. (2012); Bezrukov et al. (2012)

If the Higgs had decay to the high-energy vacuum in the past, the Universe would have immediately collapsed. This imposes strong constraints to ξ.

Constraints from PREHEATING

If the Higgs had decay to the high-energy vacuum in the past, the Universe would have immediately collapsed. This imposes strong constraints to ξ.

Constraints from PREHEATING

If ξ~0, Higgs is effectively massless during inflation and fluctuates:

Yokoyama, Starobinsky (1994)

$$P_{\rm eq}(\varphi) = \mathcal{N} \exp\left(-\frac{2\pi^2}{3}\frac{\lambda\varphi^4}{H_*^4}\right)$$

$$H_* \leq H_*^{(\max)} \simeq 8.4 \times 10^{13} \text{GeV}$$

$$\varphi \sim H_* \gg \varphi_+, \varphi_0$$

the Higgs becomes unstable!

• Introducing a small coupling **ξ**>0 saves the day: $m_{h,{
m eff}}^2=\xi R$

Herrannen, Markannen, Markannen, Lower bound: $\xi \gtrsim 0.06$

If the Higgs had decay to the high-energy vacuum in the past, the Universe would have immediately collapsed. This imposes strong constraints to ξ.

Constraints from PREHEATING

SM Higgs is excited due to tachyonic resonance

Upper bound

(let's see how it works!)

• We consider a chaotic inflation model with quadratic potential:

$$V(\phi) = \frac{1}{2}m_{\phi}^2\phi^2 \qquad m_{\phi} \approx 6 \times 10^{-6}m_p$$

- If $\phi \gtrsim \mathcal{O}(10)m_p$, inflaton decays in a slow-roll regime, causing the exponential expansion of the Universe.
- When $\phi_* \approx 2m_p$, inflation ends, and the inflaton starts oscillating around the minimum of its potential (preheating).

 To obtain the post-inflationary dynamics of the system, we solve the field and Friedmann equations:

$$\ddot{\phi} + 3H(t)\dot{\phi} + m_{\phi}^2\phi = 0$$
 $H^2(t) \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{(\phi^2 + m_{\phi}^2\phi^2)}{6m_p^2}$

• The inflaton solution is:

$$\phi(t) \simeq \Phi(t) \sin(m_{\phi}t) \qquad \Phi(t) = \sqrt{\frac{8}{3}} \frac{m_p}{m_{\phi}t}$$
decaying amplitude

And the Ricci scalar and scale factor: $\epsilon(t)$: small oscillating function

$$R(t) \equiv 6\left[\left(\frac{\dot{a}}{a}\right)^2 + \frac{\ddot{a}}{a}\right] = \frac{1}{m_p^2}(2m_\phi^2\phi^2 - \dot{\phi}^2) \longrightarrow \left[$$

$$a(t) = t^{2/3(1+\epsilon(t))}$$

$$\phi(t) \approx 0 \longrightarrow R(t) < 0 \longrightarrow m_{h,\text{eff}}^2(t) \equiv \xi R(t) < 0 \longrightarrow h_k \sim e^{|\omega_k|t}$$

 $\phi(t) \approx 0 \longrightarrow R(t) < 0 \longrightarrow m_{h,\text{eff}}^2(t) \equiv \xi R(t) < 0 \longrightarrow h_k \sim e^{|\omega_k|t}$

The presence of the negative effective mass induces a strong excitation of the Higgs field modes: tachyonic resonance.

TWO REGIMES IN THE HIGGS TIME-EVOLUTION ($\lambda = 0$):

4. HIGGS INSTABILITY

We now introduce the Higgs potential $V(\phi) = \lambda(\phi)\phi^4$:

- Analytically and/or numerically, it is difficult to determine the values of ξ for which the Higgs becomes unstable. (Herrannen et al., 2015) (Kohri & Matsui, 2016)
- Tachyonic resonance is a <u>non-perturbative process</u>, which must be studied with <u>lattice simulations</u> (*i.e. solving the differential* equations of motion in a discrete finite box). (Ema, Mukaida & Nakayama, 2016) (Figueroa, Rajantie & F.T., t.b.p.)

4. LATTICE SIMULATIONS

- 1. $N^3 = 256^3$ points, $L \approx (0.03 \text{ m}_{\phi})^{-1} \longrightarrow Momenta captured:$ 0.18 m_{ϕ}
- 2. The running of $\lambda(\phi)$ is introduced in the lattice as a local function of the lattice point (not a constant).
- We consider different runnings of λ(φ), corresponding to different values of the top-quark mass.
 (Note: We modify the running at high energies for numerical stability)

We determine ξ_c $\xi > \xi_c$: The Higgs goes to negative-energy vacuum at time ti. $\xi < \xi_c$: The Higgs goes to EW vacuum.

(Figueroa, Rajantie & F.T., arXiv:1612.xxxx)

4. LATTICE SIMULATIONS: RESULTS

For $\xi \ge \xi_c \approx 12.1$, the Higgs field becomes unstable at a time $t_i(\xi)$

4. LATTICE SIMULATIONS: RESULTS

4. LATTICE SIMULATIONS: RESULTS

- The SM Higgs is coupled to other SM particles: gauge bosons and fermions. They may affect the post-inflationary Higgs dynamics.
- Dominant decay products: electroweak gauge bosons:

$$S = -\int a^3(t) d^4x \left(\frac{1}{g^2} \sum_{a=1}^3 W^a_{\mu\nu} W^{\mu\nu}_a + \frac{1}{g'^2} Y_{\mu\nu} Y^{\mu\nu} + (D_\mu \Phi) (D^\mu \Phi) + \lambda (\Phi^\dagger \Phi)^2 \right) dt dt$$

• We introduce an Abelian-Higgs model in the lattice, mimicking the full non-Abelian structure of the Standard Model. Their effect is not very relevant.

$m_t(\text{GeV})$	ξ_c	ξ_c	
172.12	13 ± 0.3	12.2 ± 0.2	
172.73	8 ± 0.8	7.7 ± 0.1	
173.34	4.5 ± 0.8	4.3 ± 0.2	
173.95	< 4.0	< 4.0	

WITH

g. bosons:

WITHOUT

g. bosons:

5. CONCLUSIONS

- As the Ricci scalar was much greater in the past than now, earlyuniverse cosmology can provide tight constraints for the Higgscurvature coupling.
- With lattice simulations, one can determine **upper bounds** for ξ:

 $m^2 \phi^2$ inflation & $m_t=173.34$ GeV

$$0.06 \lesssim \xi \lesssim 4$$

Bounds are dependent on inflationary model and running of λ(φ). Lower-energy models can widen this range.