
Constructing general scalar-tensor 
theories of gravity: 
Are they viable?

Jose María EZQUIAGA

V Postgraduate Meeting on Theoretical Physics

Based on:  
Phys. Rev. D94, 024005 (2016) by JME, J. GARCÍA-BELLIDO and M. ZUMALACÁRREGUI 
arXiv 1608.01982 by D. BETTONI, JME, K. HINTERBICHLER and M. ZUMALACÁRREGUI



JM. Ezquiaga 18th of November of 2016, Oviedo V Postgraduate Meeting

GR is in very good shape…

m
Laboratory

10-4
Solar System

1014
Cosmos

1026
Planck Scale

10-35



JM. Ezquiaga 18th of November of 2016, Oviedo V Postgraduate Meeting

GR is in very good shape…

• 100 years old and still in 
great agreement at 
very different scales


!
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… but it is not enough.

• Singularities and Quantization

!
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• Simplest modification of GR: add only 1 degree of freedom

1 Why scalar-tensor theories? 
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• Simplest modification of GR: add only 1 degree of freedom

1 Why scalar-tensor theories? 

+ ɸ
scalar

…in fact theories with only massless spin-2 particles are fixed to follow 
linearized GR in the IR [Lectures by Arkani-Hamed at IAS]

i

p2 + i✏
Tµ⌫Nµ⌫,↵�T

↵�

Nµ⌫,↵� ⇠ ⌘µ↵⌘⌫� + ⌘µ�⌘⌫↵ � 2

D � 2
⌘µ⌫⌘↵�

↵�

µ⌫

1

[deWitt 1967]

*Also Unimodular Gravity (TDiff) [Van der Bij et al. 1982]

(Diff)
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• At the end, any fancy modification of GR is just adding extra DoF 
(typically scalar fields)

Example: Kaluza-Klein tower of states
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• At the end, any fancy modification of GR is just adding extra DoF 
(typically scalar fields)

Example: Kaluza-Klein tower of states

• Moreover, scalar field can be seen as an EFT

Example: Pion in Particle Physics

Example: Scalaron in Gravity 
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• Today, we will focus on adding a scalar field, but…

Scalar-Vector-Tensor Theories [Bekenstein 2004]

Massive Gravity [de Rham, Gabadadze and Tolley 2011]

• Alternatively, one could break first principles (locality, Lorentz inv.)

Horava-Lifshitz Gravity [Horava 2009]

Bi-gravity [Hassan and Rosen 2011]

Multi-gravity [Hinterbichler and Rosen 2012]

Multi-scalar-tensor [Damour and Esposito-Farese 1992]

Vector-Tensor Theories [Will and Nordtvedt 1972]
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• Scalars can describe periods of accelerated expansion
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• Useful for testing our current models (GR and ΛCDM)

[Solar System Tests] [CMB data]

[LSS observations] [Gravitational Waves]
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• Generalization of Hamilton’s analysis for arbitrary # of time derivatives

2 Ostrogradski’s Theorem
[Ostrogradski 1850]

L = L(q, q̇, q̈, · · · )



JM. Ezquiaga 18th of November of 2016, Oviedo V Postgraduate Meeting

• Generalization of Hamilton’s analysis for arbitrary # of time derivatives

2 Ostrogradski’s Theorem
[Ostrogradski 1850]

• Non-degenerate theories with two time derivatives or higher are 
unstable. There are terms linear to the momentum in the Hamiltonian 

L = L(q, q̇, q̈, · · · )



JM. Ezquiaga 18th of November of 2016, Oviedo V Postgraduate Meeting

• Generalization of Hamilton’s analysis for arbitrary # of time derivatives

2 Ostrogradski’s Theorem
[Ostrogradski 1850]

• Non-degenerate theories with two time derivatives or higher are 
unstable. There are terms linear to the momentum in the Hamiltonian 

• Alternatively, if there are higher than two time derivatives in the 
EoM, the system is unstable

L = L(q, q̇, q̈, · · · )



JM. Ezquiaga 18th of November of 2016, Oviedo V Postgraduate Meeting

• Generalization of Hamilton’s analysis for arbitrary # of time derivatives

2 Ostrogradski’s Theorem
[Ostrogradski 1850]

• Non-degenerate theories with two time derivatives or higher are 
unstable. There are terms linear to the momentum in the Hamiltonian 

• Alternatively, if there are higher than two time derivatives in the 
EoM, the system is unstable

I knew I was right…

2nd order EoM


rules!

L = L(q, q̇, q̈, · · · )



JM. Ezquiaga 18th of November of 2016, Oviedo V Postgraduate Meeting

• Generalization of Hamilton’s analysis for arbitrary # of time derivatives

2 Ostrogradski’s Theorem
[Ostrogradski 1850]

• Non-degenerate theories with two time derivatives or higher are 
unstable. There are terms linear to the momentum in the Hamiltonian 

• Alternatively, if there are higher than two time derivatives in the 
EoM, the system is unstable

I knew I was right…

2nd order EoM


rules!

So… 

what about us?

L = L(q, q̇, q̈, · · · )
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1st derivatives:
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How can we have degenerate theories?

III. Total Derivatives and Antisymmetry:

1st derivatives:

2nd derivatives:

3rd derivatives:

rµ�rµ� ! OK

f(�)gµ⌫rµr⌫�

[rµ,r⌫ ]r↵� =
1

2
R↵

�µ⌫r��

R↵
�[µ⌫;⇢] = R↵

[�µ⌫] = 0

I. Gauge Redundancy: off-shell constraints

II. Constrained systems: on-shell constraints

[Langlois and Noui’15]

f(�)gµ⌫rµr⌫��rµ(f(�)gµ⌫r⌫�) = �rµ(f(�)gµ⌫)r⌫�

E.g. Non-trivial kinetic mixing between scalar and tensor

E.g. GR or Gauge theories
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• Horndeski’s work:

2 Horndeski’s theory
[Horndeski 1974]

1st: find most general scalar-tensor 2nd order EoM in 4D
2nd: find a Lagrangian that reproduces them

SECOND-ORDER SCALAR-TENSOR FIELD EQUATIONS 381 
Upon comparing equation (4.18) with (3.20) we readily deduce that in a 

space of four-dimensions the symmetric tensor density presented in (3.20) is 
the Euler-Lagrange tensor corresponding to 

. It~'~['7 8cde~ Ih R /to 4 " ede h l/ lk 

cde Ih ik _ 4 ~.. 6cde h / k 

+ "~/(g)(~-+ 2~g/~)8~Rca fh + 2 x/(g)(2,Y,('3 - 2,3("1 + 4pX3)6~OIcI@IJ h 
- 3  %/(g)(2o ~'' + 4"///`' + pO~a)~lc Ic + 2x/(g)af86~le~l'f~lalh 

+ N/(g){4Jf9 - p(2,~'" + 4'~"" + p_o~ + 20/{'9)} 

where 

~= f ~ Ks(O;p)dp; 
~IU= - W 

(4.21) 

and 

(4.22a) 

5 =  f {,~Y"'l(q~; p) -- ff{'3(~;D)-2pX3((~;p)}d p (4.22b) 

To recapitulate the above work we have 

Theorem 4.1. In a space o f  four-dimensions any symmetric contravariant 
tensor density o frank 2 which is a concomitant of  a pseudo-Riemannian metric 
tensor (with components gij), and its first two derivatives, together with a 
scalar fieM ~, and its first two derivatives, and furthermore is such that its 
components, A ab, satisfy 

Aablb = (plaA(gij; gij, h;gij,  hk; d~; O,h; (P, hk) 

is the Euler-Lagrange tensor corresponding to a suitably chosen Lagrange 
scalar density of  the form presented in equation (4.21). 

Remark. The Lagrangian which yields the tensor density mentioned in 
Theorem 4.1 is unique only up to the addition of scalar densities of the form 
(1.5) which yield identically vanishing Euler-Lagrange tensors upon varying 
the gii's. 

As an immediate consequence of Theorem 4.1 we obtain 

Theorem 4.2. In spaces of four-dimensions the most general Euler-Lagrange 
equations which are at most of  second-order in the derivatives of  both gq and 
~, and which are derivable from a Lagrange scalar density of  the form (t.5) 

(local+Diff. inv. theories)
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tensor density o frank 2 which is a concomitant of  a pseudo-Riemannian metric 
tensor (with components gij), and its first two derivatives, together with a 
scalar fieM ~, and its first two derivatives, and furthermore is such that its 
components, A ab, satisfy 

Aablb = (plaA(gij; gij, h;gij,  hk; d~; O,h; (P, hk) 

is the Euler-Lagrange tensor corresponding to a suitably chosen Lagrange 
scalar density of  the form presented in equation (4.21). 

Remark. The Lagrangian which yields the tensor density mentioned in 
Theorem 4.1 is unique only up to the addition of scalar densities of the form 
(1.5) which yield identically vanishing Euler-Lagrange tensors upon varying 
the gii's. 

As an immediate consequence of Theorem 4.1 we obtain 

Theorem 4.2. In spaces of four-dimensions the most general Euler-Lagrange 
equations which are at most of  second-order in the derivatives of  both gq and 
~, and which are derivable from a Lagrange scalar density of  the form (t.5) 

(local+Diff. inv. theories)

There are 4 free functions of     and    
!
There are non-minimal couplings (with derivatives)

X ⌘ �1

2
rµ�rµ��
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• Full Horndeski’s theory (modern notation): LH =
5X

i=2

LH
i

LH
2 = G2(�, X)

LH
3 = G3(�, X)[�]

LH
4 = G4(�, X)R+G4,X([�]2 � [�2])

LH
5 = G5(�, X)Gµ⌫rµr⌫�� 1

6
G5,X([�]3 � 3[�][�2] + 2[�3])

(�n
µ⌫ ⌘ �µ↵1�

;↵1
;↵2

· · ·�;↵n�1
;⌫ , [�n] ⌘ �n

µ⌫g
µ⌫)
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• Full Horndeski’s theory (modern notation): LH =
5X

i=2

LH
i

• Simplest subcases:

G2 =
�⇤

8⇡G
, G4 =

1

16⇡G
, G3 = G5 = 0

G2 =
1

w(�)
X � V (�), G4 =

�

16⇡G
, G3 = G5 = 0

Einstein-Hilbert+Λ:

Jordan-Brans-Dicke:

LH
2 = G2(�, X)

LH
3 = G3(�, X)[�]

LH
4 = G4(�, X)R+G4,X([�]2 � [�2])

LH
5 = G5(�, X)Gµ⌫rµr⌫�� 1

6
G5,X([�]3 � 3[�][�2] + 2[�3])

(�n
µ⌫ ⌘ �µ↵1�

;↵1
;↵2

· · ·�;↵n�1
;⌫ , [�n] ⌘ �n

µ⌫g
µ⌫)

• Incorporates most inflationary and dark energy models!
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• There are codes to test the cosmology of your favorite model

[Bellini, Lesgourgues, Sawicki and Zumalacárregui]
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Brief summary: 

!
!
!
!
!
!

i) Antisymmetry is a key ingredient to 
avoid Ostrogradski’s instabilities

ii) Healthy second order scalar-tensor 
theories (Horndeski) are constructed 

using this property
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[Reminder] The mathematical objects that describes 
antisymmetric quantities are the 
differential forms

Brief summary: 

!
!
!
!
!
!

i) Antisymmetry is a key ingredient to 
avoid Ostrogradski’s instabilities

ii) Healthy second order scalar-tensor 
theories (Horndeski) are constructed 

using this property
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• General Covariance (Diff Inv.) can be reinterpreted 
as the invariance under Local Lorentz 
Transformations (LLT) in the Tangent Space

• Needed to couple fermions to gravity!

3 Differential Forms and Gravity 

• In a pseudo-Riemannian manifold (usual spacetime without torsion 
and metric compatible): Geometry (and Physics) is encoded in the 
vielbein      and the 1-form connection ✓a !a

b ) Ra
b
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• Example: Lovelock’s Theory 

• General Covariance (Diff Inv.) can be reinterpreted 
as the invariance under Local Lorentz 
Transformations (LLT) in the Tangent Space

• Needed to couple fermions to gravity!

3 Differential Forms and Gravity 

[Lovelock 1971, Zumino 1986]

L(l) =
l̂

i=0

Raibi ^ ✓?a1b1···albl

✓?a1···ak
=

1

(D � k)!
✏a1···akak+1···aD✓

ak+1 ^ · · · ^ ✓aD

andwhere 2l  D

• In a pseudo-Riemannian manifold (usual spacetime without torsion 
and metric compatible): Geometry (and Physics) is encoded in the 
vielbein      and the 1-form connection ✓a !a

b ) Ra
b
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Differential Forms Dictionary

Metric Formalism Vielbein Formalism

1

o

(1)

gµ⌫

g = gµ⌫dx
µ ⌦ dx

⌫ = ⌘ab✓
a ⌦ ✓

b

1

o

(1)

gµ⌫

✓

a = e

a
µdx

µ

g = gµ⌫dx
µ ⌦ dx

⌫ = ⌘ab✓
a ⌦ ✓

b

��
µ⌫

!

a
b

Ra
b

R

�
µ⌫⇢

rµg↵� = 0

!ab = �!ba

��
µ⌫ = ��

⌫µ

T

a = D✓

a = 0

gµ⌫ ✓

a = e

a
µdx

µ

��
µ⌫ !

a
b

R

�
µ⌫⇢ Ra

b

rµg↵� = 0 !ab = �!ba

��
µ⌫ = ��

⌫µ T

a = D✓

a = 0

• Invariant objects:        and  

• Basic operations: wedge product, exterior differential, integration… 

• Basic identities: Cartan’s structure equations and Bianchi’s identities

⌘ab ✏a1a2···aD
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• Define 1-forms with derivatives of the scalar field (at lowest order) 

3 The differential forms formalism

 a ⌘ ra�rb� ✓b �a ⌘ rarb� ✓b

[PRD94.024005 (2016)]
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• Define 1-forms with derivatives of the scalar field (at lowest order) 

3 The differential forms formalism

 a ⌘ ra�rb� ✓b �a ⌘ rarb� ✓b

…construct a basis of Lagrangians invariant under LLT in a pseudo-
Riemannian manifold

1

o

(1)

gµ⌫

✓

a = e

a
µdx

µ

g = gµ⌫dx
µ ⌦ dx

⌫ = ⌘ab✓
a ⌦ ✓

b

��µ⌫

!

a
b

Ra
b

R

�
µ⌫⇢

rµg↵� = 0

!ab = �!ba

��µ⌫ = ��⌫µ

T

a = D✓

a = 0

gµ⌫ ✓

a = e

a
µdx

µ

��µ⌫ !

a
b

R

�
µ⌫⇢ Ra

b

rµg↵� = 0 !ab = �!ba

��µ⌫ = ��⌫µ T

a = D✓

a = 0

L(lmn) =
l̂

i=1

Raibi ^
m̂

j=1

�cj ^
n̂

k=1

 dk ^ ✓

?
a1b1···alblc1···cmd1···dn

[PRD94.024005 (2016)]
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• Define 1-forms with derivatives of the scalar field (at lowest order) 

3 The differential forms formalism

 a ⌘ ra�rb� ✓b �a ⌘ rarb� ✓b

…construct a basis of Lagrangians invariant under LLT in a pseudo-
Riemannian manifold
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Clear structure in terms of the number of fields: 

Finite basis due to antisymmetry

Contains well-known theories, e.g. Horndeski and Beyond Horndeski

p ⌘ 2l +m+ n  D

[PRD94.024005 (2016)]
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• Examples: some 4D Lagrangians
(⌘ ⌘

p
�gd

4
x, �n

µ⌫ = �;µ↵1�
;↵1

;↵2
· · ·�;↵n�1

;⌫ , [�n] ⌘ �n
µ⌫ g

µ⌫)

L(001) =  
a ^ ✓?a = rµ�rµ�⌘ ⌘ �2X⌘

L(010) = �
a ^ ✓?a = [�]⌘

L(110) = Rab ^ �c ^ ✓?abc = (�2Rµ⌫ +Rgµ⌫)�µ⌫⌘ = �2(Gµ⌫�µ⌫)⌘

L(030) = �
a ^ �b ^ �c ^ ✓?abc = ([�]3 � 3[�][�2] + 2[�3])⌘

L(200) = Rab ^Rcd ^ ✓?abcd = (Rµ⌫⇢�R
µ⌫⇢� � 4R↵�R

↵� +R2)⌘
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• The basis is closed under exterior derivatives if contractions with the 
gradient field are included

• Examples: some 4D Lagrangians
(⌘ ⌘

p
�gd

4
x, �n

µ⌫ = �;µ↵1�
;↵1

;↵2
· · ·�;↵n�1
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a ^ �b ^ �c ^ ✓?abc = ([�]3 � 3[�][�2] + 2[�3])⌘

L(200) = Rab ^Rcd ^ ✓?abcd = (Rµ⌫⇢�R
µ⌫⇢� � 4R↵�R
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L(l̄mn) L(lm̄n)

ra�

L(01̄0) = ra��
a ^ ✓?brb�

• Notation: over bar indicates contractions with        

• Additional Lagrangians:            and

e.g.
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• We compute the EoM both for the scalar field     and the vielbein      for 
arbitrary dimensions

• We obtain all the exact forms (total derivatives) and antisymmetric algebraic 
identities relating different theories

• Results:

3 Results

The calculations greatly simplifies 
We find the possible Lagrangians with 2nd order EoM

We determine the number of independent Lagrangians

There are 10 independent elements in the basis of Lagrangians 
Only 4 independent linear combinations give rise to 2nd order EoM 
  -This set can be associated with Horndeski’s theory

✓a�

(4D)

[PRD94.024005 (2016)]
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• How scalar-tensor theories are related?
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i) Differential Forms Formalism can be used 
to construct general ST theories, simplifying 
the calculations and clarifying the structure

ii) It also allows further generalizations and 
naturally incorporates the description of field 

redefinitions
[to appear soon]
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• Gravity can be tested at very different scales

4 Testing Modified Gravity

• Modified Gravity: Screening Mechanism

• Classical tests: Eötvös experiment, deflection of light, Shapiro time delay…

[Review by C. Will 2014]

m
Laboratory

10-4
Solar System

1014
Cosmos

1026
Planck Scale

10-35

[Review by P. Brax 2013]
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• Gravity can be tested at very different regimes

• Strong Gravity Regime: Compact Objects, AGNs, Binary Systems…

[Review by D. Psaltis 2008]
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• Gravity can be tested at very different regimes

• Strong Gravity Regime: Compact Objects, AGNs, Binary Systems…

[Review by D. Psaltis 2008]

✏ ⌘ GM

2rc2

• Specific signatures in alternatives to GR, e.g. scalar radiation [Eardley 1974]
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• Cosmological tests: CMB (T, B-modes), LSS (Lensing, Clustering), 21-cm…

• Constraints on Horndeski:  Present                 and  Future 
[Bellini et al. 2016] [Alonso et al. 2016]
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[Review by K. Koyama 2015]
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• Some general Scalar-Tensor gravity predicts anomalous propagation speed

L / hµ⌫G↵�@↵@�h
µ⌫ = hµ⌫(C⇤+W↵�@↵@�)h

µ⌫
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• At small scales for arbitrary backgrounds
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• E.g. Shift symmetric, quartic Horndeski theory
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• Fundamental analysis: Test speed of gravity

5 The fate of Scalar-Tensor gravity
[arXiv 1608.01982]

• Some general Scalar-Tensor gravity predicts anomalous propagation speed

L / hµ⌫G↵�@↵@�h
µ⌫ = hµ⌫(C⇤+W↵�@↵@�)h

µ⌫

L = G(X)R+G0(X)([�]2 � [�2])

c2g =
G

G�G0�̇2

• At small scales for arbitrary backgrounds

i) Disformal effective gravitational metric 
   -Captured by a Weyl tensor in the EoM 
ii) Vacuum expectation value for the scalar 
   -Derivative coupling to the Weyl

• E.g. Shift symmetric, quartic Horndeski theory

Gµ⌫ = G(X)gµ⌫ +G0(X)@µ�@⌫�

Gµ⌫ 6= ⌦(x)gµ⌫

�(x)

W � @�,rr� · · ·
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• Two scenarios: [arXiv 1608.01982]

A)           : GW-EM (or neutrino) counterpartcg ' c

B)           : No possible counterpart at cosmological scales cg 6= c

cg
c

� 1 = 5⇥ 10�17

✓
200Mpc

D

◆✓
�t

1s

◆

�t = �tarrive � (1 + z)�temit

Kill any theory with anomalous speed!
cg = c•         : GR, BD, cubic Horndeski, Kinetic Conf.

•         : quartic and quintic Horndeski, BHcg 6= c

Difference in the time of arrival becomes cosmological! 
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• Test speed of gravity with periodic sources

• Phase Lag Test: measure difference in phase of GWs and EM radiation 

[arXiv 1608.01982]
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• Test speed of gravity with periodic sources

• Phase Lag Test: measure difference in phase of GWs and EM radiation 

[arXiv 1608.01982]
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• There are sources already identified: eLISA verification binaries

E.g. WDS J0651+2844 [Brown etal. 2012]
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• There is a great variety of Modified Gravity theories (imply extra DoF)

• We have presented a new formulation for scalar-tensor theories in the 
language of differential forms.

• This novel approach simplifies the computations and allows for a 
systematic classification of general scalar-tensor theories and the 
relations among them.

• There are interesting potential applications of this new formalism both 
at the practical and conceptual level:

6 Conclusions [PRD94.024005 (2016)]

• E.g. fermions in ST theories of gravity, explore general field 
redefinitions or systematically study ST theories with higher 
derivative EoM.
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• Modified Gravity theories can be tested at very different scales and regimes.

• GWs astronomy opens a new window to the Universe. A fundamental test is 
to measure the speed of gravity.

• General ST theories can have anomalous propagation speed. We have shown 
that it is sourced by a non-conformal effective metric with spontaneous 
breaking of LI by the scalar.

• There are two possible scenarios:

• If          : a GW-EM measurement will kill many ST theories

• If          : need periodic sources (phase lag test)

6 Conclusions [arXiv 1608.01982]

cg = c

cg 6= c



Find more details at

or by e-mail

jose.ezquiaga@uam.es

Thank you 

Phys. Rev. D94, 024005 (2016) by JME, J. GARCÍA-BELLIDO, M. ZUMALACÁRREGUI

arXiv 1608.01982 by D. BETTONI, JME, K. HINTERBICHLER and M. ZUMALACÁRREGUI
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• Hamilton’s construction:

2 Ostrogradski’s Theorem
[Ostrogradski 1850]

Non-degeneracy:

L = L(q, q̇) ) @L

@q
� d

dt

@L

@q̇
= 0 =) q̈ = F (q, q̇)

@2L

@q̇2
6= 0

Q ⌘ q P ⌘ @L

@q̇

2 initial 
value data

• Canonical variables (2D phase space)

• Phase space can be inverted (non-degeneracy)

H(Q,P ) ⌘ P q̇ � L
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• Ostrogradski’s construction:

L = L(q, q̇, q̈) ) @L

@q
� d

dt

@L

@q̇
+

d2

dt2
@L

@q̈
= 0 =)

....
q = F (q, q̇, q̈,

...
q )

@2L

@q̈2
6= 0Non-degeneracy:

[See review by Woodard 2015]

P2 ⌘ @L

@q̈
P1 ⌘ @L

@q̇
� d

dt

@L

@q̈
Q1 ⌘ q Q2 ⌘ q̇

4 initial 
value data

• Canonical variables (4D phase space)

• Phase space can be inverted (non-degeneracy)

1

o

(1)

Linear in momentum: INSTABILITY!

• There can be arbitrarily high positive and negative energy states!

H(Q1, Q2, P1, P2) ⌘
2X

i=1

Piq
(i) � L = P1Q2 + P2A(Q1, Q2, P2)� L(Q1, Q2, A)
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• Healthy theories with higher derivatives EoM (Beyond Horndeski)

Disformal transformations:

ADM and Unitary Gauge: Generalized Generalized Galileons

g̃µ⌫ = C(�, X)gµ⌫ +D(�, X)rµ�r⌫�

[Zumalacárregui and García-Bellido 2013]

[Gleyzes, Langlois, Piazza and Vernizzi 2014]

Degenerate Theories: Extended Scalar-Tensor Theories
[Langlois and Noui 2015]

• Key Point: Ostrogradski’s Th. only limits time derivatives 
(Horndeski’s theory was derived covariantly)

There can be higher order spatial derivatives
[de Rham and Matas 2016](inducing Lorentz breaking)

 [Crisostomi, Hull, Koyama, and Tasinato 2016]

Hidden Constraints

Two new Lagrangians

Not healthy with full Horndeski

[Crisostomi, Koyama, and Tasinato 2016]

Hamiltonian Analysis
Full Classification
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• More on differential geometry:

1

o

(1)

gµ⌫

✓

a = e

a
µdx

µ

g = gµ⌫dx
µ ⌦ dx

⌫ = ⌘ab✓
a ⌦ ✓

b

��µ⌫

!

a
b

Ra
b

R

�
µ⌫⇢

rµg↵� = 0

!ab = �!ba

��µ⌫ = ��⌫µ

T

a = D✓

a = 0

gµ⌫ = ⌘abe
a
µe

b
⌫ ✓

a = e

a
µdx

µ

��µ⌫ =
1

2
g

�↵(@µg↵⌫ + @⌫gµ↵ � @↵gµ⌫) !

ab =
1

2

�

ieb(d✓
a)� iea(d✓

b) + iea(ieb(d✓c))✓
c
�

R

�
µ⌫⇢ = @⌫�

�
µ⇢ � @⇢�

�
µ⌫ + ��µ⇢�

�
�⌫ � ��µ⌫���⇢ Ra

b = D!

a
b = d!

a
b + !

a
c ^ !

c
b

rµg↵� = 0 !ab = �!ba

��µ⌫ = ��⌫µ T

a = D✓

a = 0

L(lmn) =
l̂

i=1

Raibi ^
m̂

j=1

�cj ^
n̂

k=1

 dk ^ ✓

?
a1b1···alblc1···cmd1···dn

Differential Forms Dictionary (extended)

Metric Formalism Vielbein Formalism

1

o

(1)

gµ⌫

g = gµ⌫dx
µ ⌦ dx

⌫ = ⌘ab✓
a ⌦ ✓

b
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• How to compute the EoM?

(i) Take perturbations:

(ii) Use (simple) relations between building blocks: 

(iii) Identify higher order terms:

(iv) Choose appropriate coefficients:

��a = Dra��, �Rab = 0, �Gi(�, X) = Gi,����Gi,Xrz�rz��

D a = �a ^D�, D�a = Ra
zrz�, DRab = 0

rz�a

rzRab

rz�a = ra�z + ir�Raz

rzRab ^ ✓?ab = �2raRbz ^ ✓?ab

�(GiL(lmn))�(GiL(lmn)) ! higher order ⇠ rzRab

�(FiL(l0m0n0)) ! higher order ⇠ raRbz�(FiL(l0m0n0))

) Fi(Gi)
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• Example: EoM for quartic Horndeski

�(G4L(100)) =�G4 ^Rab ^ ✓?ab

=�� ^
�
G4,� ^Rab +rz (G4,Xrz�) ^Rab +G4,Xrz� ^rzRab

�
^ ✓?ab

�(F4L(020)) =�F4 ^ �a ^ �b ^ ✓?ab + 2F4 ^ ��a ^ �b ^ ✓?ab

=�� ^ (F4,� ^ �a +rz (F4,Xrz�) ^ �a + 2F4,Xrz� ^rz�a) ^ �b ^ ✓?ab

+2�� ^ (ra (F4,�D�)�ra (F4,Xrz�) ^ �z) ^ �b ^ ✓?ab

+2�� ^
�
�F4,Xrz� ^ra�z ^ �b ^ ✓?ab +D (F4) ^ra�b ^ ✓?ab

�

+2�� ^
�
ra (F4rz�) ^Rbz ^ ✓?ab + F4rz� ^raRbz ^ ✓?ab

�

�(F4L(020)) =�F4 ^ �a ^ �b ^ ✓?ab + 2F4 ^ ��a ^ �b ^ ✓?ab

�(G4L(100)) =�G4 ^Rab ^ ✓?ab

G4(�, X)L(100)

F4(�, X)L(020)

1

o

(1)
LH
4 =G4 ^Rab ^ ✓?ab +G4,X ^ �a ^ �b ^ ✓?ab

=
�
G4R+G4,X([�]2 � [�2])

�
⌘

LH
4 =G4 ^Rab ^ ✓?ab +G4,X ^ �a ^ �b ^ ✓?ab
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• Example: EoM for arbitrary ↵lmn(�, X)L(lmn)

L2nd

(↵lmn) = ↵lmnL(lmn) +
lX

j=1

↵(l�j)(m+2j)nL((l�j)(m+2j)n) +

m/2X

k=1

↵(l+k)(m�2k)nL((l+k)(m�2k)n)

↵(l�j)(m+2j)n =
2(l � (j + 1))

(m+ 2j)(m+ 2j � 1)

@(↵(l�(j�1))(m+2(j�1))n)

@X
,

↵(l+k)(m�2k)n =
(m� 2(k � 1))(m� 1� 2(k � 1))

2(l + k)

Z
↵(l+(k�1))(m�2(k�1))ndX

�(↵lmnL(lmn)) =�↵lmn ^ L(lmn) + ↵lmn ^ �L(lmn)

=�↵lmn ^ L(lmn) +m↵lmn ^ ��a ^ [L(l(m�1)n)]a + n↵lmn ^ � a ^ [L(lm(n�1))]a

=�� ^
⇣�

↵lmn,� +rz(↵lmn,Xrz�)
�
^ L(lmn) + ↵lmn,Xrz�

�
lrzRab ^ [L((l�1)mn)]ab

+mrz�a ^ [L(l(m�1)n)]a + nrz a ^ [L(lm(n�1))]a
�
+m

�
ra(↵lmn,�D� ^ [L(l(m�1)n)]a)

�↵lmn,Xrz�ra�z ^ [L(l(m�1)n)]a � �z ^ra(↵lmn,Xrz�[L(l(m�1)n)]a)
�

+m(m� 1)
�
↵lmnrz�raRbz ^ [L(l(m�2)n)]ab +Rbz ^ra(↵lmnrz�[L(l(m�2)n)]ab)

�

+mnra(↵lmnD b ^ [L(l(m�1)(n�1))]ab) + n↵lmn ^ � a ^ [L(lm(n�1))]a
⌘

�(↵lmnL(lmn)) =�↵lmn ^ L(lmn) + ↵lmn ^ �L(lmn)

=�↵lmn ^ L(lmn) +m↵lmn ^ ��a ^ [L(l(m�1)n)]a + n↵lmn ^ � a ^ [L(lm(n�1))]a


