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A spinor is said to be parallel if: ∇X� = 0
(Mathematicians call this a Killing spinor)

Rµν = 0

0 = [∇µ,∇ν ] � = − 1
4 Rµν

ab γab � Rµν γν� = 0
contraction

Rµσγσmultiplying with leads to: RµνR
µν � = 0

Whence in Riemannian geometry we see that:

In Lorentzian, or pseudo-Riemannian, geometry the same 
argument leads to the fact that the Ricci tensor has to be null.

A Riemannian manifold endowed with a metric that admits a 
parallel spinor is necessarily Ricci flat.
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Parallel spinors in Riemannian geometry

Let’s have a better look at: Rµν
abγab � = 0

[Rµν ]a
b

hol(∇) ⊆ so(n)

As you surely know the matrix are the generators of the 

local holonomy algebra in the vector representation.

Likewise, the combination Rµν
abγab is the action of the local holonomy

in the spinor representation. 

so(n) −→ hol(∇)

The above condition can therefore be stated as: 

Given the symmetry breaking pattern                                  : 

what are the possible holonomy algebras, such that the branching of 
SO(n)’s spinor representation contains singlets?



Parallel spinors in Riemannian geometry

hol (M) ⊂ ? #� Name Geom. Struc.

su(p) so(2p) 2 Kähler

sp(r) so(4r) r + 1 Hyper Kähler

g2 so(7) 1 G2 structure

spin(7) so(8) 1 Spin(7) structure

This question is a group theoretical question, and leads to the famous Berger List.

Taking into account that the manifold has to admit a Ricci flat metric one ends up 
with:



Killing spinors in Sugra

The Killing Spinor equations studied in physics are not as simple as the one before, and here are 
some simple examples:

∇µ�
i = 1

8
√
3
F ab (γµab − 4gµaγb) �

iN=1 d=5 minimal sugra:

∇µ�I = −�IJF
+
µνγ

ν�JN=2 d=4 minimal sugra:

∇a� = − i
4!

�
3/G(4)Γa − Γa /G(4)

�
�M-theory:

Coupling to matter multiplets, when possible, complicate the above rules. And even though the 
analysis seems daunting, powerful techniques have been devised over the last decades in order to 
be able to do just that.

∇a�I = − iH

2 γa εIJ�J + H Aa�I + iF
+
ab
γbεIJ�JFake d=4 De Sitter sugra:



In 1924 Weyl was trying to unify General Relativity with Electro-
magnetism, and decided that nature has no natural length scale but 
has a well-defined null-cone structure. In order to advance he 
introduced 

• Weyl transformations, which you all know, is a local rescaling of the   
  metric

• the principle of Eichinvarianz, gauge invariance, meaning that physics 
should be invariant under Weyl transformations.

• In fact, he said that nature is not only covariant under 
diffeomorphism, but rather under conforma-diffeomorphisms.

What is Weyl geometry?

g −→ Ω2(x) g



What is Weyl geometry?

As the metric is charged under Weyl transformations, Weyl introduced the 
concept of a gauge connection A, and a gauge-covariant derivative such that

D g = 2A⊗ g or in components: Dσ gµν = 2Aσ gµν

The covariance of the above rule under Weyl rescalings is

g = e2Ω g̃ , A = Ã+ dΩ

Observe: in ordinary differential geometry one deals with a manifold endowed with a 
metric. In Weyl geometry one deals with a manifold endowed with an equivalence class of 
metrics [g]. The calculations are done w.r.t. a chosen reference metric, i.e. g ∈ [g].
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As the metric is charged under Weyl transformations, Weyl introduced the 
concept of a gauge connection A, and a gauge-covariant derivative such that

D g = 2A⊗ g or in components: Dσ gµν = 2Aσ gµν

The covariance of the above rule under Weyl rescalings is

g = e2Ω g̃ , A = Ã+ dΩ

Observe: in ordinary differential geometry one deals with a manifold endowed with a 
metric. In Weyl geometry one deals with a manifold endowed with an equivalence class of 
metrics [g]. The calculations are done w.r.t. a chosen reference metric, i.e. g ∈ [g].

Weyl’s covariant derivative can written in terms of the Levi-Cività connection and the gauge 
field as

DaYb = ∇(g)
a Yb + γab

c Yc where γab
c = ga

c Ab + gb
c Aa − gab Ac

In fact, the Weyl connection is torsion-free!



What is Weyl geometry?

Being a polymath, Weyl then defined the Riemann tensor, i.e. the field strength, of his 
connection by

[Da, Db]Yc = −WabcdYd Wab ≡ −Wacbcand the Ricci tensor by:

Even though the connection is torsion-free, it is not contorsion-free, meaning that the 
Ricci tensor is not a symmetric tensor.  A straightforward calculation shows

W[ab] = −n
2 Fab where:F ≡ dA

W(ab) = R(g)ab − (n− 2)∇(aAb) − (n− 2) AaAb − gab [∇aA
a − (n− 2) AcA

c]

By construction, the Riemann tensor and the Ricci tensor for Weyl’s connection are 
invariant under Weyl transformations, i.e. conformal transformation.



What is Weyl geometry?

Being a polymath, Weyl then defined the Riemann tensor, i.e. the field strength, of his 
connection by

[Da, Db]Yc = −WabcdYd Wab ≡ −Wacbcand the Ricci tensor by:

Even though the connection is torsion-free, it is not contorsion-free, meaning that the 
Ricci tensor is not a symmetric tensor.  A straightforward calculation shows

W[ab] = −n
2 Fab where:F ≡ dA

W(ab) = R(g)ab − (n− 2)∇(aAb) − (n− 2) AaAb − gab [∇aA
a − (n− 2) AcA

c]

By construction, the Riemann tensor and the Ricci tensor for Weyl’s connection are 
invariant under Weyl transformations, i.e. conformal transformation.

The remaining question then is: how to do physics with this?



What is an Einstein-Weyl space?

Remember that the equations of motion in General relativity can be obtained by 
considering the coupling of a combination of the Ricci tensor and its contractions to a 
stress energy tensor T.  The fact that the stress-energy tensor should be covariantly 
conserved, then immediately leads to the Einstein equations of motion

Rµν − 1
2gµνR = Tµν



What is an Einstein-Weyl space?

Remember that the equations of motion in General relativity can be obtained by 
considering the coupling of a combination of the Ricci tensor and its contractions to a 
stress energy tensor T.  The fact that the stress-energy tensor should be covariantly 
conserved, then immediately leads to the Einstein equations of motion

Rµν − 1
2gµνR = Tµν

In Weyl geometry, the basic ingredient is conformal invariance and any coupling by 
means of the Weyl-Ricci tensor and its contractions to an energy-momentum tensor 
must respect conformal invariance. If we couple this to the fact that the energy-
momentum tensor of conformal matter is traceless we see that the only way to 
couple is

W(ab) − 1

n
gab W = Tab



What is an Einstein-Weyl space?

Now then we can give the definition of an Einstein-Weyl space: an EW space 
is a manifold endowed with an equivalence class of metrics such that 

W(ab) − 1

n
gab W = 0

As this equation is conformally invariant, it suffices to show this for a reference 
metric in order to be sure that it holds for all metrics in the equivalence class.

Why study EW spaces? Well, they have a richer structure. 

Consider for example the 3-dimensional case: if the Weyl structure is closed/trivial, the EW 
equations imply that we are actually dealing with an ordinary Einstein space, R ~ g, which in 
3 dimensions are maximally symmetric spaces and have no real freedom.

For non-closed EW spaces Tod in the eighties showed that the general metric can be given 
in terms of 4 real functions



Parallel spinors in Riemannian Weyl geometry

Given the Weyl connection, we can take the Killing spinor to satisfy

DX� = 0

In the Riemannian (Euclidean) case, this case was analysed by Moroianu (1996), who 
found that

✦ n <> 4:  every Weyl geometry admitting Parallel spinors is exact, i.e.  the metric is 
conformally related to a space admitting parallel spinors of the Levi-Cività 
connection, which are the spaces of exceptional holonomy in Berger’s list [ SU(N), Sp
(N), G2, Spin(7)].

✦ n=4: the 4-dimensional manifold admits a quaternionic structure, which is integrable 
w.r.t. a combined Levi-Cività and R-connection. Even though Moroianu doesn’t say it, 
this structure can be identified with a HyperKähler-Torsion structure (more later!).

‣ If the 4-dimensional space is compact, then the Weyl geometry is once again exact 
and conformally related to either a 4-torus, a K3 or the Hopf surface S1xS3 with 
the standard conformally flat metric.



Some more information on the literature

Buchholtz (1999/2000) considered the Killing Spinor Equation 
showing that depending on the weight w, the resulting Riemannian space could be a general Weyl 
space, an EW-space or in 3-dimensions a subclass of EW-spaces, dubbed Gauduchon-Tod. 

D� = wA �



Some more information on the literature

Buchholtz (1999/2000) considered the Killing Spinor Equation 
showing that depending on the weight w, the resulting Riemannian space could be a general Weyl 
space, an EW-space or in 3-dimensions a subclass of EW-spaces, dubbed Gauduchon-Tod. 
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The little literature on Lorentzian EW spaces that I’ve been able to find deals with 3-
dimensional EW spaces.

In 2001, Calderbank and Dunajski considered the case of scalar-flat EW spaces (W=0) and 
were able to show that there are only 2 distinct such spaces, to wit

Running ahead of myself, only case 1 will satisfy the spinorial rule that I’ll consider.
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Consider the following Killing Spinor Equation (KSE):

∇a� = 4−n
4 Aa� + 1

2γabA
b�

This is nothing more than the criterion 
that the spinor is a weighted Killing 
spinor in Weyl geometry. The weight of 
the spinor is chosen for convenience!
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A simple Killing spinor equation

Consider the following Killing Spinor Equation (KSE):

∇a� = 4−n
4 Aa� + 1

2γabA
b�

Its integrability condition leads to

1
2γa /F � = 1

2 W(ab)γ
b�

contraction with γa

−−−−−−−−−−−−−−−−→ n /F � = W �

which allows us to rewrite the integrability condition as:

1
2

�
W(ab) − 1

nWηab
�
γb� = 0

Observe that if we had chosen the weight differently, we would have obtained a more restrictive 
integrability condition, meaning that if we are interested in EW spaces, the above simple KSE has 
to most chance of giving generic results.

Hadn’t it been for the fact that we are 
interested in Lorentzian spaces, we 
would have deduced that we are dealing 
with EW spaces. As it stands, we will just 
analyse the KSE and impose the EW 
condition afterwards!

This is nothing more than the criterion 
that the spinor is a weighted Killing 
spinor in Weyl geometry. The weight of 
the spinor is chosen for convenience!



�i)  Assume that the spinor    solves the KSE; by definition it is a classical spinor.
ii) Construct all possible non-vanishing spinor bilinears: these are not 
completely independent as the Fierz identities give quadratic relations 
between the various bilinears.

iii) Use the KSE to derive differential constraints on the spinorial bilinears.
iv) The Fierz and diff. constraints give enough information as to write down an 
Ansatz for the metric and the gauge field, that automatically solves the KSE.

v) Of course you need to check that this really is the case!
vi) Impose the Einstein-Weyl equation in order to really find what you were 
looking for... 

Extracting information out off the KSE   

Lµ ≡ �̄γµ�

g(L,L) > 0 g(L,L) = 0

one real bilinear that always exists is:

and it either timelike, , or null, . 

This bilinear is of the utmost importance and the explicit techniques used 
depend heavily on its character: the analysis is therefore usually split into a 
timelike case and a null case, and are considered independently.



Timelike case: immediate consequences

Given the KSE we can calculate for arbitrary dimension

∇aLb =
4− n

2
AaLb − LaAb + ıLA gab

and suppose that we are in the timelike case, meaning that we can define the real and 
positive-definite function

f ≡ g(L,L) > 0

We can then calculate 
df = (4− n) A f

So that for spacetime dimensions different from 4, the Weyl structure is closed/trivial. 



Timelike case: 4 dimensions

Take the spinor to be Dirac or equivalently 2 complex Weyl spinors, then the set-up is 
equivalent to the spinorial structure used in N=2 d=4 supergravity and then we know 
what the possible bilinears are

➡ a complex scalar     , 

➡ four real vector bilinears        (a=0,1,2,3),

➡ a triplet of 2-forms           (x=1,2,3), that will play no rôle whatsoever. 

X
V a

Φx
(2)

The Fierz identities imply that the vector bilinears are locally linearly independent, 
which allows us to write the metric as

4|X|2 g = ηab V a ⊗ V b



Timelike case: 4 dimensions

A straightforward calculation of the differential constraint then leads to

dX = 0 X is just some complex constant!
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dV a = A ∧ V a

Timelike case: 4 dimensions

A straightforward calculation of the differential constraint then leads to

dX = 0 X is just some complex constant!

use d2=0 F ∧ V a = 0

F = 0

Linear independency

A = dP

Locally

dV a = 0

Weyl transf.

Weyl transf.

V a = dya

coordinatis
e

Conclusion:  A 4 dimensional solution to the KSE in the timelike case is   
                  locally conformal to Minkowski space.



Null case: 4 dimensions

We could now go on and study the null case for the N=2 d=4 spinorial structure. 
Experience, however, shows that this case is equivalent to the case of the spinorial 
structure used N=1 d=4 sugra, which is by far simpler as that spinorial structure does 
not admit a timelike case. Whence…. 

But first remember that we had the general result:

∇aLb =
4− n

2
AaLb − LaAb + ıLA gab

The totally anti-symmetric version of this equation reads

dL̂ =
6− n

2
A ∧ L̂

So that when n=6, we have that dL=0, so that we can introduce a coordinate u such that

L̂ = du

We will treat the case n=6 in more detail later on.



Null case: 4 dimensions

If n != 6, we can use  dL̂ =
6− n

2
A ∧ L̂ to deduce:   L̂ ∧ dL̂ = 0

This means that the vector L is hyper-surface orthogonal, for which we can use Frobenius’ 
theorem which ensures the existence of 2 real functions u and P such that

L̂ = eP du

But, according to the above differential equation L has a non-trivial gauge weight, whence 
we can do a gauge/Weyl transformation in order to get rid of the function P.

After this Weyl transformation we see that 

L̂ = du
which implies−−−−−−−−−−−−→ A = Υ L̂ for some real function Υ

And while we are coordinatising, we can introduce another coordinate v, by aligning it with the 
flow generated by the vector field, i.e.

Lµ∂µ = ∂v



Null case: 4 dimensions

Anyway, we were going to use the N=1 d=4 spinorial structure to discuss the null case.
In that case we are dealing with one complex Weyl spinor, out of which one can build

➡ the null vector    , which we dealt with before, and

➡ an imaginary self-dual 2-form                                    .

L

Φ(2) (�Φ(2) = iΦ(2))

Sparing you the details of the analysis, let it suffice to say that the solution to the KSE, 
w.r.t. the coordinates u, v, and a complex coordinate z, is completely determined by a 
function H depending on all coordinates, as long as 

ds
2
(4) = 2du (dv + Hdu) − 2dzdz̄

A = −∂vH du



Null case: 4 dimensions

Having found the solution to the KSE, we must then impose the EW-condition: this 
leads, as predicted by the general theory of Killing Spinor Identities, to only one 
condition, namely:

∂u∂vH − H∂2
vH = ∂∂̄H
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Null case: 4 dimensions

Having found the solution to the KSE, we must then impose the EW-condition: this 
leads, as predicted by the general theory of Killing Spinor Identities, to only one 
condition, namely:

∂u∂vH − H∂2
vH = ∂∂̄H

Some easy solutions:    I) H = − v
2

|z|2
Follows by factorisation
is never trivial

 II) H = v∂F + v∂̄F̄ + z̄∂uF + z∂uF̄

where F = F (u, z).

This solution is Weyl-scalar flat and in fact is the general of such solutions.

It gives rise to a non-trivial EW space as long as ∂2F �= 0.



Null case: 6 dimensions

In this case we can take the spinor to be Weyl, which corresponds to the spinorial 
structure used in chiral N=(1,0) d=6 sugra. The bilinear structure is

➡ the null vector    , which as we know is closed:  L=du

➡ a triplet of self-dual 3-forms:                                     .

L

Φx
(3) (�Φx = Φx)

LaL
a = 0

ıLΦ
r
(3) = 0 −→ L̂ ∧ Φr

(3) = 0

Φr fabΦs
fcd = 4δrs L[aL[c ηb]d] − εrstL[a|Φt |b]

cd + εrstL[cΦ
t ab

d]

The Fierz identities then imply that:

Yes, I am only flashing these formulas in order to fill this slide! The full result of the analysis is



The result is that in order to solve the KSE we must have

Null case: 6 dimensions

ds
2
(6) = 2du (dv + Hdu − 2v A + �) − hmn dy

m
dy

n

A = − 1
2∂vH du + A

Observe that the form of the metric is wave-like: this is due to the nullity of L.
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Null case: 6 dimensions

ds
2
(6) = 2du (dv + Hdu − 2v A + �) − hmn dy

m
dy

n

A = − 1
2∂vH du + A

Observe that the form of the metric is wave-like: this is due to the nullity of L.

The only non-explicit v-dependence 
resides in H.

A ≡ Amdym

� ≡ �mdym

This is a 4-dimensional Riemannian 
metric, called generically the base-
space metric. For supersymmetry it 
must have special properties.
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Null case: 6 dimensions

ds
2
(6) = 2du (dv + Hdu − 2v A + �) − hmn dy

m
dy

n

A = − 1
2∂vH du + A

The 4-dimensional metric h, allows for a quaternionic structure      (r=1,2,3) and 
therefore satisfies                                                . This structure is compatible with
the metric, which means that 

JrJs = −δrs + εrst Jt

h(JrX,Y ) ≡ Kr(X,Y )

Jr

is an anti-self dual 2-form.

The result is that in order to solve the KSE we must have
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The 4-dimensional metric h, allows for a quaternionic structure      (r=1,2,3) and 
therefore satisfies                                                . This structure is compatible with
the metric, which means that 

JrJs = −δrs + εrst Jt

h(JrX,Y ) ≡ Kr(X,Y )

Jr

is an anti-self dual 2-form.

The result is that in order to solve the KSE we must have

The condition of the integrability of the above structure is best written by introducing 
the totally anti-symmetric torsion                              , and thenT(3) = − �(4) A

(∇+ T)m Kr
pq = 0

The resulting structure is called Hyper-Kähler-Torsion, and if we couple it to

Moroianu’s results we see that the pair (h,A), forms a 4-dimensional Riemannian

EW space.



Null case: 6 dimensions
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The result is that in order to solve the KSE we must have

Due to the HKT property A must be a selfdual connection

�(4)F = F

where F = dA, i.e. it is an instanton.



Null case: 6 dimensions

The result is that in order to solve the KSE we must have

ds
2
(6) = 2du (dv + Hdu − 2v A + �) − hmn dy

m
dy

n

A = − 1
2∂vH du + A

The result is that in order to solve the KSE we must have

Due to the HKT property A must be a selfdual connection

�(4)F = F

where F = dA, i.e. it is an instanton.

Define the covariant derivative of � as D� ≡ d� − 2A ∧�,
then (for u-independent h)

�(4)D� = D�



Null case: 6 dimensions

Imposing then the EW condition leads to, restricting ourselves to base-space metrics 
that are u-independent, one imposing differential equation for H:

2∂u∂vH − 2H∂2
vH + (∂vH)2 =

�
∇(h)

m − Sm∂v − 4Am

�
( ∂m − Sm∂v − 2Am ) H .

where S is short-hand for S = −2v A + �

We are looking for interesting solutions.



Null case: n !=4, 6 dimensions

In general dimensions applying the bilinear approach becomes a daunting task, but by 
knowing that we have a null vector L that must satisfy

∇aLb =
4− n

2
AaLb − LaAb + ıLA gab

★ Make a wave-like Ansatz for the metric (follows from nullity
★ Use the fact that we can do a Weyl transformation such that L=du
★ choose the base-space metric to be u-independent (not really needed but simplifies 

the resulting equations)
★and analyse the KSE by hand

The result is that



Null case: n !=4, 6 dimensions

ds
2
(n) = 2du (dv + Hdu + �mdy

m) − hmpdy
m
dy

n

A = − 2

n− 2
∂vH du

only v-dependence resides in H
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The EW-condition then implies that H must satisfy

only v-dependence resides in H the (n-2)-dimensional Riemannian metric must 
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� must be a harmonic 1-form on the base-space.
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Conclusions & outlook

➡ We introduced the concept of Einstein-Weyl spaces
➡ put forward a simple Killing Spinor Equation which if it allows for a 

solution then it is almost an EW space
➡ We analysed the KSEs and found the conditions for it to be solved 

and give rise to an EW space.

➡ What to do with it? Well, it might be interesting to mathematicians 
(about 6 of them..)

➡ It may find applications in Conformal supergravities, but this needs 
looking into..


