Progress in massive IIA holography

Adolfo Guarino

(Université Libre de Bruxelles)

Holography and Supergravity 2018 Viña del Mar, Chile

January 9th

With D. Jafferis, J. Tarrío and O. Varela:
arXiv:1504.08009, arXiv:1508.04432, arXiv:1509.02526
arXiv:1605.09254, arXiv:1703.10833, arXiv:1706.01823 arXiv:1712.09549

Electric-magnetic duality in $\mathrm{N}=8$ supergravity

Massive IIA on $S^{6} /$ SYM-CS duality

Holographic RG flows: domain-walls and black holes

Electric-magnetic duality in $\mathrm{N}=8$ supergravity

$\mathrm{N}=8$ supergravity in 4D

- SUGRA : metric +8 gravitini +28 vectors +56 dilatini +70 scalars

$$
(s=2) \quad(s=3 / 2) \quad(s=1) \quad(s=1 / 2) \quad(s=0)
$$

Ungauged (abelian) supergravity: Reduction of M-theory on a torus T^{7} down to 4 D produces $N=8$ supergravity with $G=\mathrm{U}(1)^{28}$
[Cremmer, Julia '79]

Gauged (non-abelian) supergravity: Reduction of M-theory on a sphere S^{7} down to 4D produces $N=8$ supergravity with $G=S O$ (8)
[de Wit, Nicolai '82]

* $\mathrm{SO}(8)$-gauged supergravity believed to be unique for 30 years...
... but ... is this true?

Electric-magnetic deformations

- Uniqueness of maximal supergravities historically inherited from their connection with spheres, branes and SCFT's

$$
\mathrm{AdS}_{4} \times \mathrm{S}^{7} \text { (M2-brane) , } \mathrm{AdS}_{7} \times \mathrm{S}^{4} \text { (M5-brane) , } \mathrm{AdS}_{5} \times \mathrm{S}^{5} \text { (D3-brane) }
$$

- $\mathrm{N}=8$ supergravity in 4D admits a deformation parameter c yielding inequivalent theories. It is an electric/magnetic deformation

$$
D=\partial-g\left(A^{\mathrm{elec}}-c \tilde{A}_{\mathrm{mag}}\right)
$$

$$
\begin{aligned}
& g=4 \mathrm{D} \text { gauge coupling } \\
& c=\text { deformation param. }
\end{aligned}
$$

[Dall'Agata, Inverso, Trigiante '12]

- There are two generic situations :

1) Family of $\mathrm{SO}(8)_{c}$ theories : $c=[0, \sqrt{2}-1]$ is a continuous param $\quad\left[\right.$ similar for $\left.\mathrm{SO}(p, q)_{c}\right]$
2) Family of $\operatorname{ISO}(7)_{c}$ theories : $c=0$ or 1 is an (on/off) param [same for $\operatorname{ISO}(p, q)_{c}$]

The questions arise:

- Does such an electric/magnetic deformation of 4D maximal supergravity enjoy a string/M-theory origin, or is it just a 4D feature ?

Obstruction for $\mathrm{SO}(8)_{c}, c f$. [de Wit, Nicolai '13]
[Lee, Strickland-Constable, Waldram '15

- For deformed 4D supergravities with supersymmetric AdS_{4} vacua, are these $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$-dual to any identifiable 3d CFT ?
$\mathrm{SO}(8)_{c}$ theories : physical meaning in 4D

$$
D=\partial-g\left(A^{\mathrm{elec}}-c \tilde{A}_{\mathrm{mag}}\right)
$$

$\mathrm{SO}(8)_{c}$ theories : physical meaning in 11D ...

$\mathrm{SO}(8)_{c}$ theories : holographic $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ meaning \ldots

We study the electric-magnetic deformation of an $\mathrm{N}=8$ supergravity closely related to the $\mathrm{SO}(8)$ theory ...
\ldots the $\mathrm{G}=\operatorname{ISO}(7)=\operatorname{SO}(7) \ltimes \mathbb{R}^{7}$ supergravity !!
electric/magnetic deformation

Holographic
$\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ dual ?

Why ISO(7) ${ }_{c}$ works ?

A new 10D/4D/3d correspondence

massive IIA on S^{6} « $\operatorname{ISO}(7)_{c}$-gauged sugra » $\mathrm{SU}(\mathrm{N})_{k}$ CS-SYM theory

$$
\begin{aligned}
& g c=\text { elec/mag deformation in 4D } \\
& \hat{F}_{(0)}=\text { Romans mass in 10D } \\
& k=\text { Chern-Simons level in 3d }
\end{aligned}
$$

Well-established and independent dualities:
Type IIB on $\mathrm{S}^{5} / \mathrm{N}=4 \mathrm{SYM}-\mathrm{M}$-theory on $\mathrm{S}^{7} / \mathrm{ABJM}-$ mIIA on S6/SYM-CS

Massive IIA on $S^{6} /$ SYM-CS duality

4D: $\operatorname{ISO}(7)_{c}$ Lagrangian $(m=g c)$

$$
\begin{aligned}
\mathbb{M} & =1, \ldots, 56 \\
\Lambda & =1, \ldots, 28 \\
I & =1, \ldots, 7
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{bos}} & =(R-V) \operatorname{vol}_{4}-\frac{1}{48} D \mathcal{M}_{\mathbb{M N}} \wedge * D \mathcal{M}^{\mathbb{M N}}+\frac{1}{2} \mathcal{I}_{\Lambda \Sigma} \mathcal{H}_{(2)}^{\Lambda} \wedge * \mathcal{H}_{(2)}^{\Sigma}-\frac{1}{2} \mathcal{R}_{\Lambda \Sigma} \mathcal{H}_{(2)}^{\Lambda} \wedge \mathcal{H}_{(2)}^{\Sigma} \\
& +m\left[\mathcal{B}^{I} \wedge\left(\tilde{\mathcal{H}}_{(2) I}-\frac{g}{2} \delta_{I J} \mathcal{B}^{J}\right)-\frac{1}{4} \tilde{\mathcal{A}}_{I} \wedge \tilde{\mathcal{A}}_{J} \wedge\left(d \mathcal{A}^{I J}+\frac{g}{2} \delta_{K L} \mathcal{A}^{I K} \wedge \mathcal{A}^{J L}\right)\right]
\end{aligned}
$$

\downarrow Setting $m=0$, all the magnetic pieces in the Lagrangian disappear.

* Ingredients :
- Electric vectors $(21+7): \mathcal{A}^{I J}=\mathcal{A}^{[I J]}[\mathrm{SO}(7)]$ and $\mathcal{A}^{I}\left[\mathrm{R}^{7}\right]$ with $\mathcal{H}_{(2)}^{\Lambda}=\left(\mathcal{H}_{(2)}^{I J}, \mathcal{H}_{(2)}^{I}\right)$
- Auxiliary magnetic vectors (7): $\tilde{\mathcal{A}}_{I}\left[\mathrm{R}^{7}\right]$ with $\tilde{\mathcal{H}}_{(2) I}$ field strength
- $\mathrm{E}_{7} / \mathrm{SU}(8)$ scalars : $\mathcal{M}_{\mathrm{M} \mathbb{N}}$
- Auxiliary two-forms (7) : $\mathcal{B}^{I}\left[\mathrm{R}^{7}\right]$
- Topological term : $m[\ldots$]
- Scalar potential : $\quad V(\mathcal{M})=\frac{g^{2}}{672} X_{\mathbb{M}} \mathbb{R}^{\mathbb{R}} X_{\mathbb{P} \mathbb{Q}}{ }^{\mathbb{S}} \mathcal{M}^{\mathbb{M P}}\left(\mathcal{M}^{\mathbb{N Q}} \mathcal{M}_{\mathbb{R} \mathbb{S}}+7 \delta_{\mathbb{R}}^{\mathbb{Q}} \delta_{\mathbb{S}}^{\mathbb{N}}\right)$

A truncation : $G_{0}=\operatorname{SU}(3)$ invariant subsector

- Truncation : Retaining the fields and couplings which are invariant (singlets) under the action of a subgroup $G_{0} \subset \operatorname{ISO}(7)$
- SU(8) R-symmetry branching : gravitini $\quad \mathbf{8} \rightarrow \mathbf{1}+\mathbf{1}+\mathbf{3}+\overline{\mathbf{3}} \Rightarrow \mathrm{N}=2$ SUSY
- Scalars fields: $\quad \mathbf{7 0} \rightarrow \mathbf{1}(\times 6)+$ non-singlets $\quad \Rightarrow \quad 6$ real scalars $(\varphi, \chi ; \phi, a, \zeta, \tilde{\zeta})$
- Vector fields : $\quad \mathbf{5 6} \rightarrow \mathbf{1}(\times 4)+$ non-singlets $\quad \Rightarrow$ vectors $\quad\left(A^{0}, A^{1} ; \tilde{A}_{0}, \tilde{A}_{1}\right)$
- $\mathrm{N}=2$ gauged supergravity with $\mathrm{G}=\mathrm{U}(1) \times \mathbb{R}_{c}$ coupled to 1 vector \& 1 hypermultiplet

$$
\mathcal{M}_{\text {scalar }}=\frac{\mathrm{SU}(1,1)}{\mathrm{U}(1)} \times \frac{\mathrm{SU}(2,1)}{\mathrm{U}(2)}
$$

The truncated Lagrangian

- The Lagrangian contains a non-dynamical tensor field B^{0} :

$$
\begin{aligned}
\mathcal{L} & =(R-V) \operatorname{vol}_{4}+\frac{3}{2}\left[d \varphi \wedge * d \varphi+e^{2 \varphi} d \chi \wedge * d \chi\right] \\
& +2 d \phi \wedge * d \phi+\frac{1}{2} e^{2 \phi}[D \zeta \wedge * D \zeta+D \tilde{\zeta} \wedge * D \tilde{\zeta}] \\
& +\frac{1}{2} e^{4 \phi}\left[D a+\frac{1}{2}(\zeta D \tilde{\zeta}-\tilde{\zeta} D \zeta)\right] \wedge *\left[D a+\frac{1}{2}(\zeta D \tilde{\zeta}-\tilde{\zeta} D \zeta)\right] \\
& +\frac{1}{2} \mathcal{I}_{\Lambda \Sigma} H_{(2)}^{\Lambda} \wedge * H_{(2)}^{\Sigma}-\frac{1}{2} \mathcal{R}_{\Lambda \Sigma} H_{(2)}^{\Lambda} \wedge H_{(2)}^{\Sigma}+m B^{0} \wedge d \tilde{A}_{0}+\frac{1}{2} g m B^{0} \wedge B^{0}
\end{aligned}
$$

with field strengths $H_{(2)}^{1}=d A^{1}$ and $\quad H_{(2)}^{0}=d A^{0}+m B^{0}$.

- Covariant derivatives :

$$
D a=d a+g A^{0}-m \tilde{A}_{0} \quad, \quad D \zeta=d \zeta-3 g A^{1} \tilde{\zeta} \quad, \quad D \tilde{\zeta}=d \tilde{\zeta}+3 g A^{1} \zeta
$$

- Scalar potential : $V=\frac{1}{2} g^{2}\left[e^{4 \phi-3 \varphi}\left(1+e^{2 \varphi} \chi^{2}\right)^{3}-12 e^{2 \phi-\varphi}\left(1+e^{2 \varphi} \chi^{2}\right)-12 e^{2 \phi+\varphi} \rho^{2}\left(1-3 e^{2 \varphi} \chi^{2}\right)\right.$

$$
\begin{aligned}
& \left.-24 e^{\varphi}+12 e^{4 \phi+\varphi} \chi^{2} \rho^{2}\left(1+e^{2 \varphi} \chi^{2}\right)+12 e^{4 \phi+\varphi} \rho^{4}\left(1+3 e^{2 \varphi} \chi^{2}\right)\right] \\
& -\frac{1}{2} g m \chi e^{4 \phi+3 \varphi}\left(12 \rho^{2}+2 \chi^{2}\right)+\frac{1}{2} m^{2} e^{4 \phi+3 \varphi}
\end{aligned}
$$

AdS_{4} solutions

\mathcal{N}	G_{0}	$c^{-1 / 3} \chi$	$c^{-1 / 3} e^{-\varphi}$	$c^{-1 / 3} \rho$	$c^{-1 / 3} e^{-\phi}$	$\frac{1}{4} g^{-2} c^{1 / 3} V_{0}$	$M^{2} L^{2}$
$\mathcal{N}=1$	G_{2}	$-\frac{1}{2^{7 / 3}}$	$\frac{5^{1 / 2} 3^{1 / 2}}{2^{7 / 3}}$	$-\frac{1}{2^{7 / 3}}$	$\frac{5^{1 / 2} 3^{1 / 2}}{2^{7 / 3}}$	$-\frac{2^{22 / 3} 3^{1 / 2}}{5^{5 / 2}}$	$4 \pm \sqrt{6},-\frac{1}{6}(11 \pm \sqrt{6})$
$\mathcal{N}=2$	$\mathrm{U}(3)$	$-\frac{1}{2}$	$\frac{3^{1 / 2}}{2}$	0	$\frac{1}{2^{1 / 2}}$	$-3^{3 / 2}$	$3 \pm \sqrt{17}, 2,2$
$\mathcal{N}=1$	$\mathrm{SU}(3)$	$\frac{1}{2^{2}}$	$\frac{3^{1 / 2} 5^{1 / 2}}{2^{2}}$	$-\frac{3^{1 / 2}}{2^{2}}$	$\frac{5^{1 / 2}}{2^{2}}$	$-\frac{2^{6} 3^{3 / 2}}{5^{5 / 2}}$	$4 \pm \sqrt{6}, 4 \pm \sqrt{6}$
$\mathcal{N}=0$	$\mathrm{SO}(6)_{+}$	0	$2^{1 / 6}$	0	$\frac{1}{2^{5 / 6}}$	$-32^{5 / 6}$	$6,6,-\frac{3}{4}, 0$
$\mathcal{N}=0$	$\mathrm{SO}(7)_{+}$	0	$\frac{1}{5^{1 / 6}}$	0	$\frac{1}{5^{1 / 6}}$	$-\frac{35^{7 / 6}}{2^{2}}$	$6,-\frac{12}{5},-\frac{6}{5},-\frac{6}{5}$
$\mathcal{N}=0$	G_{2}	$\frac{1}{2^{4 / 3}}$	$\frac{3^{1 / 2}}{2^{4 / 3}}$	$\frac{1}{2^{4 / 3}}$	$\frac{3^{1 / 2}}{2^{4 / 3}}$	$-\frac{2^{10 / 3}}{3^{1 / 2}}$	$6,6,-1,-1$
$\mathcal{N}=0$	$\mathrm{SU}(3)$	0.455	0.838	0.335	0.601	-5.864	$6.214,5.925,1.145,-1.284$
$\mathcal{N}=0$	$\mathrm{SU}(3)$	0.270	0.733	0.491	0.662	-5.853	$6.230,5.905,1.130,-1.264$

$\downarrow \mathrm{N}=2$ solution will play a central role in holography !!

10D: $\mathrm{ISO}(7)_{c}$ into type IIA supergravity

$$
\begin{aligned}
d \hat{s}_{10}^{2}= & \Delta^{-1} d s_{4}^{2}+g_{m n} D y^{m} D y^{n}, \\
\hat{A}_{(3)}= & \mu_{I} \mu_{J}\left(\mathcal{C}^{I J}+\mathcal{A}^{I} \wedge \mathcal{B}^{J}+\frac{1}{6} \mathcal{A}^{I K} \wedge \mathcal{A}^{J L} \wedge \tilde{\mathcal{A}}_{K L}+\frac{1}{6} \mathcal{A}^{I} \wedge \mathcal{A}^{J K} \wedge \tilde{\mathcal{A}}_{K}\right) \\
& +g^{-1}\left(\mathcal{B}_{J}^{I}+\frac{1}{2} \mathcal{A}^{I K} \wedge \tilde{\mathcal{A}}_{K J}+\frac{1}{2} \mathcal{A}^{I} \wedge \tilde{\mathcal{A}}_{J}\right) \wedge \mu_{I} D \mu^{J}+\frac{1}{2} g^{-2} \tilde{\mathcal{A}}_{I J} \wedge D \mu^{I} \wedge D \mu^{J} \\
& -\frac{1}{2} \mu_{I} B_{m n} \mathcal{A}^{I} \wedge D y^{m} \wedge D y^{n}+\frac{1}{6} A_{m n p} D y^{m} \wedge D y^{n} \wedge D y^{p}, \\
\hat{B}_{(2)}= & -\mu_{I}\left(\mathcal{B}^{I}+\frac{1}{2} \mathcal{A}^{I J} \wedge \tilde{\mathcal{A}}_{J}\right)-g^{-1} \tilde{\mathcal{A}}_{I} \wedge D \mu^{I}+\frac{1}{2} B_{m n} D y^{m} \wedge D y^{n}, \\
\hat{A}_{(1)}= & -\mu_{I} \mathcal{A}^{I}+A_{m} D y^{m} .
\end{aligned}
$$

where we have defined : $\quad D y^{m} \equiv d y^{m}+\frac{1}{2} g K_{I J}^{m} \mathcal{A}^{I J} \quad, \quad D \mu^{I} \equiv d \mu^{I}-g \mathcal{A}^{I J} \mu_{J}$

The scalars are embedded as

$$
\begin{aligned}
& g^{m n}=\frac{1}{4} g^{2} \Delta \mathcal{M}^{I J K L} K_{I J}^{m} K_{K L}^{n} \quad, \quad B_{m n}=-\frac{1}{2} \Delta g_{m p} K_{I J}^{p} \partial_{n} \mu^{K} \mathcal{M}^{I J}{ }_{K 8}, \\
& A_{m}=\frac{1}{2} g \Delta g_{m n} K_{I J}^{n} \mu_{K} \mathcal{M}^{I J}{ }^{K 8} \quad, \quad A_{m n p}=\frac{1}{8} g \Delta g_{m q} K_{I J}^{q} K_{n p}^{K L} \mathcal{M}^{I J}{ }_{K L}+A_{m} B_{n p} .
\end{aligned}
$$

$\mathrm{N}=2$ solution of massive type IIA

- $\mathrm{N}=2$ \& $\mathrm{U}(3) \mathrm{AdS}_{4}$ point of the $\operatorname{ISO}(7)_{c}$ theory

$$
\begin{aligned}
& d \hat{s}_{10}^{2}=L^{2} \frac{(3+\cos 2 \alpha)^{\frac{1}{2}}}{(5+\cos 2 \alpha)^{-\frac{1}{8}}}\left[d s^{2}\left(\operatorname{AdS}_{4}\right)+\frac{3}{2} d \alpha^{2}+\frac{6 \sin ^{2} \alpha}{3+\cos 2 \alpha} d s^{2}\left(\mathbb{C P}^{2}\right)+\frac{9 \sin ^{2} \alpha}{5+\cos 2 \alpha} \boldsymbol{\eta}^{2}\right], \\
& e^{\hat{\phi}}=e^{\phi_{0}} \frac{(5+\cos 2 \alpha)^{3 / 4}}{3+\cos 2 \alpha} \quad, \quad \hat{H}_{(3)}=24 \sqrt{2} L^{2} e^{\frac{1}{2} \phi_{0}} \frac{\sin ^{3} \alpha}{(3+\cos 2 \alpha)^{2}} \boldsymbol{J} \wedge d \alpha, \\
& L^{-1} e^{\frac{3}{4} \phi_{0}} \hat{F}_{(2)}=-4 \sqrt{6} \frac{\sin ^{2} \alpha \cos \alpha}{(3+\cos 2 \alpha)(5+\cos 2 \alpha)} \boldsymbol{J}-3 \sqrt{6} \frac{(3-\cos 2 \alpha)}{(5+\cos 2 \alpha)^{2}} \sin \alpha d \alpha \wedge \boldsymbol{\eta}, \\
& L^{-3} e^{\frac{1}{4} \phi_{0}} \hat{F}_{(4)}=6 \operatorname{vol}_{4} \\
& \quad+12 \sqrt{3} \frac{7+3 \cos 2 \alpha}{(3+\cos 2 \alpha)^{2}} \sin ^{4} \alpha \operatorname{vol}_{\mathbb{C P}^{2}}+18 \sqrt{3} \frac{(9+\cos 2 \alpha) \sin ^{3} \alpha \cos \alpha}{(3+\cos 2 \alpha)(5+\cos 2 \alpha)} \boldsymbol{J} \wedge d \alpha \wedge \boldsymbol{\eta},
\end{aligned}
$$

where we have introduced the quantities $L^{2} \equiv 2^{-\frac{5}{8}} 3^{-1} g^{-2} c^{\frac{1}{12}}$ and $e^{\phi_{0}} \equiv 2^{\frac{1}{4}} c^{-\frac{5}{6}}$

The angle $0 \leq \alpha \leq \pi$ locally foliates S_{6} with S_{5} regarded as Hopf fibrations over $\mathbb{C P}^{2}$

3D : CFT_{3} dual \& matching of free energies

- $\mathrm{N}=2$ Chern-Simons-matter theory with simple gauge group $\operatorname{SU}(N)$, level k, three adjoint matter and cubic superpotential, as the CFT dual of the $\mathrm{N}=2$ massive IIA solution.
- The 3d free energy $F=-\log (Z)$, where Z is the partition function of the CFT on a Euclidean S_{3}, can be computed via localisation over supersymmetric configurations $N \gg k$

$$
F=\frac{3^{13 / 6} \pi}{40}\left(\frac{32}{27}\right)^{2 / 3} k^{1 / 3} N^{5 / 3}
$$

- The gravitational free energy can be computed from the warp factor in the $\mathrm{N}=2$ massive IIA solution. Using the charge quantisation condition $N=-\left(2 \pi \ell_{5}\right)^{-5} \int_{S^{6}} e^{\frac{1}{2} \phi} \hat{F}_{(4)}+\hat{B}_{(2)} \wedge d \hat{A}_{(3)}+\frac{1}{6} \hat{F}_{(0)} \hat{B}_{(2)}^{3}$ for the D 2 -brane, one finds

$$
F=\frac{16 \pi^{3}}{\left(2 \pi l_{s}\right)^{8}} \int_{S^{6}} e^{8 A} \operatorname{vol}_{6}=\frac{\pi}{5} 2^{1 / 3} 3^{1 / 6} k^{1 / 3} N^{5 / 3}
$$

$$
g c=\hat{F}_{(0)}=k /\left(2 \pi \ell_{s}\right)
$$

Holographic RG flows: domain-walls and black holes

Holographic description of RG flows

- RG flows are described holographically as non- AdS_{4} solutions in gravity
- RG flows on M2-brane : SO(8)-gauged sugra from M-theory on S^{7}
[Ahn, Paeng '00] [Ahn, Itoh '01]
[Bobev, Halmagyi, Pilch, Warner '09]
[Cacciatori, Klemm '09]
[Halmagyi, Petrini, Zaffaroni '13]
[Chimento, Klemm, Petri '15]
[Benini, Zaffaroni '15]
[Benini, Hristov, Zaffaroni '15 '16]
AdS_{4} in IR : domain-wall
$\operatorname{AdS}_{2} \times \Sigma_{2}$ in IR : black hole

- RG flows on D3-brane : SO(6)-gauged sugra from type IIB on S^{5} and $N=4 S Y M$ in 4D

Holographic RG flows on the D2-brane of massive IIA

- D2-brane :

$$
\begin{aligned}
d \hat{s}_{10}^{2} & =e^{\frac{3}{4} \phi}\left(-e^{2 U} d t^{2}+e^{-2 U} d r^{2}+e^{2(\psi-U)} d s_{\mathrm{H}^{2}}^{2}\right)+g^{-2} e^{-\frac{1}{4} \phi} d s_{\mathrm{S}^{6}}^{2} \\
e^{\hat{\Phi}} & =e^{\frac{5}{2} \phi} \\
\hat{F}_{(4)} & =5 g e^{\phi} e^{2(\psi-U)} \sinh \theta d t \wedge d r \wedge d \theta \wedge d \phi
\end{aligned}
$$

with $\quad e^{2 U} \sim r^{\frac{7}{4}}, \quad e^{2(\psi-U)} \sim r^{\frac{7}{4}} \quad$ and $\quad e^{\varphi}=e^{\phi} \sim r^{-\frac{1}{4}}$

- RG flows on D2-brane : ISO(7)-gauged sugra from type IIA on S6
AdS_{4} in IR : domain-wall $\operatorname{AdS}_{2} \times \Sigma_{2}$ in IR : black hole

Holographic RG flows: domain-walls

- RG flows from SYM (dotted lines) and between CFT's (solid lines) dual to BPS domain-wall solutions of the dyonic ISO(7)-gauged supergravity

Holographic RG flows: black hole solutions (I)

- Black hole Anstaz :

$$
\begin{aligned}
& d s^{2}=-e^{2 U(r)} d t^{2}+e^{-2 U(r)} d r^{2}+e^{2(\psi(r)-U(r))}\left(d \theta^{2}+\left(\frac{\sin \sqrt{\kappa} \theta}{\sqrt{\kappa}}\right)^{2} d \phi^{2}\right) \\
& \mathcal{A}^{\Lambda}=\mathcal{A}_{t}{ }^{\Lambda}(r) d t-p^{\Lambda} \frac{\cos \sqrt{\kappa} \theta}{\kappa} d \phi \quad \mathcal{B}^{0}=b_{0}(r) \frac{\sin \sqrt{\kappa} \theta}{\sqrt{\kappa}} d \theta \wedge d \phi \\
& \tilde{\mathcal{A}}_{\Lambda}=\tilde{\mathcal{A}}_{t \Lambda}(r) d t-e_{\Lambda} \frac{\cos \sqrt{\kappa} \theta}{\kappa} d \phi
\end{aligned}
$$

- Attractor equations :

$$
\mathcal{Q}=\kappa L_{\Sigma_{2}}^{2} \Omega \mathcal{M} \mathcal{Q}^{x} \mathcal{P}^{x}-4 \operatorname{Im}(\overline{\mathcal{Z}} \mathcal{V}),
$$

$$
\frac{L_{\Sigma_{2}}^{2}}{L_{\mathrm{AdS}_{2}}}=-2 \mathcal{Z} e^{-i \beta}
$$

- Unique $\mathrm{AdS}_{2} \times \mathrm{H}^{2}$:
($\mathrm{N}=2 \& \mathrm{U}(3) \mathrm{AdS}_{4} \mathrm{vev} \mathrm{s}$)
[AG, Tarrío '17]

$$
\begin{aligned}
e^{\varphi_{h}}=\frac{2}{\sqrt{3}}\left(\frac{g}{m}\right)^{\frac{1}{3}}, \quad \chi_{h}=-\frac{1}{2}\left(\frac{g}{m}\right)^{-\frac{1}{3}}, & e^{\phi_{h}}=\sqrt{2}\left(\frac{g}{m}\right)^{\frac{1}{3}}, \quad a_{h}=\zeta_{h}=\tilde{\zeta}_{h}=0, \\
p^{0}+\frac{1}{2} m b_{0}^{h}= \pm \frac{1}{6} m^{\frac{2}{3}} g^{-\frac{5}{3}}, & e_{0}+\frac{1}{2} g b_{0}^{h}= \pm \frac{1}{6} m^{-\frac{1}{3}} g^{-\frac{2}{3}} \\
p^{1}=\mp \frac{1}{3} g^{-1}, & e_{1}= \pm \frac{1}{2} m^{\frac{1}{3}} g^{-\frac{4}{3}}, \\
L_{\mathrm{AdS}_{2}}^{2}=\frac{1}{4 \sqrt{3}} m^{\frac{1}{3}} g^{-\frac{7}{3}}, & L_{\mathrm{H}^{2}}^{2}=\frac{1}{2 \sqrt{3}} m^{\frac{1}{3}} g^{-\frac{7}{3}} .
\end{aligned}
$$

Holographic RG flows: black hole solutions (II)

- Two irrelevant modes $\left(c_{1}, c_{2}\right)$ when perturbing around the $\mathrm{AdS}_{2} \times \mathrm{H}^{2}$ solution in the IR

$\Delta: \mathrm{AdS}_{2} \times \mathrm{H}^{2}$ to DW_{4}
- $: \mathrm{AdS}_{2} \times \mathrm{H}^{2}$ to AdS_{4}
- : $\mathrm{AdS}_{2} \times \mathrm{H}^{2}$ to Lifshitz $(\mathrm{z}=2)$
- : $\mathrm{AdS}_{2} \times \mathrm{H}^{2}$ to conf-Lifshitz
[AG, Tarrío '17]
- RG flows across dimension from SYM or CFT_{3} or non-relativistic to CFT_{1}
- Universal (constant scalars) RG flow $(\diamond) \mathrm{CFT}_{3}$ to CFT_{1}
- $\mathrm{AdS}_{2} \times \Sigma_{\mathrm{g}}$ horizon classification in the mIIA/M-theory STU-models: 3 vectors +1 hyper

Summary

- Dyonic $\mathrm{N}=8$ supergravity with $\mathrm{ISO}(7)_{c}$ gauging connected to massive IIA reductions on S^{6}.
- Any 4D configuration (AdS, DW, BH) is embedded into 10D via the uplifting formulas. Example : $\operatorname{AdS}_{4} \times S^{6}$ solution of massive IIA based on an $N=2 \& U(3) A d S_{4}$ vacuum.
- CFT_{3} dual for the $\mathrm{N}=2 \mathrm{AdS}_{4} \times \mathrm{S}^{6}$ solution of mIIA based on the D2-brane field theory (SYM-CS).
- Holographic study of RG flows on D2-brane: DW solutions ($\mathrm{CFT}_{3}-\mathrm{CFT}_{3}$ \& $\mathrm{SYM}_{3}-\mathrm{CFT}_{3}$) BH solutions $\left(\mathrm{CFT}_{3}-\mathrm{CFT}_{1} \& \mathrm{SYM}_{3}-\mathrm{CFT}_{1}\right)$
- Generalisation \& further tests/conjectures on the duality (semiclassical observables, level-rank duality, ...)
[Fluder, Sparks '15]
[Araujo, Nastase '16] [Araujo, Itsios, Nastase, Ó Colgáin '17]
- Recent progress in the holographic counting of BH microstates
- $\mathrm{SO}(8)_{\mathrm{c}}$ theories?
i Gracías!

