Flat deformations of type IIB S-folds

Adolfo Guarino

University of Oviedo & ICTEA

Based on 2103.12652 + work in progress with Colin Sterckx

See recent works by: Arav, Bobev, Cheung, Gauntlett, Gautason, Giambrone, Malek, Pilch, Roberts, Rosen, Samtleben, Suh, Trigiante and van Muiden.

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Outlook

S-folds in 10D

Flat deformations

Future directions

[Hull, (Çatal-Özer) '04, ('03)] [Inverso, Samtleben, Trigiante '16]

 $\eta \sim \eta + T$

5D: SO(6) gauged SUGRA

[$\mathbb{R} \to S^1 \Leftrightarrow$ (hyperbolic) $SO(1,1) \subset SL(2)_{IIB}$ twist = monodromy]

N=0 & SO(6) S-fold

Flavour : SO(6) ~ S^5

$$ds_{10}^2 = \frac{1}{\sqrt{2}} ds_{AdS_4}^2 + \frac{1}{2} d\eta^2 + d\mathring{s}_{S^5}^2$$
$$\widetilde{F}_5 = 4 (1 + \star) \operatorname{vol}_5$$
$$\mathbb{B}^{\alpha} = A^{\alpha}{}_{\beta} \,\mathfrak{b}^{\beta} = 0$$
$$m_{\alpha\beta} = (A^{-t})_{\alpha}{}^{\gamma} \,\mathfrak{m}_{\gamma\delta} \,(A^{-1})^{\delta}{}_{\beta}$$

with
$$\mathfrak{m}_{\gamma\delta} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

N=1 & SU(3) S-fold

Flavour : SU(3) ~ CP^2

$$ds_{10}^2 = \frac{3\sqrt{6}}{10} ds_{\mathrm{AdS}_4}^2 + \frac{1}{3} \sqrt{\frac{10}{3}} d\eta^2 + \left[\sqrt{\frac{5}{6}} ds_{\mathbb{CP}^2}^2 + \sqrt{\frac{6}{5}} \eta^2 \right]$$
$$\widetilde{F}_5 = 3 \left(\frac{6}{5} \right)^{\frac{3}{4}} (1 + \star) \operatorname{vol}_5$$
$$\mathbb{B}^{\alpha} = A^{\alpha}{}_{\beta} \mathfrak{b}^{\beta} = \epsilon^{\alpha\delta} (A^{-t})_{\delta}{}^{\gamma} H_{\gamma\beta} \mathbf{\Omega}^{\beta} \qquad \text{[charged under U(1)_{\eta}]}$$
$$m_{\alpha\beta} = (A^{-t})_{\alpha}{}^{\gamma} \mathfrak{m}_{\gamma\delta} (A^{-1})^{\delta}{}_{\beta}$$

with
$$\mathfrak{m}_{\gamma\delta} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

N=2 & SU(2) x U(1) S-fold

Flavour : SU(2) ~ S² R-symmetry: U(1) [AG, Sterckx, Trigiante '20]

$$ds^{2} = \frac{1}{2} \Delta^{-1} \left[ds^{2}_{AdS_{4}} + d\eta^{2} + d\theta^{2} + \sin^{2}\theta \, d\phi^{2} + \cos^{2}\theta \left(\sigma_{2}^{2} + 8 \, \Delta^{4} \left(\sigma_{1}^{2} + \sigma_{3}^{2}\right)\right) \right]$$
$$\Delta^{-4} = 6 - 2\cos(2\theta)$$
$$\widetilde{F}_{5} = 4 \, \Delta^{4} \sin\theta \, \cos^{3}\theta \, (1 + \star) \left[3 \, d\theta \wedge d\phi \wedge \sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3} - d\eta \wedge \left(\cos(2\phi) \, d\theta - \frac{1}{2}\sin(2\theta) \sin(2\phi) \, d\phi\right) \wedge \sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3} \right]$$

$$m_{\alpha\beta} = (A^{-t})_{\alpha}{}^{\gamma} \mathfrak{m}_{\gamma\delta} (A^{-1})^{\delta}{}_{\beta}$$

with
$$\mathfrak{m}_{\gamma\delta} = 2\Delta^2 \begin{pmatrix} 1+\sin^2\theta\cos^2\phi & -\frac{1}{2}\sin^2\theta\sin(2\phi) \\ -\frac{1}{2}\sin^2\theta\sin(2\phi) & 1+\sin^2\theta\sin^2\phi \end{pmatrix}$$

N=4 & SO(4) S-fold

R-symmetry : SO(4) ~ $S^2 \times S^2$

$$ds^{2} = \frac{1}{2} \Delta^{-1} \left[ds^{2}_{\mathrm{AdS}_{4}} + d\eta^{2} + \frac{dr^{2}}{1 - r^{2}} + \Delta^{4} (3 - 2r^{2}) r^{2} d\Omega_{1}^{2} + \Delta^{4} (1 + 2r^{2}) (1 - r^{2}) d\Omega_{2}^{2} \right]$$

$$\Delta^{-4} = (1 + 2r^{2})(3 - 2r^{2})$$

$$\widetilde{F}_{5} = \frac{6\Delta^{4}}{8(1 - r^{2})} \mathcal{Z}^{p} d\mathcal{Y}^{p} \wedge d\mathcal{Y}^{q} \wedge d\mathcal{Y}^{r} \wedge d\mathcal{Z}^{q} \wedge d\mathcal{Z}^{r}$$

$$+ 3\Delta^{4} \mathcal{Z}^{p} \mathcal{Y}^{[p} d\mathcal{Y}^{q} \wedge d\mathcal{Y}^{r]} \wedge d\mathcal{Z}^{q} \wedge d\mathcal{Z}^{r} \wedge d\eta$$

$$- \frac{1}{16} \sqrt{|g|} \varepsilon_{\mu\nu\rho\sigma} dx^{\mu} \wedge dx^{\nu} \wedge dx^{\rho} \wedge dx^{\sigma} \wedge \left(d\eta - \frac{4}{3} \mathcal{Y}^{p} d\mathcal{Y}^{p}\right)$$

$$\mathbb{H}^{\alpha} = A^{\alpha}{}_{\beta} \mathfrak{h}^{\beta} = \frac{(V_{-}A)^{\alpha}}{1 + 2r^{2}} \varepsilon_{pqr} d\mathcal{Y}^{p} \wedge d\mathcal{Y}^{q} \wedge \left(\frac{(3 + 2r^{2})}{3(1 + 2r^{2})} d\mathcal{Y}^{r} - \mathcal{Y}^{r} d\eta\right)$$

$$- \frac{(V_{+}A)^{\alpha}}{3 - 2r^{2}} \varepsilon_{pqr} d\mathcal{Z}^{p} \wedge d\mathcal{Z}^{q} \wedge \left(\frac{(5 - 2r^{2})}{3(3 - 2r^{2})} d\mathcal{Z}^{r} + \mathcal{Z}^{r} d\eta\right)$$

$$m_{\alpha\beta} = (A^{-t})_{\alpha}{}^{\gamma} \mathfrak{m}_{\gamma\delta} (A^{-1})^{\delta}{}_{\beta}$$

with
$$\mathfrak{m}_{\gamma\delta} = \frac{\Delta^2}{\sqrt{3}} \begin{pmatrix} 3+2r^2 & -4r^2 \\ -4r^2 & 3+2r^2 \end{pmatrix}$$

S-folds as limiting Janus solutions

[Bak, Gutperle, Hirano '03 (**N** = **0**)] [Clark, Freedman, Karch, Schnabl '04] [D'Hoker, Ester, Gutperle '07, '07 (**N** = **4**)] [Bobev, Gautason, Pilch, Suh, van Muiden '19, '20]

Janus solutions AdS₄/CFT₃ dual to interfaces of SYM₄

[D'Hoker, Ester, Gutperle '06 (**N** = **1** , **2** , **4**)]

SUSY interfaces of SYM₄ are classified !!

N=1 & SU(3) N=2 & SU(2) × U(1)_R N=4 & SO(4)_R

Within a category with fixed amount of supersymmetry (i.e. fixed r), we shall principally be interested in the theory which has maximal internal symmetry, since other theories with the same amount of supersymmetry but less internal symmetries may be viewed as perturbations of the former by BPS operators that further break the internal symmetry.

$[SO(1,1) \times SO(6)] \ltimes \mathbb{R}^{12}$ gauged maximal supergravity

• N=8 SUGRA : metric + 8 gravitini + 28 vectors + 56 dilatini + 70 scalars (s = 2) (s = 3/2) (s = 1) (s = 1/2) (s = 0) $E_{7(7)}/SU(8)$ coset space

• Deformation parameter *c* yielding inequivalent theories: electric/magnetic

$$D = \partial - g \left(A^{\text{elec}} - \frac{c}{A} \tilde{A}_{\text{mag}} \right)$$

g = 4D gauge coupling c = deformation param.

[Dall'Agata, Inverso, Trigiante '12]

• Two inequivalent cases :

$$c = 0$$
: $A^{\alpha}{}_{\beta} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $c \neq 0$: $A^{\alpha}{}_{\beta} = \begin{pmatrix} \cosh \eta & \sinh \eta \\ \sinh \eta & \cosh \eta \end{pmatrix}$

A truncation : \mathbb{Z}_2^3 invariant sector

[AG, Sterckx, Trigiante '20]

• Truncation : Retaining the fields and couplings which are invariant (singlets) under a

 \mathbb{Z}_2^3 action \implies N = 1 supergravity coupled to 7 chiral multiplets z_i

$$\left(z_i = -\chi_i + i \, y_i \right) \qquad (y_i > 0)$$

[upper half-plane]

• AdS₄ vacua :

• The model :

N=0 & SO(6) N=1 & SU(3) N=2 & SU(2) × U(1) N=4 & SO(4)

Most symmetric AdS₄ vacua within **multi-parametric families** !!

N=0 family of AdS₄ vacua with $U(1)^3$ symmetry

• Location : [3 free parameters]

$$z_{1,2,3} = c\left(-\chi_{1,2,3} + i\frac{1}{\sqrt{2}}\right)$$
 and $z_4 = z_5 = z_6 = z_7 = i$

• AdS₄ radius $L^2 = -3/V_0$ & scalar mass spectrum :

[BF unstable]

$$V_0 = -2\sqrt{2}g^2c^{-1}$$

$$m^{2}L^{2} = 6(\times 2), \quad -3(\times 2), \quad 0(\times 28), \\ -\frac{3}{4} + \frac{3}{2}\chi^{2}(\times 2), \\ -\frac{3}{4} + \frac{3}{2}(\chi - 2\chi_{i})^{2}(\times 2) \qquad i = 1, 2, 3, \\ -\frac{3}{4} + \frac{3}{2}\chi^{2}_{i}(\times 4) \qquad i = 1, 2, 3, \\ -3 + 6\chi^{2}_{i}(\times 2) \qquad i = 1, 2, 3, \\ -3 + \frac{3}{2}(\chi_{i} \pm \chi_{j})^{2}(\times 2) \qquad i < j,$$

• Flavour symmetry enhancements :

$$U(1)^3 \rightarrow SU(2) \times U(1)^2 \rightarrow SU(3) \times U(1) \rightarrow SO(6)$$

$$\chi_i = \chi_j \qquad \chi_1 = \chi_2 = \chi_3 \qquad \chi_{1,2,3} = 0$$

N=1 family of AdS₄ vacua with $U(1)^2$ symmetry

• Location : [2 free parameters: $\sum_{i=1}^{3} \chi_i = 0$] $z_{1,2,3} = c \left(-\chi_{1,2,3} + i \frac{\sqrt{5}}{3} \right)$ and $z_4 = z_5 = z_6 = z_7 = \frac{1}{\sqrt{6}} (1 + i \sqrt{5})$

• AdS₄ radius $L^2 = -3/V_0$ & scalar mass spectrum :

$$V_0 = -\frac{162}{25\sqrt{5}}g^2c^{-1}$$

$$\begin{split} m^{2}L^{2} &= 0(\times 28), \quad 4 \pm \sqrt{6}(\times 2), \quad -2(\times 2), \\ &- \frac{14}{9} + 5\chi_{i}^{2} \pm \frac{1}{3}\sqrt{4 + 45\chi_{i}^{2}}(\times 2) \qquad i = 1, 2, 3, \\ &- \frac{14}{9} + \frac{5}{4}\chi_{i}^{2} \pm \frac{1}{6}\sqrt{16 + 45\chi_{i}^{2}}(\times 2) \qquad i = 1, 2, 3, \\ &\frac{7}{9} + \frac{5}{4}\chi_{i}^{2}(\times 2) \qquad i = 1, 2, 3, \\ &- 2 + \frac{5}{4}(\chi_{i} - \chi_{j})^{2}(\times 2) \qquad i < j, \end{split}$$

• Flavour symmetry enhancements :

$$U(1)^2 \rightarrow SU(2) \times U(1) \rightarrow SU(3)$$

$$\chi_i = \chi_j \qquad \qquad \chi_{1,2,3} = 0$$

N=2 family of AdS_4 vacua with U(1) x U(1) symmetry

• Location : [1 free parameter]

$$z_1 = -\bar{z}_3 = c\left(-\chi + i\frac{1}{\sqrt{2}}\right), \quad z_2 = ic, \quad z_4 = z_6 = i \text{ and } z_5 = z_7 = \frac{1}{\sqrt{2}}(1+i)$$

• AdS₄ radius $L^2 = -3/V_0$ & scalar mass spectrum :

$$V_0 = -3g^2c^{-1} \,,$$

$$m^{2}L^{2} = 0(\times 30), \quad 3 \pm \sqrt{17}(\times 2), \quad -2(\times 4), \quad 2(\times 6), \quad -2 + 4\chi^{2}(\times 6)$$
$$-1 + 4\chi^{2} \pm \sqrt{16\chi^{2} + 1}(\times 2), \quad \chi^{2} \pm \sqrt{\chi^{2} + 2}(\times 8),$$

• Flavour symmetry enhancement :

$$U(1) \rightarrow SU(2)$$
$$\chi = 0$$

N=4 AdS₄ vacuum with SO(4) symmetry

[Gallerati, Samtleben, Trigiante '14]

[AG, Sterckx, Trigiante '20]

• Location :

$$z_1 = z_2 = z_3 = ic$$
 and $z_4 = z_5 = z_6 = -\bar{z}_7 = \frac{1}{\sqrt{2}}(1+i)$

• AdS₄ radius $L^2 = -3/V_0$ & scalar mass spectrum :

$$V_0 = -3g^2c^{-1}, \qquad m^2L^2 = 0(\times 48), \quad 10(\times 1), \quad 4(\times 10), \quad -2(\times 11)$$

• No free parameters within the \mathbb{Z}_2^3 -invariant sector

Flat deformations

Axion-like deformations in 10D

S⁵ metric :
$$d\mathring{s}_{S^5}^2 = d\alpha^2 + \cos^2 \alpha \, d\theta_1^2 + \sin^2 \alpha \, \left(\, d\beta^2 + \cos^2 \beta \, d\theta_2^2 + \sin^2 \beta \, d\theta_3^2 \, \right)$$

$$\theta_1' = \theta_1 + g \chi_1 \eta$$
 , $\theta_2' = \theta_2 + g \chi_2 \eta$, $\theta_3' = \theta_3 + g \chi_3 \eta$

... so axions induce a fibration on S⁵ when moving around S¹ characterised by a **non-trivial monodromy**

Global breaking of symmetries of S⁵ \implies matching patterns of symmetry breaking @ AdS₄ vacua !

[see Malek's talk]

[Giambrone, Malek, Samtleben, Trigiante '21]

* KK spectrum at the N=2 S-fold periodic under
$$\chi
ightarrow \chi + 2\pi/T$$

Axion-like deformations in 4D

[Cremmer, Scherk, Schwarz '79 (ungauged 5D)]

Flat deformations of the N=4 & SO(4) S-fold

• CSS twist from 5D to 4D : $\chi^{ij} = 12$

• Two-parameter family of S-folds :

Future directions

Higher-dimensional stability vs AdS Swampland Conjecture

[Ooguri, Vafa '17]

* Oxidation of AdS₄ vacua with $\chi^{ij} \neq 0$ to 5D & one-form deformations of SYM

[Bobev, Gautason, Pilch, Suh, van Muiden '19, '20] [Arav, (Cheung), Gauntlett, Roberts, Rosen '21]

Application to other (half-)maximal supergravities

ευχαριστώ

thanks !!