Flat deformations of type IIB S-folds

Adolfo Guarino
University of Oviedo \& ICTEA

Based on 2103.12652 + work in progress with Colin Sterckx

See recent works by: Arav, Bobev, Cheung, Gauntlett, Gautason, Giambrone, Malek, Pilch, Roberts, Rosen, Samtleben, Suh, Trigiante and van Muiden.

Outlook

S-folds in 10D

S-folds in 4D

Flat deformations

Future directions

S-folds in 10D

Type IIB S-folds

10D: type IIB SUGRA solutions

$$
\operatorname{AdS}_{4} \times \mathrm{S}^{1} \times \mathrm{S}^{5}
$$

5D: SO(6) gauged SUGRA

$$
\left[\mathbb{R} \rightarrow \mathrm{S}^{1} \Leftrightarrow \text { (hyperbolic) } \mathrm{SO}(1,1) \subset \mathrm{SL}(2)_{\mathrm{IIB}} \text { twist }=\text { monodromy }\right]
$$

$$
\eta \sim \eta+T
$$

$$
\begin{gathered}
A^{\alpha}{ }_{\beta}=\left(\begin{array}{ll}
\cosh \eta & \sinh \eta \\
\sinh \eta & \cosh \eta
\end{array}\right) \\
\mathfrak{M}_{\mathrm{S}^{1}}=A^{-1}(\eta) A(\eta+T)=\binom{\cosh T \sinh T}{\sinh T \cosh T}
\end{gathered}
$$

No untwisted limit !!

4D: $[S O(1,1) \times S O(6)] \ltimes R^{12}$ gauged SUGRA

Flavour: SO(6) ~ S 5

$$
\begin{aligned}
d s_{10}^{2} & =\frac{1}{\sqrt{2}} d s_{\mathrm{AdS}_{4}}^{2}+\frac{1}{2} d \eta^{2}+d{\stackrel{s}{\mathrm{~S}^{5}}}_{2}^{2} \\
\widetilde{F}_{5} & =4(1+\star) \operatorname{vol}_{5} \\
\mathbb{B}^{\alpha} & =A_{\beta}^{\alpha} \mathfrak{b}^{\beta}=0 \\
m_{\alpha \beta} & =\left(A^{-t}\right)_{\alpha}^{\gamma} \mathfrak{m}_{\gamma \delta}\left(A^{-1}\right)^{\delta}{ }_{\beta}
\end{aligned}
$$

with $\quad \mathfrak{m}_{\gamma \delta}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

Flavour: SU(3)~CP ${ }^{2}$

$$
\begin{aligned}
d s_{10}^{2} & =\frac{3 \sqrt{6}}{10} d s_{\mathrm{AdS}_{4}}^{2}+\frac{1}{3} \sqrt{\frac{10}{3}} d \eta^{2}+\left[\sqrt{\frac{5}{6}} d s_{\mathbb{C P}^{2}}^{2}+\sqrt{\frac{6}{5}} \eta^{2}\right] \\
\widetilde{F}_{5} & =3\left(\frac{6}{5}\right)^{\frac{3}{4}}(1+\star) \mathrm{vol}_{5} \\
\mathbb{B}^{\alpha} & =A^{\alpha}{ }_{\beta} \mathfrak{b}^{\beta}=\epsilon^{\alpha \delta}\left(A^{-t}\right)_{\delta}{ }^{\gamma} H_{\gamma \beta} \boldsymbol{\Omega}^{\beta} \quad\left[\text { charged under } \mathrm{U}(1)_{\eta}\right] \\
m_{\alpha \beta} & =\left(A^{-t}\right)_{\alpha}{ }^{\gamma} \mathfrak{m}_{\gamma \delta}\left(A^{-1}\right)^{\delta}{ }_{\beta}
\end{aligned}
$$

with $\mathfrak{m}_{\gamma \delta}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

$\mathrm{N}=2$ \& $\mathrm{SU}(2) \times \mathrm{U}(1)$ S-fold

Flavour: $\mathrm{SU}(2) \sim \mathrm{S}^{2}$

$$
\begin{gathered}
d s^{2}=\frac{1}{2} \Delta^{-1}\left[d s_{\mathrm{AdS}_{4}}^{2}+d \eta^{2}+d \theta^{2}+\sin ^{2} \theta d \phi^{2}+\cos ^{2} \theta\left(\sigma_{2}^{2}+8 \Delta^{4}\left(\sigma_{1}^{2}+\sigma_{3}^{2}\right)\right)\right] \\
\Delta^{-4}=6-2 \cos (2 \theta) \\
\widetilde{F}_{5}=4 \Delta^{4} \sin \theta \cos ^{3} \theta(1+\star)\left[3 d \theta \wedge d \phi \wedge \sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right. \\
\left.-d \eta \wedge\left(\cos (2 \phi) d \theta-\frac{1}{2} \sin (2 \theta) \sin (2 \phi) d \phi\right) \wedge \sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right] \\
\mathbb{B}^{\alpha}=A^{\alpha}{ }_{\beta} \mathfrak{b}^{\beta} \quad \text { with } \quad \begin{aligned}
& \mathfrak{b}_{1}= \frac{1}{\sqrt{2}} \cos \theta \\
& \mathfrak{b}_{2}=\frac{1}{\sqrt{2}} \cos \theta {\left[\left(\sin \phi d \theta+\frac{1}{2} \sin (2 \theta) d(\sin \phi)\right) \wedge \sigma_{2}+\sin \phi \frac{4 \sin (2 \theta)}{6-2 \cos (2 \theta)} \sigma_{1} \wedge \sigma_{3}\right] } \\
& m_{\alpha \beta}=\left(A^{-t}\right)_{\alpha}{ }^{\gamma} \mathfrak{m}_{\gamma \delta}\left(A^{-1}\right)^{\delta}{ }_{\beta}
\end{aligned}
\end{gathered}
$$

$$
\text { with } \quad \mathfrak{m}_{\gamma \delta}=2 \Delta^{2}\left(\begin{array}{cc}
1+\sin ^{2} \theta \cos ^{2} \phi & -\frac{1}{2} \sin ^{2} \theta \sin (2 \phi) \\
-\frac{1}{2} \sin ^{2} \theta \sin (2 \phi) & 1+\sin ^{2} \theta \sin ^{2} \phi
\end{array}\right)
$$

$\mathrm{N}=4$ \& SO(4) S-fold

R-symmetry: SO(4) ~S $\mathbf{S}^{\mathbf{2}} \times \mathbf{S}^{\mathbf{2}}$

$$
\begin{gathered}
d s^{2}=\frac{1}{2} \Delta^{-1}\left[d s_{\mathrm{AdS}_{4}}^{2}+d \eta^{2}+\frac{d r^{2}}{1-r^{2}}+\Delta^{4}\left(3-2 r^{2}\right) r^{2} d \Omega_{1}^{2}+\Delta^{4}\left(1+2 r^{2}\right)\left(1-r^{2}\right) d \Omega_{2}^{2}\right] \\
\Delta^{-4}=\left(1+2 r^{2}\right)\left(3-2 r^{2}\right) \\
\widetilde{F}_{5}= \\
\frac{6 \Delta^{4}}{8\left(1-r^{2}\right)} \mathcal{Z}^{p} d \mathcal{Y}^{p} \wedge d \mathcal{Y}^{q} \wedge d \mathcal{Y}^{r} \wedge d \mathcal{Z}^{q} \wedge d \mathcal{Z}^{r} \\
+3 \Delta^{4} \mathcal{Z}^{p} \mathcal{Y}^{[p} d \mathcal{Y}^{q} \wedge d \mathcal{Y}^{r]} \wedge d \mathcal{Z}^{q} \wedge d \mathcal{Z}^{r} \wedge d \eta \\
-\frac{1}{16} \sqrt{|g|} \varepsilon_{\mu \nu \rho \sigma} d x^{\mu} \wedge d x^{\nu} \wedge d x^{\rho} \wedge d x^{\sigma} \wedge\left(d \eta-\frac{4}{3} \mathcal{Y}^{p} d \mathcal{Y}^{p}\right) \\
\mathbb{H}^{\alpha}=A^{\alpha}{ }_{\beta} \mathfrak{h}^{\beta}=\frac{\left(V_{-} A\right)^{\alpha}}{1+2 r^{2}} \varepsilon_{p q r} d \mathcal{Y}^{p} \wedge d \mathcal{Y}^{q} \wedge\left(\frac{\left(3+2 r^{2}\right)}{3\left(1+2 r^{2}\right)} d \mathcal{Y}^{r}-\mathcal{Y}^{r} d \eta\right) \\
\\
-\frac{\left(V_{+} A\right)^{\alpha}}{3-2 r^{2}} \varepsilon_{p q r} d \mathcal{Z}^{p} \wedge d \mathcal{Z}^{q} \wedge\left(\frac{\left(5-2 r^{2}\right)}{3\left(3-2 r^{2}\right)} d \mathcal{Z}^{r}+\mathcal{Z}^{r} d \eta\right) \\
m_{\alpha \beta}=\left(A^{-t}\right)_{\alpha}{ }^{\gamma} \mathfrak{m}_{\gamma \delta}\left(A^{-1}\right)^{\delta}{ }_{\beta}
\end{gathered}
$$

with $\quad \mathfrak{m}_{\gamma \delta}=\frac{\Delta^{2}}{\sqrt{3}}\left(\begin{array}{cc}3+2 r^{2} & -4 r^{2} \\ -4 r^{2} & 3+2 r^{2}\end{array}\right)$

Janus solutions $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ dual to interfaces of SYM_{4}

[D'Hoker, Ester, Gutperle '06 ($\mathbf{N}=1,2,4$)]

SUSY interfaces of SYM_{4} are classified !!

$$
\mathrm{N}=1 \& \mathrm{SU}(3) \quad \mathrm{N}=2 \& \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{R}} \quad \mathrm{~N}=4 \& \mathrm{SO}(4)_{\mathrm{R}}
$$

Within a category with fixed amount of supersymmetry (i.e. fixed r), we shall principally be interested in the theory which has maximal internal symmetry, since other theories with the same amount of supersymmetry but less internal symmetries may be viewed as perturbations of the former by BPS operators that further break the internal symmetry.

S-folds in 4D

$[\mathrm{SO}(1,1) \times \mathrm{SO}(6)] \ltimes \mathrm{R}^{12}$ gauged maximal supergravity

- $\mathrm{N}=8$ SUGRA : metric +8 gravitini +28 vectors +56 dilatini +70 scalars

$$
(s=2) \quad(s=3 / 2) \quad(s=1) \quad(s=1 / 2) \quad(s=0)
$$

$\mathrm{E}_{7(7)} / \mathrm{SU}(8)$
coset space

- Deformation parameter c yielding inequivalent theories: electric/magnetic

$$
D=\partial-g\left(A^{\mathrm{elec}}-c \tilde{A}_{\mathrm{mag}}\right)
$$

$$
\begin{aligned}
& g=4 \mathrm{D} \text { gauge coupling } \\
& c=\text { deformation param. }
\end{aligned}
$$

- Two inequivalent cases :

$$
c=0: \quad A^{\alpha}{ }_{\beta}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { or } \quad c \neq 0: \quad A^{\alpha}{ }_{\beta}=\left(\begin{array}{cc}
\cosh \eta & \sinh \eta \\
\sinh \eta & \cosh \eta
\end{array}\right)
$$

A truncation: \mathbb{Z}_{2}^{3} invariant sector

- Truncation : Retaining the fields and couplings which are invariant (singlets) under a \mathbb{Z}_{2}^{3} action $\Rightarrow \mathrm{N}=1$ supergravity coupled to 7 chiral multiplets z_{i}

$$
\begin{equation*}
z_{i}=-\chi_{i}+i y_{i} \tag{i}
\end{equation*}
$$

- The model :
[upper half-plane]

$$
\begin{aligned}
K & =-\sum_{i=1}^{7} \log \left[-i\left(z_{i}-\bar{z}_{i}\right)\right] \\
W & =2 g\left[z_{1} z_{5} z_{6}+z_{2} z_{4} z_{6}+z_{3} z_{4} z_{5}+\left(z_{1} z_{4}+z_{2} z_{5}+z_{3} z_{6}\right) z_{7}\right]+2 g c\left(1-z_{4} z_{5} z_{6} z_{7}\right)
\end{aligned}
$$

[dyonic gauging]

- AdS_{4} vacua :

$$
\mathrm{N}=0 \& \mathrm{SO}(6) \quad \mathrm{N}=1 \& \mathrm{SU}(3) \quad \mathrm{N}=2 \& \mathrm{SU}(2) \times \mathrm{U}(1) \quad \mathrm{N}=4 \& \mathrm{SO}(4)
$$

\Rightarrow Most symmetric AdS $_{4}$ vacua within multi-parametric families !!

$\mathrm{N}=0$ family of AdS_{4} vacua with $\mathrm{U}(1)^{3}$ symmetry

- Location :
[3 free parameters]

$$
z_{1,2,3}=c\left(-\chi_{1,2,3}+i \frac{1}{\sqrt{2}}\right) \quad \text { and } \quad z_{4}=z_{5}=z_{6}=z_{7}=i
$$

- AdS_{4} radius $L^{2}=-3 / V_{0}$ \& scalar mass spectrum :

$$
V_{0}=-2 \sqrt{2} g^{2} c^{-1}
$$

- Flavour symmetry enhancements :

$$
\begin{aligned}
m^{2} L^{2}= & 6(\times 2), \quad-3(\times 2), \quad 0(\times 28) \\
& -\frac{3}{4}+\frac{3}{2} \chi^{2}(\times 2), \\
& -\frac{3}{4}+\frac{3}{2}\left(\chi-2 \chi_{i}\right)^{2}(\times 2) \quad i=1,2,3 \\
& -\frac{3}{4}+\frac{3}{2} \chi_{i}^{2}(\times 4) \quad i=1,2,3 \\
& -3+6 \chi_{i}^{2}(\times 2) \quad i=1,2,3 \\
& -3+\frac{3}{2}\left(\chi_{i} \pm \chi_{j}\right)^{2}(\times 2) \quad i<j
\end{aligned}
$$

$$
\begin{array}{r}
\mathrm{U}(1)^{3} \rightarrow \mathrm{SU}(2) \times \mathrm{U}(1)^{2} \rightarrow \mathrm{SU}(3) \times \mathrm{U}(1) \rightarrow \mathrm{SO}(6) \\
\chi_{i}=\chi_{j}
\end{array} \quad \chi_{1}=\chi_{2}=\chi_{3} \quad \chi_{1,2,3}=0
$$

$\mathrm{N}=1$ family of AdS_{4} vacua with $\mathrm{U}(1)^{2}$ symmetry

- Location :

$$
\begin{gathered}
\text { [2 free parameters: } \sum_{i=1}^{3} \chi_{i}=0 \text {] } \\
z_{1,2,3}=c\left(-\chi_{1,2,3}+i \frac{\sqrt{5}}{3}\right) \quad \text { and } \quad z_{4}=z_{5}=z_{6}=z_{7}=\frac{1}{\sqrt{6}}(1+i \sqrt{5})
\end{gathered}
$$

- AdS_{4} radius $L^{2}=-3 / V_{0}$ \& scalar mass spectrum :

$$
V_{0}=-\frac{162}{25 \sqrt{5}} g^{2} c^{-1}
$$

- Flavour symmetry enhancements :

$$
\begin{aligned}
m^{2} L^{2}= & 0(\times 28), \quad 4 \pm \sqrt{6}(\times 2), \quad-2(\times 2), \\
& -\frac{14}{9}+5 \chi_{i}^{2} \pm \frac{1}{3} \sqrt{4+45 \chi_{i}^{2}}(\times 2) \quad i=1,2,3, \\
& -\frac{14}{9}+\frac{5}{4} \chi_{i}^{2} \pm \frac{1}{6} \sqrt{16+45 \chi_{i}^{2}}(\times 2) \quad i=1,2,3, \\
& \frac{7}{9}+\frac{5}{4} \chi_{i}^{2}(\times 2) \quad i=1,2,3, \\
& -2+\frac{5}{4}\left(\chi_{i}-\chi_{j}\right)^{2}(\times 2) \quad i<j,
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{U}(\mathbf{1})^{\mathbf{2}} & \rightarrow \mathbf{S U}(\mathbf{2}) \times \mathbf{U}(\mathbf{1}) \rightarrow \mathbf{S U}(\mathbf{3}) \\
\chi_{i} & =\chi_{j}
\end{aligned} \quad \chi_{1,2,3}=0
$$

$\mathrm{N}=2$ family of AdS_{4} vacua with $\mathrm{U}(1) \times \mathrm{U}(1)$ symmetry

- Location :
[1 free parameter]

$$
z_{1}=-\bar{z}_{3}=c\left(-\chi+i \frac{1}{\sqrt{2}}\right), \quad z_{2}=i c, \quad z_{4}=z_{6}=i \quad \text { and } \quad z_{5}=z_{7}=\frac{1}{\sqrt{2}}(1+i)
$$

- AdS_{4} radius $L^{2}=-3 / V_{0}$ \& scalar mass spectrum :

$$
V_{0}=-3 g^{2} c^{-1}
$$

$$
\begin{aligned}
m^{2} L^{2}= & 0(\times 30), \quad 3 \pm \sqrt{17}(\times 2), \quad-2(\times 4), \quad 2(\times 6), \quad-2+4 \chi^{2}(\times 6) \\
& -1+4 \chi^{2} \pm \sqrt{16 \chi^{2}+1}(\times 2), \quad \chi^{2} \pm \sqrt{\chi^{2}+2}(\times 8),
\end{aligned}
$$

- Flavour symmetry enhancement :

$$
\begin{aligned}
\mathbf{U}(\mathbf{1}) & \rightarrow \mathbf{S U}(\mathbf{2}) \\
\chi & =0
\end{aligned}
$$

$\mathrm{N}=4 \quad \mathrm{AdS}_{4}$ vacuum with $\mathrm{SO}(4)$ symmetry

- Location :

$$
z_{1}=z_{2}=z_{3}=i c \quad \text { and } \quad z_{4}=z_{5}=z_{6}=-\bar{z}_{7}=\frac{1}{\sqrt{2}}(1+i)
$$

- AdS_{4} radius $L^{2}=-3 / V_{0} \quad \& \quad$ scalar mass spectrum :

$$
V_{0}=-3 g^{2} c^{-1},
$$

$$
m^{2} L^{2}=0(\times 48), \quad 10(\times 1), \quad 4(\times 10), \quad-2(\times 11)
$$

- No free parameters within the \mathbb{Z}_{2}^{3}-invariant sector

Flat deformations

Axion-like deformations in 10D

S5 metric : $\quad d \stackrel{\circ}{S_{S^{5}}}=d \alpha^{2}+\cos ^{2} \alpha d \theta_{1}^{2}+\sin ^{2} \alpha\left(d \beta^{2}+\cos ^{2} \beta d \theta_{2}^{2}+\sin ^{2} \beta d \theta_{3}^{2}\right)$

$$
\theta_{1}^{\prime}=\theta_{1}+g \chi_{1} \eta \quad, \quad \theta_{2}^{\prime}=\theta_{2}+g \chi_{2} \eta \quad, \quad \theta_{3}^{\prime}=\theta_{3}+g \chi_{3} \eta
$$

... so axions induce a fibration on S^{5} when moving around S^{1} characterised by a non-trivial monodromy

$$
h(T)=\left(\begin{array}{ccc}
h_{1} & & \\
& h_{2} & \\
& & h_{3}
\end{array}\right) \quad \text { with } \quad h_{i}=\exp \left(i \chi_{i} \sigma_{2} T\right) \in \mathrm{SO}(2) \quad \quad \quad \quad \begin{gathered}
\text { symmetry } \\
\chi_{i} \rightarrow \chi_{i}+n_{i} \frac{2 \pi}{T}
\end{gathered}
$$

Global breaking of symmetries of $S^{5} \Rightarrow$ matching patterns of symmetry breaking @ AdS 4 vacua !

* KK spectrum at the $\mathrm{N}=2$ S-fold periodic under $\chi \rightarrow \chi+2 \pi / T$
[see Malek's talk]

Axion-like deformations in 4D

- $\mathrm{E}_{7 \text { (7) }} / \mathrm{SU}(8)$ scalar coset :
[homogeneous space]

$$
\widetilde{\Theta}=\Theta^{[\mathrm{SO}(1,1) \times \mathrm{SO}(6)] \ltimes \mathbb{R}^{12}}+(\delta \Theta)^{\mathrm{CSS}}\left(\chi_{1}, \chi_{2}, \chi_{3}, 0\right)
$$

Flat deformations of the $\mathrm{N}=4$ \& SO (4) S-fold

- CSS twist from 5D to 4D : $\quad \chi^{i j}=12 \sqrt{2}\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & \chi_{1} & \chi_{2} \\ 0 & 0 & 0 & 0 & \chi_{2} & \chi_{1} \\ 0 & 0 & -\chi_{1} & -\chi_{2} & 0 & 0 \\ 0 & 0 & -\chi_{2} & -\chi_{1} & 0 & 0\end{array}\right) \in \mathfrak{s o}(2)^{2} \subset \mathfrak{s o}(4)$
- Two-parameter family of S-folds :
[not \mathbb{Z}_{2}^{3}-invariant]

Discrete sym: $\quad \chi_{i} \leftrightarrow-\chi_{i}, \quad \chi_{1} \leftrightarrow \chi_{2}$

Non-susy \& perturbatively stable (at the lower-dimensional supergravity level)

Future directions

* Compactness of $\chi_{1,2}$

* Higher-dimensional stability vs AdS Swampland Conjecture
* Oxidation of AdS $_{4}$ vacua with $\chi^{i j} \neq 0$ to 5D \& one-form deformations of SYM
[Bobev, Gautason, Pilch, Suh, van Muiden '19, '20] [Arav, (Cheung), Gauntlett, Roberts, Rosen '21]
* Application to other (half-)maximal supergravities

$\varepsilon v \chi \alpha \varrho \iota \sigma \tau \omega$

thanks !!

