S-folds and holographic RG flows on the D3-brane

Adolfo Guarino
University of Oviedo \& ICTEA

Based on 1907.04177 \& 2002.03692 \& 2103.12652
with Colin Sterckx and Mario Trigiante

See recent works by: Arav, Bobev, Cheung, Gauntlett, Gautason, Giambrone, Malek, Pilch, Roberts, Rosen, Samtleben, Suh, Trigiante and van Muiden.

Outlook

Electric-magnetic duality in maximal supergravity

S-folds in 4DS-folds in 10DHolographic RG-flows on the D3-braneConcluding remarks

Electric-magnetic duality in maximal supergravity

$\mathrm{N}=8$ supergravity in 4D

- SUGRA : metric +8 gravitini +28 vectors +56 dilatini +70 scalars

$$
(s=2) \quad(s=3 / 2) \quad(s=1) \quad(s=1 / 2) \quad(s=0)
$$

Ungauged (abelian) supergravity: Reduction of M-theory on a torus T^{7} down to 4 D produces $N=8$ supergravity with $G=\mathrm{U}(1)^{28} \quad$ [$\mathrm{E}_{7(7)}$ symmetry]
[Cremmer, Julia '79]
Gauged (non-abelian) supergravity:

* M-theory on S^{7} produces $N=8$ supergravity with $G=S O(8) \quad$ [de Wit, Nicolai' 82]
* Type IIA on S^{6} produces $N=8$ supergravity with $G=\operatorname{ISO}(7)=\mathrm{SO}(7) \ltimes \mathbb{R}^{7} \quad$ [Hull'84]
* Type IIB on $\mathbb{R} \times$ S 5 produces $N=8$ supergravity with $\mathrm{G}=[\mathrm{SO}(1,1) \times \mathrm{SO}(6)] \ltimes \mathbb{R}^{12}$
[Inverso, Samtleben, Trigiante '16]
* These supergravities believed to be unique for 30 years...

Electric-magnetic deformations

- Uniqueness historically inherited from the connection with NH geometries of branes and SCFT's

```
Type IIB : AdS5 x S5 (D3-brane ~ N=4 SYM in 4d )
M-theory: AdS4 x S7 (M2-brane ~ ABJM theory in 3d)
- \(\mathrm{N}=8\) supergravity in 4 D admits a deformation parameter \(c\) yielding inequivalent theories. It is an electric / magnetic deformation
\[
D=\partial-g\left(A^{\text {elec }}-c \tilde{A}_{\text {mag }}\right) \quad \begin{aligned}
& g=4 \mathrm{D} \text { gauge coupling } \\
& c=\text { deformation param } .
\end{aligned}
\]
[ Dall'Agata, Inverso, Trigiante '12 ]
- There are two generic situations:
1) Family of \(\mathrm{SO}(8)_{c}\) theories : \(c=[0, \sqrt{2}-1]\) is a continuous parameter
2) Family of \(\operatorname{CSO}(p, q, r)_{c}\) theories : \(c=0\) or 1 is an (on/off) parameter

\section*{The questions arise:}
- Does such an electric / magnetic deformation of 4D maximal supergravity enjoy a string/M-theory origin, or is it just a 4D feature?
- For deformed 4D supergravities with supersymmetric \(\mathrm{AdS}_{4}\) vacua, are these \(\mathrm{AdS}_{4} / \mathrm{CFT}_{3}\)-dual to any identifiable 3d CFT ?

\section*{M-theory}
electric/magnetic deformation
higher-dimensional origin


Obstruction for \(\mathrm{SO}(8)_{c}, c f\). [ de Wit, Nicolai '13]
[ Lee, Strickland-Constable, Waldram '15 ]

\section*{(massive) Type IIA}
electric/magnetic deformation

\[
g c=\hat{F}_{(0)}=k /\left(2 \pi \ell_{s}\right)
\]

Holographic
\(\mathrm{AdS}_{4} / \mathrm{CFT}_{3}\) dual ?
[ AG, Jafferis, Varela '15]
[ AG, Varela '15]
[ AG, Tarrío, Varela '16, '19]
[ AG, Tarrío \& AG '17 ]

\section*{Type IIB}
electric/magnetic deformation

\author{
higher-dimensional origin
}
\(\sqrt{ }\)
[ this talk ]

\section*{\([\mathrm{SO}(1,1) \times \mathrm{SO}(6)] \ltimes \mathrm{R}^{12}\) supergravity}
* Higher-dimensional origin as type IIB on \(\mathbb{R}\left(\right.\) or \(\left.\mathrm{S}^{1}\right) \times \mathrm{S}^{5}\)
[ Dall'Agata, Inverso '11]
[ Inverso, Samtleben, Trigiante '16]
* New \(\mathrm{AdS}_{4}\) vacuum with \(\mathrm{N}=4\) \& \(\mathrm{SO}(4)_{\mathrm{R}}\) symmetry
[ Gallerati, Samtleben, Trigiante '14 ]
* Holographic expectation: N=4 S-fold \(\mathrm{CFT}_{3}\)
[ Hull, (Çatal-Özer) '04, ('03)]
[ Gaiotto, Witten '08]
[ \(J\)-fold \(=S\)-fold with hyperbolic monodromy \(J\) ]
[ Assel, Tomasiello '18 ( \(\mathbf{N}=3,4\) )]
[ Garozzo, Lo Monaco, Mekareeya '18 '19 ]
= Singular Janus solutions: \(\mathrm{AdS}_{4} \times \mathbb{R} \times \mathrm{M}_{5}\)
\[
\mathrm{M}_{5}=\mathrm{S}^{2} \times \mathrm{S}^{2} \times \mathrm{I}
\]
[ Bak, Gutperle, Hirano '03 ( \(\mathbf{N}=0\) )]
[ Clark, Freedman, Karch, Schnabl '04 ]
[ D'Hoker, Ester, Gutperle '07, '07 ( \(\mathbf{N}=4\) )]
[ Inverso, Samtleben, Trigiante '16]
[ Bobev, Gautason, Pilch, Suh, van Muiden '19, '20 (in 5D)]
* Superconformal Janus interfaces in N=4 SYM4
[ D'Hoker, Ester, Gutperle '06 ( \(\mathbf{N}=\mathbf{1}, \mathbf{2}, 4\) )]
\[
\mathrm{N}=4 \quad \mathrm{~N}=2 \& \mathrm{SU}(2) \quad \mathrm{N}=1 \& \mathrm{SU}(3) \quad \mathrm{N}=0 \text { \& } \mathrm{SO}(6)
\]

Question: Holographic duals for \(\mathrm{N}=0,1,2\) S-fold \(\mathrm{CFT}_{3}\) ?
[ largest flavour symmetry ]

\section*{The picture...}
\(D=10\) Type IIB \& S-fold with \(\mathrm{AdS}_{4} \times \mathrm{S}^{1} \times \mathrm{S}^{5}\) geometry
Reduction \(\quad \uparrow\) Uplift method : \(\mathrm{E}_{7(7)}\)-EFT involving on \(\mathbb{R} \times \mathrm{S}^{5} \downarrow \quad\) hyperbolic twists \(A_{(k)}\) along \(\mathrm{S}^{1}\)
\(D=4\)
\(D=3\)


\section*{S-folds in 4D}

\section*{A truncation: \(\mathbb{Z}_{2}^{3}\) invariant sector}
- Truncation : Retaining the fields and couplings which are invariant (singlets) under a \(\mathbb{Z}_{2}^{3}\) action \(\Rightarrow \mathrm{N}=1\) supergravity coupled to 7 chiral multiplets \(z_{i}\)
\[
\begin{equation*}
z_{i}=-\chi_{i}+i y_{i} \tag{i}
\end{equation*}
\]
- The model :
\[
\begin{aligned}
& K=-\sum_{i=1}^{7} \log \left[-i\left(z_{i}-\bar{z}_{i}\right)\right] \\
& W=2 g\left[z_{1} z_{5} z_{6}+z_{2} z_{4} z_{6}+z_{3} z_{4} z_{5}+\left(z_{1} z_{4}+z_{2} z_{5}+z_{3} z_{6}\right) z_{7}\right]+2 g c\left(1-z_{4} z_{5} z_{6} z_{7}\right)
\end{aligned}
\]
[ dyonic gauging ]
- \(\mathrm{AdS}_{4}\) vacua :
\[
\mathrm{N}=4 \& \mathrm{SO}(4)_{\mathrm{R}} \quad \mathrm{~N}=2 \& \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{R}} \quad \mathrm{~N}=1 \& \mathrm{SU}(3) \quad \mathrm{N}=0 \text { \& } \mathrm{SO}(6)
\]
\(\Rightarrow\) Most symmetric \(\mathrm{AdS}_{4}\) vacua within multi-parametric families !!

\section*{\(\mathrm{N}=0\) family of \(\mathrm{AdS}_{4}\) vacua with \(\mathrm{U}(1)^{3}\) symmetry}
- Location :
[ 3 free parameters]
\[
z_{1,2,3}=c\left(-\chi_{1,2,3}+i \frac{1}{\sqrt{2}}\right) \quad \text { and } \quad z_{4}=z_{5}=z_{6}=z_{7}=i
\]
- \(\mathrm{AdS}_{4}\) radius \(L^{2}=-3 / V_{0}\) \& scalar mass spectrum : [BF unstable ]
\[
V_{0}=-2 \sqrt{2} g^{2} c^{-1}
\]
- Flavour symmetry enhancements :
\[
\begin{aligned}
m^{2} L^{2}= & 6(\times 2), \quad-3(\times 2), \quad 0(\times 28) \\
& -\frac{3}{4}+\frac{3}{2} \chi^{2}(\times 2), \\
& -\frac{3}{4}+\frac{3}{2}\left(\chi-2 \chi_{i}\right)^{2}(\times 2) \quad i=1,2,3 \\
& -\frac{3}{4}+\frac{3}{2} \chi_{i}^{2}(\times 4) \quad i=1,2,3 \\
& -3+6 \chi_{i}^{2}(\times 2) \quad i=1,2,3 \\
& -3+\frac{3}{2}\left(\chi_{i} \pm \chi_{j}\right)^{2}(\times 2) \quad i<j
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{U}(1)^{3} \rightarrow \mathrm{SU}(2) \times \mathrm{U}(1)^{2} \rightarrow \mathrm{SU}(3) \times \mathrm{U}(1) \rightarrow & \mathrm{SO}(6) \\
\chi_{i}=\chi_{j} & \chi_{1}=\chi_{2}=\chi_{3} \quad \chi_{1,2,3}=0
\end{aligned}
\]

\section*{\(\mathrm{N}=1\) family of \(\mathrm{AdS}_{4}\) vacua with \(\mathrm{U}(1)^{2}\) symmetry}
- Location :
\[
\begin{gathered}
\text { [2 free parameters: } \sum_{i=1}^{3} \chi_{i}=0 \text { ] } \\
z_{1,2,3}=c\left(-\chi_{1,2,3}+i \frac{\sqrt{5}}{3}\right) \quad \text { and } \quad z_{4}=z_{5}=z_{6}=z_{7}=\frac{1}{\sqrt{6}}(1+i \sqrt{5})
\end{gathered}
\]
- \(\mathrm{AdS}_{4}\) radius \(L^{2}=-3 / V_{0} \quad \& \quad\) scalar mass spectrum :
\[
V_{0}=-\frac{162}{25 \sqrt{5}} g^{2} c^{-1}
\]
\[
m^{2} L^{2}=0(\times 28), \quad 4 \pm \sqrt{6}(\times 2), \quad-2(\times 2)
\]
\[
-\frac{14}{9}+5 \chi_{i}^{2} \pm \frac{1}{3} \sqrt{4+45 \chi_{i}^{2}}(\times 2) \quad i=1,2,3
\]
\[
-\frac{14}{9}+\frac{5}{4} \chi_{i}^{2} \pm \frac{1}{6} \sqrt{16+45 \chi_{i}^{2}}(\times 2) \quad i=1,2,3
\]
\[
\frac{7}{9}+\frac{5}{4} \chi_{i}^{2}(\times 2) \quad i=1,2,3
\]
- Flavour symmetry enhancements :
\[
-2+\frac{5}{4}\left(\chi_{i}-\chi_{j}\right)^{2}(\times 2) \quad i<j
\]
\[
\begin{gathered}
\mathbf{U}(\mathbf{1})^{\mathbf{2}} \rightarrow \mathbf{S U}(\mathbf{2}) \times \mathbf{U}(\mathbf{1}) \rightarrow \mathbf{S U ( 3 )} \\
\chi_{i}=\chi_{j} \quad \chi_{1,2,3}=0
\end{gathered}
\]

\section*{\(\mathrm{N}=2\) family of \(\mathrm{AdS}_{4}\) vacua with \(\mathrm{U}(1) \times \mathrm{U}(1)_{\mathrm{R}}\) symmetry}
- Location :
[1 free parameter]
\[
z_{1}=-\bar{z}_{3}=c\left(-\chi+i \frac{1}{\sqrt{2}}\right), \quad z_{2}=i c, \quad z_{4}=z_{6}=i \quad \text { and } \quad z_{5}=z_{7}=\frac{1}{\sqrt{2}}(1+i)
\]
- \(\mathrm{AdS}_{4}\) radius \(L^{2}=-3 / V_{0}\) \& scalar mass spectrum :
\[
V_{0}=-3 g^{2} c^{-1}
\]
\[
\begin{aligned}
m^{2} L^{2}= & 0(\times 30), \quad 3 \pm \sqrt{17}(\times 2), \quad-2(\times 4), \quad 2(\times 6), \quad-2+4 \chi^{2}(\times 6) \\
& -1+4 \chi^{2} \pm \sqrt{16 \chi^{2}+1}(\times 2), \quad \chi^{2} \pm \sqrt{\chi^{2}+2}(\times 8)
\end{aligned}
\]
- Flavour symmetry enhancement :
\[
\begin{aligned}
\mathrm{U}(1) & \rightarrow \mathbf{S U}(2) \\
\chi & =0
\end{aligned}
\]

\section*{\(\mathrm{N}=4 \quad \mathrm{AdS}_{4}\) vacuum with \(\mathrm{SO}(4)_{\mathrm{R}}\) symmetry}
[ AG, Sterckx, Trigiante '20]
- Location :
\[
z_{1}=z_{2}=z_{3}=i c \quad \text { and } \quad z_{4}=z_{5}=z_{6}=-\bar{z}_{7}=\frac{1}{\sqrt{2}}(1+i)
\]
- \(\mathrm{AdS}_{4}\) radius \(L^{2}=-3 / V_{0} \quad \& \quad\) scalar mass spectrum :
\[
V_{0}=-3 g^{2} c^{-1}
\]
\[
m^{2} L^{2}=0(\times 48), \quad 10(\times 1), \quad 4(\times 10), \quad-2(\times 11)
\]

Next step : Uplift to type IIB on \(\mathbb{R} \times \mathrm{S}^{5}\) using \(\mathrm{E}_{7(7) \text {-EFT }}\)

\section*{S-folds in 10D}

\section*{Generalised Scherk-Schwarz reductions of \(\mathrm{E}_{7(7) \text { - }}\)-FT}
[ Hohm, Samtleben '14]
[ Baguet, Hohm, Samtleben '15]
[ Inverso, Samtleben, Trigiante '16]
- SL(8) twist (geometry) :
\(y^{i=1 \ldots 5}\) (elec),\(\tilde{y}_{1}=\sinh \eta\) (mag)
\[
\begin{aligned}
\rho & =\stackrel{\circ}{\rho}\left(\tilde{y}_{1}\right) \hat{\rho}\left(y^{i}\right) \\
\left(U^{-1}\right)_{A}^{B} & =\left(\frac{\stackrel{\circ}{\hat{\rho}}}{\hat{\rho}}\right)^{\frac{1}{2}}\left(\begin{array}{cccc}
1 & 0 & 0 & -\grave{\rho}^{-2} c \tilde{y}_{1} \\
0 & \delta^{i j}+\hat{K} y^{i} y^{j} & -\lambda \hat{\rho}^{2} y^{i} & 0 \\
0 & -\lambda \hat{\rho}^{2} y^{j} \hat{K} & \hat{\rho}^{4} & 0 \\
-\grave{\rho}^{-2} c \tilde{y}_{1} & 0 & 0 & \grave{\rho}^{-4}\left(1+\tilde{y}_{1}^{2}\right)
\end{array}\right)
\end{aligned}
\]
- EFT fields \(=\) Twist \(\times 4 \mathrm{D}\) fields :
\[
\begin{aligned}
g_{\mu \nu}(x, Y) & =\rho^{-2}(Y) g_{\mu \nu}(x) \\
\mathcal{M}_{M N}(x, Y) & =U_{M}^{K}(Y) U_{N}{ }^{L}(Y) M_{K L}(x)
\end{aligned}
\]
\[
\begin{aligned}
G^{m n} & =G^{1 / 2} \mathcal{M}^{m n} \\
\mathbb{B}_{m n}{ }^{\alpha} & =G^{1 / 2} G_{m p} \epsilon^{\alpha \beta} \mathcal{M}^{p}{ }_{n \beta} \\
m_{\alpha \beta} & =\frac{1}{6} G\left(\mathcal{M}^{m n} \mathcal{M}_{m \alpha}{ }_{n \beta}+\mathcal{M}^{m}{ }_{k \alpha} \mathcal{M}^{k}{ }_{m \beta}\right) \\
C_{k l m n} & =-\frac{1}{4} G^{1 / 2} G_{k \rho} \mathcal{M}^{\rho}{ }_{l m n}+\frac{3}{8} \epsilon_{\alpha \beta} \mathbb{B}_{k[l}{ }^{\alpha} \mathbb{B}_{m n]}{ }^{\beta}
\end{aligned}
\]
- Type IIB fields = EFT fields :

Flavour : SO(6)~S5
\[
\begin{aligned}
d s_{10}^{2} & =\frac{1}{\sqrt{2}} d s_{\mathrm{AdS}_{4}}^{2}+\frac{1}{2} d \eta^{2}+d{\stackrel{s}{\mathrm{~S}^{5}}}_{2}^{2} \\
\widetilde{F}_{5} & =4(1+\star) \mathrm{vol}_{5} \\
\mathbb{B}^{\alpha} & =A^{\alpha}{ }_{\beta} \mathfrak{b}^{\beta}=0 \\
m_{\alpha \beta} & =\left(A^{-t}\right)_{\alpha}{ }^{\gamma} \mathfrak{m}_{\gamma \delta}\left(A^{-1}\right)^{\delta}{ }_{\beta}
\end{aligned}
\]

No untwisted limit !!
( genuinely dyonic )
\[
\text { with } \mathfrak{m}_{\gamma \delta}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad A^{\alpha}{ }_{\beta} \equiv\left(\begin{array}{cc}
\cosh \eta & \sinh \eta \\
\sinh \eta & \cosh \eta
\end{array}\right)
\]
\[
\left[\mathbb{R} \rightarrow \mathrm{S}^{1} \Leftrightarrow \text { (hyperbolic) } \mathrm{SO}(1,1) \text {-twist = monodromy }\right]
\]
\[
\mathfrak{M}_{\mathrm{S}^{1}}=A^{-1}(\eta) A(\eta+T)=\binom{\cosh T \sinh T}{\sinh T \cosh T}
\]

Flavour: SU(3)~CP \({ }^{2}\)
\[
\begin{aligned}
& d s_{10}^{2}=\frac{3 \sqrt{6}}{10} d s_{\mathrm{AdS}_{4}}^{2}+\frac{1}{3} \sqrt{\frac{10}{3}} d \eta^{2}+\left[\sqrt{\frac{5}{6}} d s_{\mathbb{C P}^{2}}^{2}+\sqrt{\frac{6}{5}} \boldsymbol{\eta}^{2}\right] \\
& \widetilde{F}_{5}=3\left(\frac{6}{5}\right)^{\frac{3}{4}}(1+\star) \operatorname{vol}_{5} \\
& \mathbb{B}^{\alpha}=A^{\alpha}{ }_{\beta} \mathfrak{b}^{\beta}=A^{\alpha}{ }_{\beta}\left(-\frac{5}{12} H^{\beta}{ }_{\gamma}\left(z_{i}\right) \mathbf{\Omega}^{\gamma}\right) \\
& m_{\alpha \beta}=\left(A^{-t}\right)_{\alpha}{ }^{\gamma} \mathfrak{m}_{\gamma \delta}\left(A^{-1}\right)^{\delta}{ }_{\beta} \quad \quad\left[\text { charged under } \mathrm{U}(1)_{\eta}\right]
\end{aligned}
\]
\[
\text { with } \mathfrak{m}_{\gamma \delta}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad A^{\alpha}{ }_{\beta} \equiv\left(\begin{array}{cc}
\cosh \eta & \sinh \eta \\
\sinh \eta & \cosh \eta
\end{array}\right)
\]
[ (hyperbolic) SO(1,1)-twist ]

No untwisted limit !!
( genuinely dyonic )

\section*{\(\mathrm{N}=2\) \& \(\mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{R}}\) solution}

Flavour: SU(2) ~ S \({ }^{2}\)
( genuinely dyonic )
\[
\begin{gathered}
d s^{2}=\frac{1}{2} \Delta^{-1}\left[d s_{\mathrm{AdS}_{4}}^{2}+d \eta^{2}+d \theta^{2}+\sin ^{2} \theta d \phi^{2}+\cos ^{2} \theta\left(\sigma_{2}^{2}+8 \Delta^{4}\left(\sigma_{1}^{2}+\sigma_{3}^{2}\right)\right)\right] \\
\Delta^{-4}=6-2 \cos (2 \theta)
\end{gathered}
\]
\[
\widetilde{F}_{5}=4 \Delta^{4} \sin \theta \cos ^{3} \theta(1+\star)\left[3 d \theta \wedge d \phi \wedge \sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right.
\]
\[
\left.-d \eta \wedge\left(\cos (2 \phi) d \theta-\frac{1}{2} \sin (2 \theta) \sin (2 \phi) d \phi\right) \wedge \sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right]
\]
\(\mathbb{B}^{\alpha}=A^{\alpha}{ }_{\beta} \mathfrak{b}^{\beta} \quad\) with
\[
\mathfrak{b}_{1}=\frac{1}{\sqrt{2}} \cos \theta\left[\left(\sin \phi d \theta+\frac{1}{2} \sin (2 \theta) d(\sin \phi)\right) \wedge \sigma_{2}+\sin \phi \frac{4 \sin (2 \theta)}{6-2 \cos (2 \theta)} \sigma_{1} \wedge \sigma_{3}\right]
\]
\[
\mathfrak{b}_{2}=\frac{1}{\sqrt{2}} \cos \theta\left[\left(\cos \phi d \theta+\frac{1}{2} \sin (2 \theta) d(\cos \phi)\right) \wedge \sigma_{2}+\cos \phi \frac{4 \sin (2 \theta)}{6-2 \cos (2 \theta)} \sigma_{1} \wedge \sigma_{3}\right]
\]
\[
m_{\alpha \beta}=\left(A^{-t}\right)_{\alpha}{ }^{\gamma} \mathfrak{m}_{\gamma \delta}\left(A^{-1}\right)^{\delta}{ }_{\beta} \quad \text { with } \quad \mathfrak{m}_{\gamma \delta}=2 \Delta^{2}\left(\begin{array}{cc}
1+\sin ^{2} \theta \cos ^{2} \phi & -\frac{1}{2} \sin ^{2}(\theta) \sin (2 \phi) \\
-\frac{1}{2} \sin ^{2}(\theta) \sin (2 \phi) & 1+\sin ^{2} \theta \sin ^{2} \phi
\end{array}\right)
\]

\section*{Holographic RG flows on the D3-brane}

RG flows \(=\) (flat sliced \()\) domain-walls : \(\quad d s_{\mathrm{DW}_{4}}^{2}=e^{2 A(z)} \eta_{\alpha \beta} d x^{\alpha} d x^{\beta}+d z^{2}\)

BPS flow equations :
\[
\partial_{z} A=\mp|\mathcal{W}| \quad \text { and } \quad \partial_{z} \Sigma^{I}= \pm K^{I J} \partial_{\Sigma^{J}}|\mathcal{W}|
\]
\[
\text { with } \quad \mathcal{W}=e^{\frac{K}{2}} W=m_{3 / 2}
\]

\section*{D3-brane and \(\mathrm{N}=4\) super Yang-Mills}
- \(\boldsymbol{c}=\mathbf{0}: \quad \mathrm{D} 3\)-brane \(\leftrightarrow \mathrm{AdS}_{5} \leftrightarrow \mathrm{DW}_{4}\)
[ \(\mathrm{DW}_{4}\) metric] \(\quad\left[\mathrm{AdS}_{5}\right.\) metric]
\[
\begin{aligned}
d s_{10}^{2} & =\frac{1}{2} g^{2} \Delta^{-1}\left(z_{i}\right)\left(e^{2 A(z)} \eta_{\alpha \beta} d x^{\alpha} d x^{\beta}+d z^{2}\right)+\Delta^{2}\left(z_{i}\right) d \eta^{2}+d s_{S^{5}}^{2} \\
\widetilde{F}_{5} & =4 g(1+\star) \operatorname{vol}_{5} \quad, \quad \mathbb{B}^{\alpha}=0, \\
m_{\alpha \beta} & =\left(\begin{array}{cc}
e^{-\Phi_{0}} & 0 \\
0 & e^{\Phi_{0}}
\end{array}\right) .
\end{aligned}
\]

Note: \(\Delta\left(z_{i}\right)=\left|z_{4,5,6,7}\right|^{-1} \operatorname{Im} z_{4,5,6,7} \operatorname{Im} z_{1,2,3}\)
\(\mathrm{DW}_{4}\) domain-wall ( \(\mathrm{SYM}_{4}\) )
\[
z_{1,2,3}=-\chi_{1,2,3}^{(0)}+i \frac{(g z)^{2}}{8} \quad, \quad z_{4}=z_{5}=z_{6}=z_{7}=i e^{-\frac{1}{2} \Phi_{0}} \quad \text { and } \quad e^{A}=(g z)^{3}
\]
[3 free parameters ]
BPS equations require \(\quad \sum_{i=1}^{3} \operatorname{Re} z_{i}=-\sum_{i=1}^{3} x_{i}^{(0)}=0\)

\section*{Deformed D3-brane}
- \(\boldsymbol{c} \neq \mathbf{0}\) : Expansion of BPS equations in powers of \(\frac{c}{(g z)^{2}}\)
[ quadratic order ]
... so this time
\[
\sum_{i=1}^{3} \operatorname{Re} z_{i}=c \sinh \Phi_{0}\left(1-384 \cosh ^{2} \Phi_{0} \frac{c^{2}}{(g z)^{4}} \log (g z)\right)
\]

\section*{(IR ) \(\mathrm{N}=1 \& \mathrm{SU}(3) J\)-fold \(\mathrm{CFT}_{3} \leadsto \mathrm{SYM}_{4}(\mathrm{UV})\)}
\[
\left.\begin{array}{rrrrrrrrr}
m^{2} L^{2}= & -\frac{20}{9}(\times 3) & , & -2(\times 2) & , & -\frac{8}{9}(\times 3) & ; & 0(\times 2) & ;
\end{array}\right) 4-\sqrt{6}(\times 2), r \sqrt{6}(\times 2)
\]
[ 2 irrelevant operators]


\section*{(IR ) \(\mathrm{N}=1 \& \mathrm{SU}(3) J\)-fold \(\mathrm{CFT}_{3} \leadsto \mathrm{SYM}_{4}(\mathrm{UV})\)}
\[
\left.\begin{array}{rrrrrrrrr}
m^{2} L^{2}= & -\frac{20}{9}(\times 3) & , & -2(\times 2) & , & -\frac{8}{9}(\times 3) & ; & 0(\times 2) & ;
\end{array}\right) 4-\sqrt{6}(\times 2), r \sqrt{6}(\times 2)
\]
[ 2 irrelevant operators ]


\[
d s_{10}^{2}=\frac{1}{2} \Delta^{-1}\left(d s_{\mathrm{DW}_{4}}^{2}+2(g c)^{-2} \Delta H\left(z_{i}\right) d \eta^{2}\right)+g^{-2} F\left(z_{i}\right)\left[d s_{\mathbb{C P}_{2}}^{2}+F\left(z_{i}\right)^{-2} \boldsymbol{\eta}^{2}\right]
\]
with \(\quad F\left(z_{i}\right)=\left|z_{4,5,6,7}\right|^{-1} \operatorname{Im} z_{4,5,6,7} \quad H\left(z_{i}\right)=F\left(z_{i}\right)^{-1}\left(\operatorname{Im} z_{1,2,3}\right)^{2} \quad \Delta=F\left(z_{i}\right) \operatorname{Im} z_{1,2,3}\)
\[
\begin{aligned}
\mathbb{B}^{\alpha} & =A^{\alpha}{ }_{\beta} \mathfrak{b}^{\beta} \text { with } \mathfrak{b}^{2}+i\left|z_{4,5,6,7}\right|^{2} \mathfrak{b}^{1}=-i g^{-2} \operatorname{Re} z_{4,5,6,7} \boldsymbol{\Omega} \\
m_{\alpha \beta} & =\left(A^{-t}\right)_{\alpha}{ }^{\gamma} \mathfrak{m}_{\gamma \delta}\left(A^{-1}\right)^{\delta}{ }_{\beta} \quad \text { with } \quad \mathfrak{m}_{\gamma \delta}=\left(\begin{array}{cc}
\left|z_{4,5,6,7}\right|^{2} & 0 \\
0 & \left|z_{4,5,6,7}\right|^{-2}
\end{array}\right) \\
\widetilde{F}_{5} & =g(1+\star)\left[\left(4-6\left(1-F\left(z_{i}\right)^{2}\right)\right) \operatorname{vol}_{\mathbb{C} \mathbb{P}_{2}} \wedge\left(\boldsymbol{\eta}-\operatorname{Re} z_{1,2,3} d \eta\right)\right. \\
& +\left(4 \operatorname{Re} z_{1,2,3}+\left(\operatorname{Re} z_{4,5,6,7}\right)^{2}\left(1-\left|z_{4,5,6,7}\right|^{-4}\right)\right) \operatorname{vol}_{\mathbb{C P}_{2}} \wedge d \eta \\
& \left.-d \operatorname{Re} z_{1,2,3} \wedge d \eta \wedge \boldsymbol{J} \wedge\left(\boldsymbol{\eta}-\operatorname{Re} z_{1,2,3} d \eta\right)\right] .
\end{aligned}
\]

\section*{10D flows}

Geometry
\[
\boldsymbol{\eta}=d \beta+\operatorname{Re} z_{1,2,3} d \eta+\boldsymbol{A}_{1}
\]
\[
d s_{10}^{2}=\frac{1}{2} \Delta^{-1}\left(d s_{\mathrm{DW}_{4}}^{2}+2(g c)^{-2} \Delta H\left(z_{i}\right) d \eta^{2}\right)+g^{-2} F\left(z_{i}\right)\left[d s_{\mathbb{C P}_{2}}^{2}+F\left(z_{i}\right)^{-2} \eta^{2}\right]
\]
with \(\quad F\left(z_{i}\right)=\left|z_{4,5,6,7}\right|^{-1} \operatorname{Im} z_{4,5,6,7} \quad H\left(z_{i}\right)=F\left(z_{i}\right)^{-1}\left(\operatorname{Im} z_{1,2,3}\right)^{2} \quad \Delta=F\left(z_{i}\right) \operatorname{Im} z_{1,2,3}\)
\[
\begin{aligned}
& \mathbb{H}^{\alpha}=A^{\alpha}{ }_{\beta}\left(d \eta \wedge \mathfrak{b}^{\gamma} \theta_{\gamma}{ }^{\beta}+d \mathfrak{b}^{\beta}\right) \quad \text { with } \quad \mathfrak{b}^{2}+i\left|z_{4,5,6,7}\right|^{2} \mathfrak{b}^{1}=-i g^{-2} \operatorname{Re} z_{4,5,6,7} \boldsymbol{\Omega} \\
& d m_{\alpha \beta}=-\left(\left|z_{4,5,6,7}\right|^{2}+\left|z_{4,5,6,7}\right|^{-2}\right)\left(A^{-t} \theta A^{-1}\right)_{\alpha \beta} d \eta+\ldots \\
& \widetilde{F}_{5}=g(1+\star)\left[\left(4-6\left(1-F\left(z_{i}\right)^{2}\right)\right) \operatorname{vol}_{\mathbb{C P}}^{2}\right. \\
& \wedge\left(\boldsymbol{\eta}-\operatorname{Re} z_{1,2,3} d \eta\right) \\
&+\left(4 \operatorname{Re} z_{1,2,3}+\left(\operatorname{Re} z_{4,5,6,7}\right)^{2}\left(1-\left|z_{4,5,6,7}\right|^{-4}\right)\right) \operatorname{vol}_{\mathbb{C P}_{2}} \wedge d \eta \\
&\left.-d \operatorname{Re} z_{1,2,3} \wedge d \eta \wedge \boldsymbol{J} \wedge\left(\boldsymbol{\eta}-\operatorname{Re} z_{1,2,3} d \eta\right)\right] .
\end{aligned} \quad\left[\text { anisotropy in } \mathrm{SYM}_{4}\right] \quad . \quad . \quad .
\]

\section*{Axions in 10D}
\(\operatorname{SU}(3)\) symmetry: \(\quad \beta^{\prime}=\beta-\chi_{1,2,3}^{(0)} \eta \quad[\) = coordinate redefinition (locally) ]

General case :
\[
\theta_{1}^{\prime}=\theta_{1}+g \chi_{1}^{(0)} \eta \quad, \quad \theta_{2}^{\prime}=\theta_{2}+g \chi_{2}^{(0)} \eta \quad, \quad \theta_{3}^{\prime}=\theta_{3}-g \chi_{3}^{(0)} \eta
\]
\[
\mathrm{S}^{5} \text { metric : } \quad d{\stackrel{\circ}{S^{5}}}_{2}=d \alpha^{2}+\cos ^{2} \alpha d \theta_{1}^{2}+\sin ^{2} \alpha\left(d \beta^{2}+\cos ^{2} \beta d \theta_{2}^{2}+\sin ^{2} \beta d \theta_{3}^{2}\right)
\]
... so axions induce a fibration of \(S^{5}\) over \(S^{1}\) characterised by a non-trivial monodromy
\[
h(T)=\left(\begin{array}{ccc}
h_{1} & & \\
& h_{2} & \\
& & h_{3}
\end{array}\right) \quad \text { with } \quad h_{i}=\exp \left(i \chi_{i}^{(0)} \sigma_{2} T\right) \in \mathrm{SO}(2) \quad \chi_{i} \rightarrow \chi_{i}+n_{i} \frac{2 \pi}{T}
\]

Global breaking of symmetries of \(S^{5} \Rightarrow\) matching patterns of symmetry breaking @ AdS 4 vacua !
* KK spectrum at the \(\mathrm{N}=2\) S-fold periodic under \(\chi \rightarrow \chi+2 \pi / T\)
[ Giambrone, Malek, Samtleben, Trigiante '21 ]
\[
\begin{aligned}
& D=10 \begin{array}{c}
\text { Type IIB on } \\
\mathrm{S}^{5} \times \mathrm{S}^{1} \\
\hline
\end{array} \\
& \mathrm{E}_{7(7)} \text {-ExFT } \\
& \text { uplift } \\
& \text { Local change of } \\
& \xrightarrow[\theta_{i}^{\prime}=\theta_{i} \pm \chi_{i} \eta]{\stackrel{\text { coordinates }}{\longrightarrow}} \\
& \uparrow \begin{array}{c}
\mathrm{E}_{7(7)}-\mathrm{ExFT} \\
\text { uplift }
\end{array} \\
& D=4 \\
& \chi_{i}=0 \\
& \chi_{i} \neq 0
\end{aligned}
\]

Ex: N=1 S-folds:
[ \(\mathrm{CP}^{2}\) factor]
\[
\begin{aligned}
& \phi \rightarrow \phi-\left(\chi_{1}-\chi_{2}\right) \eta \\
& \psi \rightarrow \psi-\left(\chi_{1}+\chi_{2}-2 \chi_{3}\right) \eta
\end{aligned}
\]
[ U(1) fiber ]
\[
\begin{aligned}
& \beta \rightarrow \beta-\chi_{3} \eta \\
& \sum_{i=1}^{3} \chi_{i}=0
\end{aligned}
\]

Ex: D3-brane:
\[
\begin{array}{r}
\theta_{i} \rightarrow \theta_{i}+\chi_{i}^{(0)} \eta \\
\sum_{i=1}^{3} \chi_{i}^{(0)} \neq 0
\end{array}
\]
[ SU(4) monodromy to break \(\mathrm{SU}(4)\) symmetry ]

\section*{4 D vs 5D}

Relevant branching: \(\mathrm{SU}(8) \supset \mathrm{USp}(8) \quad \supset \mathrm{SU}(4) \times \mathrm{U}(1)_{S}\)
5D
\[
\begin{array}{cl}
\mathrm{SU}(4) \times \mathrm{U}(1)_{S} & \supset \mathrm{SU}(3) \times \mathrm{U}(1) \times \mathrm{U}(1)_{S} \\
\hline \mathbf{1}_{4}+\mathbf{1}_{-4} & \rightarrow \mathbf{1}_{(0,4)}+\mathbf{1}_{(0,-4)} \\
\mathbf{1 0}_{-2}+\overline{\mathbf{1 0}}_{2} & \rightarrow\left(\overline{\mathbf{6}}_{(2,-2)}+\mathbf{3}_{(-2,-2)}+\mathbf{1}_{(-6,-2)}\right)+\left(\mathbf{6}_{(-2,2)}+\overline{\mathbf{3}}_{(2,2)}+\mathbf{1}_{(6,2)}\right) \\
\mathbf{2 0}^{\prime}{ }_{0} & \rightarrow \overline{\mathbf{6}}_{(-4,0)}+\mathbf{8}_{(0,0)}+\mathbf{6}_{(4,0)} \\
\hline \mathbf{1 5}_{0} & \rightarrow \mathbf{8}_{(0,0)}+\mathbf{3}_{(4,0)}+\overline{\mathbf{3}}_{(-4,0)}+\mathbf{1}_{(0,0)} \\
\mathbf{6}_{2}+\mathbf{6}_{-2} & \rightarrow\left(\mathbf{3}_{(-2,2)}+\overline{\mathbf{3}}_{(2,2)}\right)+\left(\mathbf{3}_{(-2,-2)}+\overline{\mathbf{3}}_{(2,-2)}\right) \\
\hline \mathbf{1}_{0} & \rightarrow \mathbf{1}_{(0,0)}
\end{array}
\]

\section*{5D scalars}
\(\mathrm{E}_{6(6)} / \mathrm{USp}(8)\)

\section*{5D}

4D scalars
\(\mathrm{E}_{7(7)} / \mathrm{SU}(8)\)

Relevant branching: \(\mathrm{SU}(8) \supset \mathrm{USp}(8) \quad \supset \mathrm{SU}(4) \times \mathrm{U}(1)_{S}\)
4D
5D
\[
\begin{array}{cl}
\mathrm{SU}(4) \times \mathrm{U}(1)_{S} & \supset \mathrm{SU}(3) \times \mathrm{U}(1) \times \mathrm{U}(1)_{S} \\
\hline \mathbf{1}_{4}+\mathbf{1}_{-4} & \rightarrow \mathbf{1}_{(0,4)}+\mathbf{1}_{(0,-4)} \\
\mathbf{1 0}_{-2}+\overline{\mathbf{1 0}}_{2} & \rightarrow\left(\overline{\mathbf{6}}_{(2,-2)}+\mathbf{3}_{(-2,-2)}+\mathbf{1}_{(-6,-2)}\right)+\left(\mathbf{6}_{(-2,2)}+\overline{\mathbf{3}}_{(2,2)}+\mathbf{1}_{(6,2)}\right) \\
\mathbf{2 0}^{\prime}{ }_{0} & \rightarrow \overline{\mathbf{6}}_{(-4,0)}+\mathbf{8}_{(0,0)}+\mathbf{6}_{(4,0)} \\
\hline \mathbf{1 5}_{0} & \rightarrow \mathbf{8}_{(0,0)}+\mathbf{3}_{(4,0)}+\overline{\mathbf{3}}_{(-4,0)}+\mathbf{1}_{(0,0)} \\
\mathbf{6}_{2}+\mathbf{6}_{-2} & \rightarrow\left(\mathbf{3}_{(-2,2)}+\overline{\mathbf{3}}_{(2,2)}\right)+\left(\mathbf{3}_{(-2,-2)}+\overline{\mathbf{3}}_{(2,-2)}\right) \\
\hline \mathbf{1}_{0} & \rightarrow \mathbf{1}_{(0,0)}
\end{array}
\]

\section*{5D scalars}
\(\mathrm{E}_{6(6)} / \mathrm{USp}(8)\)

\section*{5D}

5D metric

4D scalars
\(\mathrm{E}_{7(7)} / \mathrm{SU}(8) \quad\) [ coupling \(\mathrm{N}=4 \mathrm{SYM}_{4}\) to off-shell conformal supergravity ]
\(\longmapsto \mathrm{SU}(3)\)-invariant one-form \(V_{\mu}\) deformation of \(\mathrm{N}=4 \mathrm{SYM}_{4}\)

\section*{Concluding remarks...}

[ Bobev, Gautason, Pilch, Suh, van Muiden '19, '20 ]
* New families of \(\mathrm{N}=1,2 \mathrm{~S}\)-folds and RG flows
* Conformal manifold of 3d N=2 S-fold CFT's
[ Giambrone, Malek, Samtleben, Trigiante '21]
[ Arav, (Cheung), Gauntlett, Roberts, Rosen '21]
[ Bobev, Gautason, van Muiden '21 ]
*Global aspects of axions ? , 5D picture ? , KK spectra ? , Brane set-ups ? ....

Thank you!

\section*{Extra material}

\section*{Singular Janus \& S-fold interpretation}
- Singular Janus (linear dilaton ): \(\quad \Phi\left(\eta, y^{i}\right)=-2 \eta+f\left(y^{i}\right) \quad\left[S^{5}\right.\) coordiantes \(\left.y^{i}\right]\)
- \(\mathbb{R} \rightarrow \mathrm{S}^{1} \Leftrightarrow\) hyperbolic monodromy : \(\quad \mathfrak{M}_{\mathrm{S}^{1}}=A^{-1}(\eta) A(\eta+T)=\binom{\cosh T \sinh T}{\sinh T \cosh T}\)
- Generalising the \(A\)-twist to a \(k\)-family \((k>2)\) :

Then
\[
A_{(k)}=A g(k) \quad \text { with } \quad g(k)=\left(\begin{array}{cc}
\frac{\left(k^{2}-4\right)^{\frac{1}{4}}}{\sqrt{2}} & 0 \\
\frac{k}{\sqrt{2}\left(k^{2}-4\right)^{\frac{1}{4}}} & \frac{\sqrt{2}}{\left(k^{2}-4\right)^{\frac{1}{4}}}
\end{array}\right)
\]
\[
\mathfrak{M}(k)=A_{(k)}^{-1}(\eta) A_{(k)}(\eta+T(k))=\left(\begin{array}{cc}
k & 1 \\
-1 & 0
\end{array}\right)=-\mathcal{S} \mathcal{T}^{k} \in \mathrm{SL}(2, \mathbb{Z})_{\mathrm{IIB}}
\]
with \(\quad T(k)=\log \left(k+\sqrt{k^{2}-4}\right)-\log (2) \quad\) and \(\quad \operatorname{Tr} \mathfrak{M}(k)>2 . \quad\) [ hyperbolic ]

\section*{(IR ) \(\mathrm{N}=2\) \& \(\mathrm{SU}(2) J\)-fold \(\mathrm{CFT}_{3} \leadsto \mathrm{SYM}_{4}(\mathrm{UV})\)}
\[
\begin{array}{rrrrrrr}
m^{2} L^{2}=-2(\times 4), & 3-\sqrt{17}(\times 2) & ; & 0(\times 2) & ; & 2(\times 4), & 3+\sqrt{17}(\times 2) \\
\Delta_{+}= & \mathbf{2}(\times 2), & \frac{\mathbf{1}}{\mathbf{2}}(\mathbf{1}+\sqrt{\mathbf{1 7}})(\times 2) ; & 3 & ; & \frac{\mathbf{1}}{\mathbf{2}}(\mathbf{3}+\sqrt{\mathbf{1 7}})(\times 2), & \frac{1}{2}(5+\sqrt{17}) \\
\Delta_{-}= & \mathbf{1}(\times 2), & \frac{1}{2}(5-\sqrt{17}) ; & \mathbf{0}(\times 2) & ; & \frac{\mathbf{1}}{\mathbf{2}}(\mathbf{3}-\sqrt{\mathbf{1 7}})(\times 2), & \frac{\mathbf{1}}{\mathbf{2}}(\mathbf{1}-\sqrt{\mathbf{1 7}})(\times 2)
\end{array}
\]
[ 4 irrelevant operators ]


\section*{\((\mathrm{IR}) \mathrm{N}=4 J\)-fold \(\mathrm{CFT}_{3} \leadsto \mathrm{SYM}_{4}\) (UV )}
\[
\begin{array}{rrrrrr}
m^{2} L^{2} & =-2(\times 3) & ; & 0(\times 6) & ; & 4(\times 4)
\end{array} \quad, \quad 10(\times 1)
\]
[ 4 irrelevant operators]
```

