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Electric-magnetic  duality  in  maximal  supergravity



Ungauged  (abelian)  supergravity:   Reduction  of  M-theory  on  a  torus  T7 
down to 4D produces  N = 8  supergravity with  G = U(1)28

Gauged (non-abelian) supergravity: 

❖ M-theory on   !   produces  N = 8  supergravity with  G = SO(8)

❖ Type IIA on   !   produces  N = 8  supergravity with

❖ Type IIB on               produces  N = 8  supergravity with

S7
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N=8  supergravity in 4D

 • SUGRA  :      metric  +  8 gravitini  +  28 vectors  +  56 dilatini  +  70 scalars
(s = 2)             (s = 3/2)                (s = 1)               (s = 1/2)                (s = 0)       

✱  These supergravities believed to be unique for 30 years…

[ Cremmer, Julia ’79 ] 

[ de Wit, Nicolai ’82 ] 
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[ Hull ’84 ] 

SO(8)c     vs    ISO(7)c 
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SO(8)c  theories  :  physical meaning in 4D
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G = SO(8)

D = @ � g (Aelec � c Ãmag)

! = Arg(1 + ic)
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Why ISO(7)c works ?
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SO(7)

R7

G = ISO(7) = SO(7)n R7

! = Arg(1 + ic)

D = @ � g Aelec

SO(7)
� g (Aelec

R7 � c ÃR7 mag)
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Higher-dimensional origin?
Obstruction for SO(8)c ,  cf.  [ de Wit, Nicolai ’13 ]

[ Lee, Strickland-Constable, Waldram ’15 ] 

G = [ SO(1, 1)⇥ SO(6) ]n R12
<latexit sha1_base64="H1L1l9KRRTRYPi0fRceWEY5dlRY="></latexit>

[ Inverso, Samtleben, Trigiante ’16 ] 

[ E7(7) symmetry ] 

R⇥ S5
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 1)  Family of  SO(8)c  theories  :  c = [0,           ] is a continuous parameter

Electric-magnetic deformations

Type IIB   :    AdS5  x  S5    ( D3-brane ~ N = 4  SYM  in  4d )    

M-theory :    AdS4  x  S7    ( M2-brane ~ ABJM  theory  in  3d )  

 • N=8 supergravity in 4D admits a deformation parameter   c   yielding  inequivalent 
theories.  It is an electric/magnetic deformation

 • Uniqueness historically inherited from the connection with NH geometries of branes 
and SCFT’s

D = @ � g (Aelec � c Ãmag)

 • There are  two generic situations : 

 2)  Family of  CSO(p,q,r)c  theories :  c = 0 or 1  is an  (on/off)  parameter                     

g = 4D gauge coupling
c = deformation param.

[ Dall’Agata, Inverso, Marrani ’14 ]

p
2� 1
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[ Dall’Agata, Inverso, Trigiante ’12 ] 

[ Maldacena ’97 ] 

[ Aharony, Bergman, Jafferis, Maldacena ’08 ] 



 The questions arise:   

 • Does such an electric/magnetic deformation of 4D maximal supergravity enjoy a  
    string/M-theory origin, or is it just a 4D feature ? 

 • For deformed 4D supergravities with supersymmetric AdS4  vacua, are these 
    AdS4/CFT3-dual to any identifiable 3d CFT ? 
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M-theory

electric/magnetic
deformation

higher-dimensional
origin

Holographic 
AdS4/CFT3 dual ?

X
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? ?
Obstruction for SO(8)c ,  cf.  [ de Wit, Nicolai ’13 ]

[ Lee, Strickland-Constable, Waldram ’15 ] 



(massive) Type IIA

electric/magnetic
deformation

higher-dimensional
origin

Holographic 
AdS4/CFT3 dual ?

X X X

g c = F̂(0) = k/(2⇡`s)
[ AG, Jafferis, Varela ’15 ] 
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[ AG, Varela ’15 ] 

[ AG, Tarrío, Varela ’16, ’19 ] 

[ AG, Tarrío & AG ’17 ] 
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Type IIB

electric/magnetic
deformation

higher-dimensional
origin

Holographic 
AdS4/CFT3 dual ?

X X X
[ this talk ]



❖  Higher-dimensional origin as type IIB on 

[ SO(1,1) × SO(6) ] ⋉ R12  supergravity

❖  Holographic expectation:   N=4  S-fold  CFT3

❖  New AdS4 vacuum with  N=4 & SO(4)R  symmetry

Question :   Holographic duals for  N = 0, 1, 2  S-fold CFT3 ? 

❖  Superconformal Janus interfaces in N=4  SYM4

N=4 N=2 & SU(2) N=1 & SU(3) N=0 & SO(6)

[ D’Hoker, Ester, Gutperle ’06 ( N = 1 , 2 , 4 ) ] 

[ Gaiotto, Witten ’08 ]
[ Assel, Tomasiello ’18 ( N = 3 , 4 ) ]

[ Garozzo, Lo Monaco, Mekareeya ’18 ’19 ]    
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[ Gallerati, Samtleben, Trigiante ’14 ] 

➡ Singular Janus solutions : AdS4 ⇥ R⇥M5
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M5 = S2 ⇥ S2 ⇥ I
<latexit sha1_base64="ZGg9p766DeLhXwCFXiZpXl5UiBU="></latexit>

[ J-fold  =  S-fold with hyperbolic monodromy  J  ]

[ Dall’Agata, Inverso  ’11 ]
[ Inverso, Samtleben, Trigiante ’16 ]

[ largest flavour symmetry ]

[ Bak, Gutperle, Hirano ’03 ( N = 0 ) ]
[ Clark, Freedman, Karch, Schnabl ’04 ]

[ D’Hoker, Ester, Gutperle ’07, ’07   ( N = 4 ) ]
[ Inverso, Samtleben, Trigiante ’16 ] 

[ Bobev, Gautason, Pilch, Suh, van Muiden ’19, ’20  (in 5D) ] 

R (or S1)⇥ S5
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[ Hull, (Çatal-Özer) ’04,  (’03) ] 

[ see also Bobev, Gautason, Pilch, Suh, van Muiden ’19, ’20 ] 
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D = 10

D = 4

D = 3

Type IIB & S-fold with AdS4 × S1 × S5 geometry

[SO(1, 1) × SO(6)] ! R12

gauging with an AdS4 vacuum

N = 4 SYM

with a localised interface

J-fold CFT3

Reduction

on R× S5
Uplift method : E7(7)-EFT involving

hyperbolic twists A(k) along S1

AdS4/CFT3

J ∈ SL(2,Z)IIB action

Figure 1. Type IIB S-folds with hyperbolic monodromies M(k) = −ST k along S1 and connection
with three-dimensional J-fold CFT’s.

The paper is organised as follows. In section 2 we perform a study of multi-parametric

families of AdS4 vacua in the [SO(1, 1)× SO(6)]! R12 maximal supergravity. We find four

families of vacua, one of them being N = 2 supersymmetric and containing a vacuum

with a residual symmetry enhancement to SU(2) × U(1). In section 3, by implementing

a generalised Scherk-Schwarz (S-S) ansatz in E7(7)-EFT, we uplift such an AdS4 vacuum

to a class of AdS4 × S1 × S5 N = 2 S-folds of type IIB supergravity with SU(2) × U(1)

symmetry and a non-trivial hyperbolic monodromy along S1. In section 4 we present our

conclusions and discuss future directions.

2 AdS4 vacua of [SO(1, 1) × SO(6)] ! R12 maximal supergravity

We continue the study of AdS4 vacua initiated in [31], and further investigated in [28]

and [32], for the dyonically-gauged maximal supergravity with non-abelian gauge group

G = [SO(1, 1)× SO(6)]! R12 . (2.1)

We will show how the AdS4 vacua of [28, 31, 32] actually correspond to very special points

(featuring residual symmetry enhancements) within multi-parametric families of solutions.

Each of these families preserves a given amount supersymmetry, namely, N = 0, 1, 2 or 4.

More specifically we find:

• A three-parameter family of N = 0&SU(2) symmetric AdS4 vacua with symmetry

enhancements to SU(2)×U(1)2, SU(3)×U(1) and SO(6) ∼ SU(4) at specific values

of the three arbitrary parameters.

• A two-parameter family of N = 1&U(1)2 symmetric AdS4 vacua with symmetry

enhancements to SU(2) × U(1) and SU(3) at specific values of the two arbitrary

parameters.

• A one-parameter family of N = 2&U(1)2 symmetric AdS4 vacua with a symmetry

enhancement to SU(2)×U(1) at a special value of the arbitrary parameter.

• A single N = 4&SO(4) symmetric AdS4 vacuum.

– 3 –

The picture…
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S-folds  in  4D



A truncation :          invariant sector
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Exponentiating (2.10) and (2.11) with coefficients ϕi and χi as

V = Exp

[
−12

7∑

i=1

χigχi

]
Exp

[
1

4

7∑

i=1

ϕigϕi

]
, (2.12)

yields a parameterisation of an MMN = VVt ∈ [SL(2)/SO(2)]7 subspace of the coset space

in (2.3). The kinetic terms in the resulting N = 1 sector follow from (2.2) and (2.12), and

are given by

Lkin = −1

4

7∑

i=1

[
(∂ϕi)

2 + e2ϕi(∂χi)
2
]
. (2.13)

These match the standard kinetic terms Lkin = −(∂2
zi,z̄jK)dzi ∧ ∗dz̄j for a set of seven

chiral fields zi with Kähler potential

K = −
7∑

i=1

log[−i(zi − z̄i)] . (2.14)

Lastly, when restricted to the Z3
2 invariant sector entering (2.12), the scalar potential, as

computed from (2.4), can be recovered from a holomorphic superpotential

W = 2g
[
z1z5z6 + z2z4z6 + z3z4z5 + (z1z4 + z2z5 + z3z6)z7

]
+ 2gc(1− z4z5z6z7) , (2.15)

using the standard N = 1 formula

VN=1 = eK
[
Kziz̄jDziWDz̄jW̄ − 3WW̄

]
, (2.16)

where DziW ≡ ∂ziW + (∂ziK)W is the Kähler derivative and Kziz̄j is the inverse of the

Kähler metric Kziz̄j ≡ ∂2
zi,z̄jK. Note that only the last term in the superpotential (2.15)

turns out to be sensitive to the electromagnetic parameter c.

2.3 New families of AdS4 vacua

A thorough study of the structure of extrema of the scalar potential (2.4), restricted to

the Z3
2 invariant sector, reveals a rich structure of (fairly) symmetric AdS4 vacua. We find

four families of vacua preserving N = 0, 1, 2 or 4 supersymmetry as well as various resid-

ual gauge symmetries ranging from U(1)2 to SO(6) ∼ SU(4). The three supersymmetric

families are also supersymmetric within the N = 1 model with seven chirals presented in

the previous section, and therefore satisfy the F-flatness conditions

DziW = 0 , (2.17)

that follow from the superpotential (2.15) and Kähler potential (2.14). Importantly, all the

AdS4 vacua we will present in this section are genuinely dyonic, namely, they disappear if

taking the limit c → 0 to a purely electric gauging of G in (2.1).

– 6 –
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N=4 & SO(4)R N=2 & SU(2) × U(1)R N=1 & SU(3) N=0 & SO(6)

               Most symmetric  AdS4  vacua within multi-parametric families !!

[ dyonic gauging ]

[ AG, Sterckx, Trigiante ’20 ] 

zi = ��i + i yi
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characterised by a Kähler potential of the form

K = �
7X

i=1

log[�i(zi � z̄i)] , (2.3)

and interact according to an N = 1 superpotential given by

W = 2 g
⇥
z1z5z6 + z2z4z6 + z3z4z5 + (z1z4 + z2z5 + z3z6) z7

⇤
+ 2 g c (1� z4z5z6z7) , (2.4)

which is originated from the gauging in the maximal theory. Truncating away the fermions
and vectors, the Lagrangian acquires an Einstein-scalar form and reads

e�1 LE-s = 1
2 R�KIJ @µ⌃I @µ⌃J � V ,

= 1
2 R� 1

4

7X

i=1

1

4y2i

⇥
(@yi)

2 + (@�i)
2
⇤
� V ,

(2.5)

where ⌃I = { y1 , �1 , y2 , �2 , . . . , y7 , �7 } denotes the real and imaginary components of
the complex fields zi . The kinetic matrix for these (real) fields reads

KIJ = diag

✓
1

4y21
,

1

4y21
,

1

4y22
,

1

4y22
, . . . ,

1

4y27
,

1

4y27

◆
. (2.6)

The scalar potential V can be recovered from the holomorphic superpotential (2.4) as

V = eK
h
Kziz̄j DziW Dz̄jW̄ � 3W W̄

i
, (2.7)

where DziW ⌘ @ziW + (@ziK)W is the Kähler derivative and Kziz̄j is the inverse of the
Kähler metric Kziz̄j ⌘ @2

zi,z̄jK . This is the N = 1 supergravity model we will be focused on
during the rest of the note.

In order to study RG flows holographically, we will investigate flat-sliced domain-wall
(DW4) solutions whose metric takes the form

ds2DW4
= e2A(z) ⌘↵� dx

↵dx� + dz2 with ⌘↵� = diag(�1, 1, 1) , (2.8)

where z 2 (�1,1) is the coordinate transverse to the domain-wall and A(z) is the scale
factor. Asking for the vanishing of the supersymmetry variations of fermions (gravitino and
chiralini) in the N = 1 supergravity model, one gets a set of first order equations

@zA = ⌥ |W| and @z⌃
I = ±KIJ @⌃J |W| . (2.9)

referred to as the BPS equations. The real superpotential |W| is constructed from the

(complex) gravitino mass W = e
K
2 W = m3/2 and fully specifies the BPS equations in (2.9).

3 S-folds and J-fold CFT3’s

The simplest solutions to the BPS equations (2.9) are supersymmetric AdS4 vacua. These
solutions have constant scalars and thus satisfy (2.9) provided

@⌃I |W| = 0 and A(z) = ⌥ |W0| z + cst , (3.1)

2

(yi > 0)
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N=0  family of  AdS4  vacua with  U(1)3  symmetry

J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√
2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)

2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj)

2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 ̸= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2) × U(1) → SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) , (2.22)
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2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√
2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)

2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj)

2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 ̸= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2) × U(1) → SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) , (2.22)
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2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√
2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)

2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj)

2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 ̸= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2) × U(1) → SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) , (2.22)
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U(1)
3 ! SU(2)⇥U(1)

2 ! SU(3)⇥U(1) ! SO(6)
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2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√
2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)

2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj)

2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 ̸= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2) × U(1) → SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) , (2.22)

– 7 –
J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√
2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)

2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj)

2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 ̸= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2) × U(1) → SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) , (2.22)
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J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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N=2  family of  AdS4  vacua with  U(1) x U(1)R  symmetry

J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×30) , 3±
√
17(×2) , −2(×4) , 2(×6) , −2 + 4χ2(×6)

− 1 + 4χ2 ±
√

16χ2 + 1(×2) , χ2 ±
√
χ2 + 2(×8) ,

(2.29)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×2) , 4(×2) , 2(×4) ,

4χ2(×2) , 2 + χ2 ±
√
χ2 + 2(×8) .

(2.30)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 30 massless scalars in (2.29), only 4 of them correspond to

physical directions in the scalar potential. However, the residual symmetry gets enhanced

to SU(2) × U(1) when χ = 0 and two additional vectors become massless. This special

AdS4 vacuum will be uplifted to a ten-dimensional family of type IIB S-fold backgrounds

in section 3.

2.3.4 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = ic and z4 = z5 = z6 = −z̄7 =
1√
2
(1 + i) . (2.31)

This AdS4 solution has a vacuum energy given by

V0 = −3g2c−1 , (2.32)

as for the previous solution, and a spectrum of normalised scalar masses of the form

m2L2 = 0(×48) , 10(×1) , 4(×10) , −2(×11) , (2.33)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×6) , 6(×7) , 2(×15) , (2.34)

thus reflecting the SO(4) residual symmetry at the AdS4 solution. Therefore, out of the

48 massless scalars in (2.33), only 26 of them correspond to physical directions in the

scalar potential. This N = 4 solution was first reported in [28], and then uplifted to a

ten-dimensional family of type IIB S-fold backgrounds in [27].

3 S-folds with N = 2 supersymmetry

From this moment on we will set

g = c = 1 , (3.1)

without loss of generality. From (2.18), (2.22), (2.27) and (2.31) it becomes clear that

varying c amounts to a rescaling of the vacuum expectation values of z1,2,3 ∝ c at the AdS4
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)
0
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0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×30) , 3±
√
17(×2) , −2(×4) , 2(×6) , −2 + 4χ2(×6)

− 1 + 4χ2 ±
√

16χ2 + 1(×2) , χ2 ±
√
χ2 + 2(×8) ,

(2.29)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×2) , 4(×2) , 2(×4) ,

4χ2(×2) , 2 + χ2 ±
√
χ2 + 2(×8) .

(2.30)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 30 massless scalars in (2.29), only 4 of them correspond to

physical directions in the scalar potential. However, the residual symmetry gets enhanced

to SU(2) × U(1) when χ = 0 and two additional vectors become massless. This special

AdS4 vacuum will be uplifted to a ten-dimensional family of type IIB S-fold backgrounds

in section 3.

2.3.4 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = ic and z4 = z5 = z6 = −z̄7 =
1√
2
(1 + i) . (2.31)

This AdS4 solution has a vacuum energy given by

V0 = −3g2c−1 , (2.32)

as for the previous solution, and a spectrum of normalised scalar masses of the form

m2L2 = 0(×48) , 10(×1) , 4(×10) , −2(×11) , (2.33)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×6) , 6(×7) , 2(×15) , (2.34)

thus reflecting the SO(4) residual symmetry at the AdS4 solution. Therefore, out of the

48 massless scalars in (2.33), only 26 of them correspond to physical directions in the

scalar potential. This N = 4 solution was first reported in [28], and then uplifted to a

ten-dimensional family of type IIB S-fold backgrounds in [27].

3 S-folds with N = 2 supersymmetry

From this moment on we will set

g = c = 1 , (3.1)

without loss of generality. From (2.18), (2.22), (2.27) and (2.31) it becomes clear that

varying c amounts to a rescaling of the vacuum expectation values of z1,2,3 ∝ c at the AdS4
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N=4   AdS4  vacuum with  SO(4)R  symmetry

J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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Next  step :   Uplift  to  type IIB  on                   using  E7(7)-EFT

J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×30) , 3±
√
17(×2) , −2(×4) , 2(×6) , −2 + 4χ2(×6)

− 1 + 4χ2 ±
√

16χ2 + 1(×2) , χ2 ±
√
χ2 + 2(×8) ,

(2.29)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×2) , 4(×2) , 2(×4) ,

4χ2(×2) , 2 + χ2 ±
√
χ2 + 2(×8) .

(2.30)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 30 massless scalars in (2.29), only 4 of them correspond to

physical directions in the scalar potential. However, the residual symmetry gets enhanced

to SU(2) × U(1) when χ = 0 and two additional vectors become massless. This special

AdS4 vacuum will be uplifted to a ten-dimensional family of type IIB S-fold backgrounds

in section 3.

2.3.4 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = ic and z4 = z5 = z6 = −z̄7 =
1√
2
(1 + i) . (2.31)

This AdS4 solution has a vacuum energy given by

V0 = −3g2c−1 , (2.32)

as for the previous solution, and a spectrum of normalised scalar masses of the form

m2L2 = 0(×48) , 10(×1) , 4(×10) , −2(×11) , (2.33)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×6) , 6(×7) , 2(×15) , (2.34)

thus reflecting the SO(4) residual symmetry at the AdS4 solution. Therefore, out of the

48 massless scalars in (2.33), only 26 of them correspond to physical directions in the

scalar potential. This N = 4 solution was first reported in [28], and then uplifted to a

ten-dimensional family of type IIB S-fold backgrounds in [27].

3 S-folds with N = 2 supersymmetry

From this moment on we will set

g = c = 1 , (3.1)

without loss of generality. From (2.18), (2.22), (2.27) and (2.31) it becomes clear that

varying c amounts to a rescaling of the vacuum expectation values of z1,2,3 ∝ c at the AdS4
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χ2 + 2(×8) .
(2.30)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 30 massless scalars in (2.29), only 4 of them correspond to

physical directions in the scalar potential. However, the residual symmetry gets enhanced

to SU(2) × U(1) when χ = 0 and two additional vectors become massless. This special

AdS4 vacuum will be uplifted to a ten-dimensional family of type IIB S-fold backgrounds

in section 3.

2.3.4 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = ic and z4 = z5 = z6 = −z̄7 =
1√
2
(1 + i) . (2.31)

This AdS4 solution has a vacuum energy given by

V0 = −3g2c−1 , (2.32)

as for the previous solution, and a spectrum of normalised scalar masses of the form

m2L2 = 0(×48) , 10(×1) , 4(×10) , −2(×11) , (2.33)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×6) , 6(×7) , 2(×15) , (2.34)

thus reflecting the SO(4) residual symmetry at the AdS4 solution. Therefore, out of the

48 massless scalars in (2.33), only 26 of them correspond to physical directions in the

scalar potential. This N = 4 solution was first reported in [28], and then uplifted to a

ten-dimensional family of type IIB S-fold backgrounds in [27].

3 S-folds with N = 2 supersymmetry

From this moment on we will set

g = c = 1 , (3.1)

without loss of generality. From (2.18), (2.22), (2.27) and (2.31) it becomes clear that

varying c amounts to a rescaling of the vacuum expectation values of z1,2,3 ∝ c at the AdS4
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Generalised Scherk-Schwarz reductions of E7(7)-EFT

3.1 Generalised Scherk-Schwarz reductions

The generalised Scherk-Schwarz ansatz for the various fields of the E7(7)-ExFT is of the form

gµ⌫(x, Y ) = ⇢
�2(Y )gµ⌫(x)

MMN (x, Y ) = UM
K(Y )UN

L(Y )MKL(x)

Aµ
M (x, Y ) = ⇢

�1
Aµ

N (x) (U�1)NM (Y )

Bµ⌫ ↵(x, Y ) = ⇢
�2(Y )U↵

�(Y )Bµ⌫ �(x)

Bµ⌫M (x, Y ) = �2 ⇢�2(Y ) (U�1)SP (Y ) @MUP
R(Y ) (t↵)RS

Bµ⌫ ↵(x) .

(3.2)

In order for this ansatz to factor out the internal dependences at the level of the equations
of motion and to yield back the equations of motion of the four-dimensional theory, the twist
matrix must fulfill the two conditions :

(U�1)MP (U�1)NQ
@PUQ

K
��
912

= 1
7 ⇢⇥M

↵ (t↵)NK
,

@N (U�1)MN
� 3 ⇢�1

@N⇢ (U�1)MN = 2 ⇢ ✓M
(3.3)

where ⇥M
↵ is the embedding tensor in the four-dimensional gauged supergravity, ✓M is a

constant tensor, and |912 is the projection on the 912 irreducible representation of E7(7) .
In the case of the [SO(1, 1) ⇥ SO(6)] n R2 gauging the SL(8) twit matrix U

�1(Y ) and
the function ⇢(Y ) in (3.2) are given by

(U�1)A
B =

✓
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⇢̂

◆ 1
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BBBBB@
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i
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2
y
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y
j
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2
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1

CCCCCA
, (3.4)

with

⇢̊
4 = 1� c ỹ

2
1 , ⇢̂

4 = 1 + � |~y|
2 and K̂ = �2F1

�
1 , 2 , 1

2 ; 1� |~y|
2
�
, (3.5)

so that

(U�1)M
N =

 
(U�1)[AB]

[CD] 0

0 (U�1)[AB]
[CD] = U[CD]

[AB]

!
, (3.6)

with
(U�1)[AB]

[CD] = (U�1)A
C (U�1)B

D
� (U�1)B

C (U�1)A
D

. (3.7)

The uplifting formulae are

M
mn = G
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G

mn
,

M
m

n↵ = G
�1/2

G
mk Bkn

�
✏�↵ ,

Mm↵n� = G
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kl Bmk
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✏↵� ✏�� ,

M
⇢
lmn = �4G�1/2
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↵ Bmn]
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(3.8)

which can be inverted as

G
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1/2
M

mn
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Bmn
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Gmp ✏
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M

p
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1
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8 ✏↵� Bk[l
↵ Bmn]

�
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• Type IIB fields = EFT fields   :
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• SL(8) twist (geometry)  :
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which is of course the case at both AdS4 solutions. A direct evaluation shows that Y = 6
5

for the N = 1 / SU(3) solution with hypermultiplet scalars in (2.35), and Y = 1 for the

N = 0 / SO(6) solution with hypermultiplet scalars in (2.38).

In order to perform the uplift we will fetch techniques from the E7(7) Exceptional

Field Theory (E7(7)-ExFT) constructed in [29]. This is a field theory formally living

(4 + 56)-dimensional space-time which has a manifest E7(7) invariance under so-called

generalised diffeomorphisms acting on a 56-dimensional internal space with coordinates

Y M . This generalised diffeomorphisms provide a unified description of both ordinary

GL(n) diffeomorphisms and internal gauge transformations for the various p-form fields

of eleven-dimensional and type IIB supergravity. Importantly, the E7(7)-ExFT requires a

section constraint for its consistent formulation which essentially reduces it to either eleven-

dimensional supergravity in a 4+7 dimensional split where internal GL(7) diffeomorphisms

are manifest, or type IIB supergravity in a 4 + 6 dimensional split where internal GL(6)

diffeomorphisms are manifest. In this work we will be concerned with the type IIB solution

of the section constraint and will perform the uplift of the previous AdS4 solutions to type

IIB supergravity by employing a so-called generalised Scherk-Schwarz (SS) ansatz for the

various fields of E7(7)-ExFT [30].

3.1 Exceptional Field Theory and consistent truncations

We are interested in uplifting AdS4 solutions for which the four-dimensional scalars param-

eterising MKL(x) ∈ E7(7)/SU(8) take constant vacuum expectation values and vectors, as

well as tensor fields, vanish identically. The relevant fields in the E7(7)-ExFT of [29] are then

the metric gµν(x, Y ) and the generalised metric MMN (x, Y ). These fields are connected

with the four-dimensional fields in (2.5) via the generalised Scherk-Schwarz ansatz [30]

gµν(x, Y ) = ρ−2(Y )gµν(x) ,

MMN (x, Y ) = UM
K(Y )UN

L(Y )MKL(x) ,
(3.5)

which is encoded into an SL(8) twist matrix UM
N (Y ) and an R+ scaling function ρ(Y ).

In order for this ansatz to factorise out the dependence on the internal coordinates Y M

at the level of the equations of motion and to give back the equations of motion of the

four-dimensional theory, the twist matrix UM
N (Y ) and the scaling function ρ(Y ) must

fulfil the two conditions

(U−1)MP (U−1)NQ ∂PUQ
K
∣∣
912

= 1
7 ρXMN

K ,

∂N (U−1)MN − 3 ρ−1 ∂Nρ (U−1)MN = 2 ρ ϑM ,
(3.6)

where XMN
K is the embedding tensor in the four-dimensional gauged supergravity, ϑM

is a constant (scaling) tensor, and |912 is the projection onto the 912 ∈ E7(7) irreducible

representation. For the twist matrix UM
N (Y ) and the scaling function ρ(Y ) to be describing

a background of type IIB supergravity, the dependence on the coordinates Y M of the

generalised internal space must be such that the section constraint holds.

We will make use of various group-theoretical decompositions in order to establish

a mapping between physical coordinates on the ordinary internal space and generalised

– 12 –
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Finally, using the relation

Ĝik (⌦
�)kj dy

i
^ dy

j = �(⌦�)ijk Y
k
dY

i
^ dY

j
, (3.30)

one obtains the final expression

B↵ = 1
2 Bij

↵
dy

i
^ dy

j = �
1
2 Y

�1
✏
↵� (A�t)�

�
H�� (⌦

�)kij Y
k
dY

i
^ dY

j
, (3.31)

or, using the relations (A.1), the equivalent expression

B↵ = �Y
�1

✏
↵� (A�t)�

�
H�� ⌦

�
, (3.32)

where ⌦
�
⌘ (⌦R

,⌦
I) .

At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that
the scalar-dependent matrix in (3.28) reduces to H�� = 0 and therefore the two-form type IIB
potentials vanish, namely,

B↵ = 0 . (3.33)

At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-(2.22) one has that
the scalar-dependent matrix in (3.28) depends independently on ⇣ and ⇣̃ so the compact
U(1) symmetry associated with kU in (2.16) is broken.

3.4 Axion-dilaton

Setting � = 0 , the blocks of the scalar matrix relevant for the axion-dilaton are given by

M
�k �l = e

�'
�
kl
C

�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
�kl C�� + e

' (1� Y ) Jkl ✏�� .

(3.34)

Using the uplifting formulas in [7], and after some algebra, the SL(2) axion-dilaton matrix
takes the form

m↵� = (A�t)↵
� m�� (A

�1)�� . (3.35)

in terms of the SL(2) scalar-dependent matrix

m�� ⌘
1

Y
C�� =

1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
, (3.36)

and the SL(2) twist (A�1)↵� in (3.26).
At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that

the scalar-dependent SO(1, 1) matrix in (3.36) reduces

m�� =
1

p
1� �2

 
1 ��

�� 1

!
, (3.37)

with � 2 (�1, 1) . At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-
(2.22) one has that the scalar-dependent SO(1, 1) matrix in (3.36) reads

m�� =
2

3 |~⇣|2

0

B@
1 �

q
1� 9

4 |
~⇣|4

�

q
1� 9

4 |
~⇣|4 1

1

CA , (3.38)

with |~⇣|
2
2 ( 0 , 2

3 ] , so the compact U(1) symmetry associated with kU in (2.16) is preserved
by the axion-dilaton background.

8

with                                                and     

        [                       (hyperbolic)  SO(1,1)-twist = monodromy ] 
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A↵
� ⌘

 p
1 + ỹ2 ỹ

ỹ
p

1 + ỹ2

!
=

 
cosh ⌘ sinh ⌘

sinh ⌘ cosh ⌘

!
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3.3 Summary of type IIB backgrounds

By uplifting two families of AdS4 vacua of the dyonically-gauged [ SO(1, 1) × SO(6) ]! R12

maximal supergravity, we have obtained two classes of ten-dimensional type IIB backgrounds.
In both classes the metric is non-singular and of the form AdS4×R×M5 with η ∈ (−∞ , ∞)
being the coordinate along the R direction. The dependence of the backgrounds on the
coordinate η is fully encoded in an SO(1, 1) ⊂ SL(2)IIB matrix

Aα
β =

(
cosh η sinh η

sinh η cosh η

)

, (A−1)αβ =

(
cosh η − sinh η

− sinh η cosh η

)

, (3.70)

which acts as a twist on a constant type IIB axion-dilaton

mγδ =
1√

1− σ2

(
1 −σ

−σ 1

)

with σ ∈ (−1, 1) , (3.71)

and an SL(2)IIB doublet of η-independent three-form fluxes. From an effective N = 2 four-
dimensional perspective, the free parameter σ in the type IIB solutions corresponds to a
four-dimensional axion in the universal hypermultiplet (see Section 2.2).

We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,
and preserves an SU(3) symmetry arising from a CP

2 ⊂ M5 factor in the geometry.
The various ten-dimensional fields are given by

ds210 =
3
√
6

10
ds2AdS4

+
1

3

√
10
3 dη2 +

[√
5

6
ds2

CP2 +

√
6

5
η2

]

,

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = Aα
β hβ ,

(3.72)

with

hβ = − 5

12
ϵβγ

[
3Hγδ (iΩ ∧ η)δ − θγ

λ Hλδ dη ∧Ωδ
]
, (3.73)

and where, in order to present Hα in a concise form, we have introduced the two constant
matrices

θγ
λ =

(
0 1

1 0

)

, (3.74)

and

Hαβ =
2
√
6

5 (1 − σ2)
1
4

(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

sin γ − cos γ

)

. (3.75)

The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-
dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π] . As a result there is a
(σ, γ)-family of three-form fluxes Hα . Note also that the internal geometry in (3.72) has
an additional U(1)β isometry that is broken in the background by the dependence of
the three-form fluxes Hα on the complex (2, 0)-form Ω (see Appendix A).

20

J
H
E
P
1
2
(
2
0
1
9
)
1
1
3

C4 potential. An explicit computation using the third uplift formula in (3.16) in combi-

nation with the first equation in (3.33) shows that the purely internal four-form potential

is of the form

C1jkl = 0 ,

Cijkl − 3
2 ϵαβ Bi[j

α Bkl]
β = −1

2

∆√
1− |y⃗|2

ϵjklk′l′ Gii′ Kmn
i′ Kk′l′

pq Mmnpq ,
(3.48)

where we have introduced the geometric tensor

Kk′l′
pq = δk

′l′
pq + 2 K̂ δk

′
p Yq y

l′ . (3.49)

Substituting the first scalar-dependent block in (3.22) we arrive at

Cijkl − 3
2 ϵαβ Bi[j

α Bkl]
β = ϵj′jklk′

1√
1−|y⃗|2

Y −1

Y
Ĝi i′

[
J i′j′Jk′l Yl + δj

′l′ Ki′ Kl′ yk
′
]

+Ĉijkl ,

(3.50)

with

Ĉijkl = ϵijklk′
yk

′

√
1− |y⃗|2

(1 + K̂) . (3.51)

A careful analysis of the expression in (3.50) reveals that the contribution

− 3

2
ϵαβ Bi[j

α
Bkl]

β = −6
1− Y

Y
ϵαβ Ωi[j

αΩkl]
β , (3.52)

in the left hand side precisely cancels against the contribution coming from the first term

in the right hand side so that

Cijkl = Ĉijkl . (3.53)

The purely internal five-form flux then takes the form

dC = Ω ∧ Ω̄ ∧ η = 4Y
3
4 vol5 , (3.54)

where

vol5 = Y − 3
4 ê5 ∧ ê6 ∧ ê7 ∧ ê8 ∧ ê9 , (3.55)

is the volume form on the deformed S5 in (3.27). Finally the gauge-invariant five-form flux

is given by

F̃5 = dC +
1

2
ϵαβ B

α ∧H
β =

(
4 +

6 (1− Y )

Y

)
Y

3
4 (1 + ⋆) vol5 , (3.56)

which breaks the U(1)U symmetry whenever Y ≠ 1. When particularised to the AdS4
solutions obtained in the previous section the result is:

i) For the N = 1 / SU(3) solution in (2.34)–(2.35) one has

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 . (3.57)

ii) For the N = 0 / SO(6) solution in (2.37)–(2.38) one has

F̃5 = 4 (1 + ⋆) vol5 . (3.58)
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We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,

and preserves an SU(3) symmetry arising from a CP
2 ⊂ M5 factor in the geometry.

The various ten-dimensional fields are given by

ds210 =
3
√
6

10
ds2AdS4

+
1

3

√
10
3 dη2 +

[√
5

6
ds2

CP2 +

√
6

5
η2

]

,

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = − 5

12
ϵαδ (A−t)δγ

[
3Hγβ (iΩ ∧ η)β − θγλHλβ dη ∧Ωβ

]
,

(3.72)

where, in order to present Hα in a concise form, we have introduced the two constant

matrices

θγ
λ =

(
0 1

1 0

)

, (3.73)

and

Hαβ =
2
√
6

5 (1− σ2)
1
4

(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

sin γ − cos γ

)

. (3.74)

The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-

dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π]. As a result there is a

(σ, γ)-family of three-form fluxes Hα. Note also that the internal geometry in (3.72)

has an additional U(1)β isometry that is broken in the background by the dependence

of the three-form fluxes Hα on the complex (2, 0)-form Ω (see appendix A).

• The second class of solutions is non-supersymmetric and preserves an SO(6) symme-

try arising from an M5 = S5 factor in the geometry. The various ten-dimensional

fields are given by

ds210 =
1√
2
ds2AdS4

+
1

2
dη2 + ds2

S5
,

F̃5 = 4 (1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = 0 .

(3.75)

This class of solutions features perturbative instabilities, as already noticed in (2.39)

when looking at scalar fluctuations in the consistent truncation to a four-dimensional

effective theory.
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Again U(1)φ is broken by the explicit dependence of (3.36) on the angle φ. This concludes

the uplift of the AdS4 vacuum with N = 2 and SU(2) × U(1) symmetry discussed in

section 2.3.3 to a ten-dimensional background of type IIB supergravity. It is worth empha-

sising that, if trivialising the A-twist in (3.30), i.e. Aα
β = δαβ , then the ten-dimensional

equations of motion of type IIB supergravity are no longer satisfied.

3.2 S-fold interpretation

The dependence of the full type IIB solution on the coordinate η along the R direction of

the geometry (3.27) is totally encoded in the local SL(2,R)IIB A-twist in (3.30). This twist

matrix is of hyperbolic type and thus induces a non-trivial monodromy

MS1 = A−1(η)A(η + T ) =

(
coshT sinhT

sinhT coshT

)
, (3.37)

when forcing the η coordinate to be periodic η → η + T with period T , namely, when

replacing R → S1 in the geometry. Generalising the A-twist in (3.30) to a discrete k-family

(k ∈ N with k ≥ 3) of new ones

A(k) = Ag(k) with g(k) =

⎛

⎜⎜⎜⎝

(k2 − 4)
1
4

√
2

0

k√
2(k2−4)

1
4

√
2

(k2 − 4)
1
4

⎞

⎟⎟⎟⎠
, (3.38)

the monodromy (3.37) gets generalised to a k-family of SL(2,Z)IIB hyperbolic monodromies

M(k) = A−1
(k)(η)A(k)

(
η + T (k)

)
=

(
k 1

−1 0

)
, k ≥ 3 , (3.39)

with T (k) = log(k +
√
k2 − 4) − log(2) and TrM(k) > 2. Therefore, as discussed in [27]

(see also [32]), these backgrounds can be interpreted as locally geometric compactifications

on S1 × S5 involving a k-family of S-duality monodromies (3.39). These monodromies can

be written as

M(k) = −ST k with S =

(
0 −1

1 0

)
and T =

(
1 0

1 1

)
, (3.40)

and thus define a k-family of S-fold backgrounds. Moreover, the argument wielded in [27]

for the straightforward uplift of the four-dimensional supersymmetries to ten dimensions

relied on the monodromy (3.37) being in the hyperbolic conjugacy class of SL(2,R)IIB.
This is still our case, so the S-folds presented here preserve N = 2 supersymmetry.

Lastly, various holographic aspects of both N = 4 [27] and N = 1 [32, 36] S-folds with

hyperbolic monodromies have respectively been investigated in [33–35] and [36] within the
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N=1 & SU(3)  solution

Finally, using the relation

Ĝik (⌦
�)kj dy

i
^ dy

j = �(⌦�)ijk Y
k
dY

i
^ dY

j
, (3.30)

one obtains the final expression

B↵ = 1
2 Bij

↵
dy

i
^ dy

j = �
1
2 Y

�1
✏
↵� (A�t)�

�
H�� (⌦

�)kij Y
k
dY

i
^ dY

j
, (3.31)

or, using the relations (A.1), the equivalent expression

B↵ = �Y
�1

✏
↵� (A�t)�

�
H�� ⌦

�
, (3.32)

where ⌦
�
⌘ (⌦R

,⌦
I) .

At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that
the scalar-dependent matrix in (3.28) reduces to H�� = 0 and therefore the two-form type IIB
potentials vanish, namely,

B↵ = 0 . (3.33)

At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-(2.22) one has that
the scalar-dependent matrix in (3.28) depends independently on ⇣ and ⇣̃ so the compact
U(1) symmetry associated with kU in (2.16) is broken.

3.4 Axion-dilaton

Setting � = 0 , the blocks of the scalar matrix relevant for the axion-dilaton are given by

M
�k �l = e

�'
�
kl
C

�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
�kl C�� + e

' (1� Y ) Jkl ✏�� .

(3.34)

Using the uplifting formulas in [7], and after some algebra, the SL(2) axion-dilaton matrix
takes the form

m↵� = (A�t)↵
� m�� (A

�1)�� . (3.35)

in terms of the SL(2) scalar-dependent matrix

m�� ⌘
1

Y
C�� =

1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
, (3.36)

and the SL(2) twist (A�1)↵� in (3.26).
At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that

the scalar-dependent SO(1, 1) matrix in (3.36) reduces

m�� =
1

p
1� �2

 
1 ��

�� 1

!
, (3.37)

with � 2 (�1, 1) . At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-
(2.22) one has that the scalar-dependent SO(1, 1) matrix in (3.36) reads

m�� =
2

3 |~⇣|2

0

B@
1 �

q
1� 9

4 |
~⇣|4

�

q
1� 9

4 |
~⇣|4 1

1

CA , (3.38)

with |~⇣|
2
2 ( 0 , 2

3 ] , so the compact U(1) symmetry associated with kU in (2.16) is preserved
by the axion-dilaton background.
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with                                                and     A↵
� ⌘

 p
1 + ỹ2 ỹ

ỹ
p

1 + ỹ2

!
=

 
cosh ⌘ sinh ⌘

sinh ⌘ cosh ⌘

!
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No untwisted limit !!
( genuinely dyonic )

3.3 Summary of type IIB backgrounds

By uplifting two families of AdS4 vacua of the dyonically-gauged [ SO(1, 1) × SO(6) ]! R12

maximal supergravity, we have obtained two classes of ten-dimensional type IIB backgrounds.
In both classes the metric is non-singular and of the form AdS4×R×M5 with η ∈ (−∞ , ∞)
being the coordinate along the R direction. The dependence of the backgrounds on the
coordinate η is fully encoded in an SO(1, 1) ⊂ SL(2)IIB matrix

Aα
β =

(
cosh η sinh η

sinh η cosh η

)

, (A−1)αβ =

(
cosh η − sinh η

− sinh η cosh η

)

, (3.70)

which acts as a twist on a constant type IIB axion-dilaton

mγδ =
1√

1− σ2

(
1 −σ

−σ 1

)

with σ ∈ (−1, 1) , (3.71)

and an SL(2)IIB doublet of η-independent three-form fluxes. From an effective N = 2 four-
dimensional perspective, the free parameter σ in the type IIB solutions corresponds to a
four-dimensional axion in the universal hypermultiplet (see Section 2.2).

We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,
and preserves an SU(3) symmetry arising from a CP

2 ⊂ M5 factor in the geometry.
The various ten-dimensional fields are given by

ds210 =
3
√
6

10
ds2AdS4

+
1

3

√
10
3 dη2 +

[√
5

6
ds2

CP2 +

√
6

5
η2

]

,

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = Aα
β hβ ,

(3.72)

with

hβ = − 5

12
ϵβγ

[
3Hγδ (iΩ ∧ η)δ − θγ

λ Hλδ dη ∧Ωδ
]
, (3.73)

and where, in order to present Hα in a concise form, we have introduced the two constant
matrices

θγ
λ =

(
0 1

1 0

)

, (3.74)

and

Hαβ =
2
√
6

5 (1 − σ2)
1
4

(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

sin γ − cos γ

)

. (3.75)

The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-
dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π] . As a result there is a
(σ, γ)-family of three-form fluxes Hα . Note also that the internal geometry in (3.72) has
an additional U(1)β isometry that is broken in the background by the dependence of
the three-form fluxes Hα on the complex (2, 0)-form Ω (see Appendix A).
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We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,

and preserves an SU(3) symmetry arising from a CP
2 ⊂ M5 factor in the geometry.

The various ten-dimensional fields are given by
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12
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[
3Hγβ (iΩ ∧ η)β − θγλHλβ dη ∧Ωβ

]
,

(3.72)

where, in order to present Hα in a concise form, we have introduced the two constant

matrices

θγ
λ =

(
0 1

1 0

)

, (3.73)

and

Hαβ =
2
√
6

5 (1− σ2)
1
4

(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

sin γ − cos γ

)

. (3.74)

The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-

dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π]. As a result there is a

(σ, γ)-family of three-form fluxes Hα. Note also that the internal geometry in (3.72)

has an additional U(1)β isometry that is broken in the background by the dependence

of the three-form fluxes Hα on the complex (2, 0)-form Ω (see appendix A).

• The second class of solutions is non-supersymmetric and preserves an SO(6) symme-

try arising from an M5 = S5 factor in the geometry. The various ten-dimensional

fields are given by

ds210 =
1√
2
ds2AdS4

+
1

2
dη2 + ds2

S5
,

F̃5 = 4 (1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = 0 .

(3.75)

This class of solutions features perturbative instabilities, as already noticed in (2.39)

when looking at scalar fluctuations in the consistent truncation to a four-dimensional

effective theory.
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We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,

and preserves an SU(3) symmetry arising from a CP
2 ⊂ M5 factor in the geometry.
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(3.72)

where, in order to present Hα in a concise form, we have introduced the two constant
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λ =
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and
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)
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The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-

dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π]. As a result there is a

(σ, γ)-family of three-form fluxes Hα. Note also that the internal geometry in (3.72)

has an additional U(1)β isometry that is broken in the background by the dependence

of the three-form fluxes Hα on the complex (2, 0)-form Ω (see appendix A).

• The second class of solutions is non-supersymmetric and preserves an SO(6) symme-

try arising from an M5 = S5 factor in the geometry. The various ten-dimensional

fields are given by

ds210 =
1√
2
ds2AdS4

+
1

2
dη2 + ds2

S5
,

F̃5 = 4 (1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = 0 .

(3.75)

This class of solutions features perturbative instabilities, as already noticed in (2.39)

when looking at scalar fluctuations in the consistent truncation to a four-dimensional

effective theory.
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Finally, using the relation

Ĝik (⌦
�)kj dy

i
^ dy

j = �(⌦�)ijk Y
k
dY

i
^ dY

j
, (3.30)

one obtains the final expression

B↵ = 1
2 Bij

↵
dy

i
^ dy

j = �
1
2 Y

�1
✏
↵� (A�t)�

�
H�� (⌦

�)kij Y
k
dY

i
^ dY

j
, (3.31)

or, using the relations (A.1), the equivalent expression

B↵ = �Y
�1

✏
↵� (A�t)�

�
H�� ⌦

�
, (3.32)

where ⌦
�
⌘ (⌦R

,⌦
I) .

At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that
the scalar-dependent matrix in (3.28) reduces to H�� = 0 and therefore the two-form type IIB
potentials vanish, namely,

B↵ = 0 . (3.33)

At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-(2.22) one has that
the scalar-dependent matrix in (3.28) depends independently on ⇣ and ⇣̃ so the compact
U(1) symmetry associated with kU in (2.16) is broken.

3.4 Axion-dilaton

Setting � = 0 , the blocks of the scalar matrix relevant for the axion-dilaton are given by

M
�k �l = e

�'
�
kl
C

�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
�kl C�� + e

' (1� Y ) Jkl ✏�� .

(3.34)

Using the uplifting formulas in [7], and after some algebra, the SL(2) axion-dilaton matrix
takes the form

m↵� = (A�t)↵
� m�� (A

�1)�� . (3.35)

in terms of the SL(2) scalar-dependent matrix

m�� ⌘
1

Y
C�� =

1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
, (3.36)

and the SL(2) twist (A�1)↵� in (3.26).
At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that

the scalar-dependent SO(1, 1) matrix in (3.36) reduces

m�� =
1

p
1� �2

 
1 ��

�� 1

!
, (3.37)

with � 2 (�1, 1) . At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-
(2.22) one has that the scalar-dependent SO(1, 1) matrix in (3.36) reads

m�� =
2

3 |~⇣|2

0

B@
1 �

q
1� 9

4 |
~⇣|4

�

q
1� 9

4 |
~⇣|4 1

1

CA , (3.38)

with |~⇣|
2
2 ( 0 , 2

3 ] , so the compact U(1) symmetry associated with kU in (2.16) is preserved
by the axion-dilaton background.
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Flavour :  SU(2) ~ S2

3.2 Connection with linear dilaton solutions

We can perform a global ⇤ 2 SL(2)IIB transformation based on the matrix element

⇤ =
1p
2

 
1 �1

1 1

!
, (3.14)

such that we find an equivalent type IIB background given by

ds
2 = 1

2 �
�1
⇥
ds

2
AdS4

+ d⌘
2 + d✓

2 + sin2 ✓ d�2 + cos2 ✓
�
�
2
2 + 8�4

�
�
2
1 + �

2
3

��⇤
,

e
� = 1

2 �
2
e
�2⌘

�
5� cos(2✓)� 2 sin2 ✓ sin(2�)

�
,

C0 = �2 e2⌘
cos(2�) sin2 ✓

5� cos(2✓)� 2 sin2 ✓ sin(2�)
,

B2 = 1
2 e

�⌘ cos ✓
�
(cos�+ sin�) d✓ + 1

2 sin(2✓) (cos�� sin�) d�
�
^ �2

+ 2�4
e
�⌘ cos ✓ sin(2✓) (cos�+ sin�)�1 ^ �3 ,

C2 = 1
2 e

⌘ cos ✓
�
(cos�� sin�) d✓ � 1

2 sin(2✓) (cos�+ sin�) d�
�
^ �2

+ 2�4
e
⌘ cos ✓ sin(2✓) (cos�� sin�)�1 ^ �3 ,

eF5 = 4�4 sin ✓ cos3 ✓ (1 + ?)
h
3 d✓ ^ d� ^ �1 ^ �2 ^ �3

� d⌘ ^
�
cos(2�) d✓ � 1

2 sin(2✓) sin(2�) d�
�
^ �1 ^ �2 ^ �3

i
,

(3.15)

with
��4 = 6� 2 cos(2✓) . (3.16)

4 Conclusions

TO BE COMPLETED...

Acknowledgements

We are grateful to Nikolay Bobev, Yolanda Lozano and Henning Samtleben for conversa-
tions. The work of AG is partially supported by the Spanish government grant MINECO-
16-FPA2015-63667-P and by the Principado de Asturias through the grant FC-GRUPIN-
IDI/2018/000174. The work of CS... The work of MT...

A Type IIB supergravity

The bosonic massless spectrum of ten-dimensional (chiral) type IIB supergravity contains –
besides the universal NS-NS sector that includes the metric G , a two-form B2 with field
strength H3 = dB2 , and the dilaton � – a set of even p-forms in the R-R sector. In
particular, a fourth-rank antisymmetric self-dual tensor C4, a two-form C2 and a scalar C0.
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, (3.9)

being an SO(1, 1) ⇢ SL(2)IIB element encoding the dependence of the two-form potentials
on the direction ⌘ . The two-form potentials in (3.8) preserve SU(2)⇥ U(1)� but break the
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involving the warping factor in (3.5). The axion-dilaton matrix (3.11) is again compatible
with an SU(2)⇥U(1)� symmetry.

Four-form potential

The solution we are investigating shares various similarities with the Pilch-Warner solution
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(3.12)
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denotes the volume of the deformed five-sphere. We have explicitly verified that the 10D
equations of motion and Bianchi identities of type IIB supergravity are satisfied.
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( genuinely dyonic )

3.2 Connection with linear dilaton solutions

We can perform a global ⇤ 2 SL(2)IIB transformation based on the matrix element

⇤ =
1p
2

 
1 �1

1 1

!
, (3.14)

such that we find an equivalent type IIB background given by

ds
2 = 1

2 �
�1
⇥
ds

2
AdS4

+ d⌘
2 + d✓

2 + sin2 ✓ d�2 + cos2 ✓
�
�
2
2 + 8�4

�
�
2
1 + �

2
3

��⇤
,

e
� = 1

2 �
2
e
�2⌘

�
5� cos(2✓)� 2 sin2 ✓ sin(2�)

�
,

C0 = �2 e2⌘
cos(2�) sin2 ✓

5� cos(2✓)� 2 sin2 ✓ sin(2�)
,

B2 = 1
2 e

�⌘ cos ✓
�
(cos�+ sin�) d✓ + 1

2 sin(2✓) (cos�� sin�) d�
�
^ �2

+ 2�4
e
�⌘ cos ✓ sin(2✓) (cos�+ sin�)�1 ^ �3 ,

C2 = 1
2 e

⌘ cos ✓
�
(cos�� sin�) d✓ � 1

2 sin(2✓) (cos�+ sin�) d�
�
^ �2

+ 2�4
e
⌘ cos ✓ sin(2✓) (cos�� sin�)�1 ^ �3 ,

eF5 = 4�4 sin ✓ cos3 ✓ (1 + ?)
h
3 d✓ ^ d� ^ �1 ^ �2 ^ �3

� d⌘ ^
�
cos(2�) d✓ � 1

2 sin(2✓) sin(2�) d�
�
^ �1 ^ �2 ^ �3

i
,

(3.15)

with
��4 = 6� 2 cos(2✓) . (3.16)

4 Conclusions

TO BE COMPLETED...
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A Type IIB supergravity

The bosonic massless spectrum of ten-dimensional (chiral) type IIB supergravity contains –
besides the universal NS-NS sector that includes the metric G , a two-form B2 with field
strength H3 = dB2 , and the dilaton � – a set of even p-forms in the R-R sector. In
particular, a fourth-rank antisymmetric self-dual tensor C4, a two-form C2 and a scalar C0.
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Holographic RG flows on the D3-brane
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chiral multiplets as

zi = ��i + i yi with i = 1, . . . , 7 and yi > 0 . (2.1)

The seven complex fields serve as coordinates on a Kähler scalar geometry

Mscal = [SL(2)/SO(2)]7 , (2.2)

characterised by a Kähler potential of the form

K = �
7X

i=1
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The scalar potential for the Z
3
2-invariant sector of the theory follows from an holomorphic
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⇤
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e�1 LE-s = 1
2 R�KIJ @µ⌃I @µ⌃J � V ,

= 1
2 R� 1
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2 + (@�i)
2
⇤
� V ,

(2.5)

where ⌃I = { y1 , �1 , y2 , �2 , . . . , y7 , �7 } (I = 1, . . . , 14) denotes the real and imaginary
components of the complex fields zi . The kinetic matrix for these (real) fields reads
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1

4y21
,

1

4y22
,

1

4y22
, . . . ,

1

4y27
,

1

4y27

◆
. (2.6)

The scalar potential V can be recovered from the holomorphic superpotential (2.4) using the
standard result

V = eK
h
Kziz̄j DziW Dz̄jW̄ � 3W W̄

i
, (2.7)

where DziW ⌘ @ziW + (@ziK)W is the Kähler derivative and Kziz̄j is the inverse of the
Kähler metric Kziz̄j ⌘ @2

zi,z̄jK . This is the N = 1 supergravity model we will investigate
during the rest of the work.

First-order flow equations

In order to study RG flows holographically, we will investigate flat-sliced domain-wall (DW4)
solutions whose metric takes the form
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↵dx� + dz2 with ⌘↵� = diag(�1, 1, 1) , (2.8)
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chiralini) in the N = 1 supergravity model, a set of first-order BPS equations consisting of

@zA = ⌥ |W| and @z⌃
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is obtained to which we will refer as flow equations. The real superpotential |W| is constructed
from the (complex) gravitino mass term

W = e
K
2 W = m3/2 , (2.10)

with W in (2.4), and fully specifies the flow equations in (2.9).
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D3-brane and N=4 super Yang-Mills

ds210 = 1
2 g

2 ��1(zi)
�
e2A(z) ⌘↵� dx↵dx� + dz2

�
+�2(zi) d⌘2 + d̊s2S5 ,

eF5 = 4L�1
5 (1 + ?) vol5 , B↵ = 0 ,

m↵� =

 
e��0 0

0 e�0

!
.
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N = 1 vacuum N = 2 vacuum N = 4 vacuum D3-brane at c = 0

Rez1 ��1 �� 0 ��(0)
1

Rez2 ��2 0 0 ��(0)
2

Rez3 �1 + �2 � 0 ��(0)
3

Rez4
1p
6

0 1p
2

0

Rez5
1p
6

1p
2

1p
2

0

Rez6
1p
6

0 1p
2

0

Rez7
1p
6

1p
2

� 1p
2

0

Imz1 c
p
5
3 c 1p

2
c (g z)2

8

Imz2 c
p
5
3 c c (g z)2

8

Imz3 c
p
5
3 c 1p

2
c (g z)2

8

Imz4
q

5
6 1 1p

2
e�

1
2�0

Imz5
q

5
6

1p
2

1p
2

e�
1
2�0

Imz6
q

5
6 1 1p

2
e�

1
2�0

Imz7
q

5
6

1p
2

1p
2

e�
1
2�0

V0 � 162
25

p
5
g2 c�1 �3 g2c�1 �3 g2c�1 V (z) = �g2 24

(gz)2

#�J < 0 2 4 4 ⇥

Table 1: Summary of the AdS4 supersymmetric vacua with the largest possible residual
symmetry within their respective families. The VEVs of zi and the values of the scalar
potential at the vacua are provided. In the last line, #�J < 0 denotes the number of dual
irrelevant operators at each such vacua.

2.3 Non-AdS4 solutions and the D3-brane

In this section we will obtain (semi-)analytic non-AdS4 solutions of the BPS flow equations
(2.9): first in the purely electric case with c = 0 , and then turning on the electromagnetic
deformation c .

2.3.1 Analytic flow at c = 0

Let us first focus on the BPS equations (2.9) when the gauging in the maximal theory is
purely electric, namely, c = 0 . In this case there is a simple solution of the BPS equations
given by

z1,2,3 = ��(0)
1,2,3 + i

(g z)2

8
, z4 = z5 = z6 = z7 = i e�

1
2�0 and eA = (g z)3 , (2.32)

9
subject to the constraint2

3X

i=1

Rezi = �
3X

i=1

�(0)
i = 0 , (2.33)

and with �0 being an arbitrary constant. The four-dimensional solution (2.32) with arbitrary

(constant) values of the axions �(0)
1,2,3 has an uplift to a ten-dimensional background of type

IIB supergravity that is locally equivalent to the D3-brane solution. More concretely, the

axions �(0)
1,2,3 can be locally reabsorbed in a reparameterisation of the angular coordinates

✓1,2,3 along the three commuting translational (shift) isometries on S5 . This is explicitly
shown in Section 4.2 and further discussed in Section 4.4.

It is worth mentioning that the condition (2.33) is required by the BPS equations (2.9)
but not by the (local) second-order equations of motion that follow from the Lagrangian (2.5).
The scalar potential (2.7) evaluated at the solution (2.32) yields

g�2 V (z) = � 24

(gz)2
, (2.34)

whereas the N = 1 gravitino mass (2.10) reads

g�2m2
3/2 =

9

(gz)2
+

64

(gz)6

 
3X

i=1

�(0)
i

!2

, (2.35)

thus being independent of the arbitrary parameter �0 in (2.32). Lastly, the constraint (2.33)

further eliminates the dependence of (2.35) on the axion fields �(0)
1,2,3 .

Axions and supersymmetry

The amount of four-dimensional supersymmetry preserved by a solution can be assessed by
direct evaluation of the eight gravitino masses, namely, the eigenvalues of |A1|2 = A1A

†
1 ,

where A1(zi) = AIJ(zi) is the scalar-dependent gravitino mass matrix in the maximal theory
[2]. Substituting the analytic BPS solution (2.32) into the expression for A1(zi) one finds a
set of (normalised) eigenvalues given by

g�2m2
3/2 = g�2 Eigen

�
|A1|2

�
=

9

(gz)2
+

64

(gz)6

⇣
±�(0)

1 ± �(0)
2 ± �(0)

3

⌘2
, (2.36)

where the ± signs are not correlated. Note that the (+,+,+) and (�,�,�) eigenvalues in
(2.36) precisely reproduce the N = 1 gravitino mass (2.35) belonging to the Z

3
2-invariant

sector of the maximal supergravity by virtue of the constraint (2.33). However, such an
algebraic constraint does not eliminate the dependence of the six remaining gravitino masses

in (2.36) on the axions �(0)
1,2,3 . And we have explicitly verified that the analytic flow in (2.32)

with �(0)
1,2,3 6= 0 is BPS only with respect to two gravitino masses (superpotentials), thus

reducing the amount of supersymmetry of the solution by a factor of 1/4.

2.3.2 Semi-analytic flows at c 6= 0

Let us now focus on the BPS equations (2.9) when the gauging in the maximal theory is of
dyonic type, namely, c 6= 0 . In this case there is no simple analytic solution of the BPS

2
The axions �(0)

1,2,3 must be constant by virtue of the BPS equations (2.9) when setting c = 0 .
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Figure 12: Type IIB geometry describing an holographic RG flows across dimensions from
(c-dependent deformations of) N = 4 SYM4 in the UV to di↵erent J-fold CFT3’s in the IR.

4.1 Uplifting the IR: S-folds

In the deep IR, the RG flows reach the type IIB S-fold solutions originally presented in
[36] (N = 1), [37] (N = 2) and [21] (N = 4). We concentrate on the S-fold solutions
with Rez1,2,3 = 0 allowing for the largest possible flavour symmetries (no exactly marginal
deformations) in the dual J-fold CFT3’s. In this case, the function f(zi) in Figure 12 turns
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f(zi) =
3Y

i=1

Imzi , (4.2)

and depends only on the scalars Imz1,2,3 . In the deep IR these scalars must be evaluated at
their VEVs for the three S-folds under consideration (see Table 1), so that

f(zi) = cst / c3 . (4.3)

Therefore, the electromagnetic deformation c is essential for the existence of the J-fold CFT3’s
serving as IR fixed points in the RG flows from the deformed N = 4 SYM4.

4.2 Uplifting the UV: D3-brane at c = 0

In this section we uplift the four-dimensional solution (2.32) obtained at c = 0 to ten-
dimensional type IIB supergravity and connect it (locally) to the D3-brane solution.

Vanishing axions

Let us first set the three axions �(0)
1,2,3 = 0 so that the largest amount of supersymmetry

is preserved (see discussion below (2.36)). Then the four-dimensional solution contains two
arbitrary parameters (g,�0) and uplifts to a ten-dimensional type IIB background with a
factorised internal geometry of the form S1 ⇥ S5 in the limit of an infinite radius for S1 so
that S1 ! R . The five-sphere is round and displays its largest possible SO(6) symmetry.
The various ten-dimensional fields are given by

ds210 = 1
2 �

�1 ds2DW4
+�2 d⌘2 + g�2 d̊s2

S5
,

eF5 = 4 g (1 + ?) vol5 ,

m↵� =

 
e��0 0

0 e�0

!
with �0 = cst ,

H
↵ = 0 ,

(4.4)
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(gz)2

[ quadratic order ]

around µ = 0 . Therefore, the original expansion in powers of c around c = 0 can be
re-interpreted as an expansion in powers of c/(gz)2 around the UV ( z ! 1 ).

Although we are not displaying the µ2n higher-order corrections with n � 2 (it turns out
that some of them vanish identically), we have explicitly computed the solution up to n = 6 .
At quadratic order, two corrections of the form µ2 log (gz) involving non-vanishing functions
of �0 appear in the axions Rez1,2,3 and Rez4,5,6,7 . At quartic order, three corrections of
the form µ4 log (gz) involving three di↵erent non-vanishing functions f2,1(�0) , g2,1(�0) and
j2,1(�0) appear in Imz1,2,3 , Imz4,5,6,7 and the scale factor eA , respectively. These are the
relevant orders at which the logarithms enter the universal solution to (2.9) when c 6= 0 .

In what follows we will consider a truncation of the universal solution (2.44) to cubic order
in the deformation parameter c , namely,

z1,2,3 = 1
3 c sinh�0

✓
1� 384 cosh2�0

c2

(g z)4
log(gz)

◆

+ i
(g z)2

8

✓
1 + 32 cosh2�0

c2

(g z)4

◆
,

z4,5,6,7 = 4 e�
1
2�0 cosh�0

c

(gz)2

✓
1 + 64

⇣
1� 3 cosh(2�0)

⌘ c2

(g z)4
log(gz)

◆

+ i e�
1
2�0

✓
1� 8

�
cosh2�0 � 2 sinh(2�0)

� c2

(g z)4

◆
,

eA = (g z)3
✓
1 + 16 cosh2�0

c2

(g z)4

◆
.

(2.46)

This order su�ces to capture the first relevant terms in each of the scalar fields as well as in
the scale factor for the deformed D3-brane solution. From (2.46) one has that

3X

i=1

Rezi = c sinh�0

✓
1� 384 cosh2�0

c2

(g z)4
log(gz)

◆
, (2.47)

which picks up a dependence on the coordinate z in contrast to the relation (2.43) obtained
at linear order in c = 0 .

3 Holographic RG flows

In this section we numerically construct BPS domain-wall solutions that interpolate between
the supersymmetric AdS4 vacua of Section 2.2 in the IR ( z ! �1 ) and the non-AdS4
solution of Section 2.3 with c 6= 0 in the UV ( z ! 1 ). We will also present an example
of a domain-wall that interpolates between the AdS4 vacuum with N = 2&SU(2) ⇥ U(1)
symmetry in the IR and the AdS4 vacuum with N = 1&SU(3) symmetry in the UV. All
these domain-walls in supergravity correspond to holographic RG flows in the field theory
side.

Boundary conditions

Let us start discussing the system of first-order and non-linear di↵erential equations in (2.9).
The set of equations for the scalars can be solved independently of the one for the scale factor,
which can be readily integrated once the profiles for the scalars are known. This means that
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( IR )   N=1 & SU(3)  J-fold CFT3                  SYM4   ( UV )

where L2 = �3/V0 is the AdS4 radius. As discussed in [2], a generic solution in this family
preserves U(1)2 . However, the residual symmetry gets enhanced to SU(2) ⇥ U(1) when
imposing a pairwise identification between the axions �1,2,3 . Finally there is a symmetry
enhancement to SU(3) when setting �1,2,3 = 0 .

This N = 1 & SU(3) symmetric AdS4 vacuum was uplifted to a family of type IIB S-folds
with N = 1 supersymmetry in [4]. Setting the moduli �1,2,3 = 0 yields

z1 = z2 = z3 = i c

p
5

3
and z4 = z5 = z6 = z7 =

1p
6
(1 + i

p
5) , (3.9)

with masses in (3.8) given by

m2L2 = �20
9 (⇥3) , �8

9 (⇥3) , 0 (⇥2) , 4±
p
6 (⇥2) , �2 (⇥2) . (3.10)

By virtue of (3.2), the set of normalised scalar masses in (3.10) implies a set of conformal
dimensions �± for the dual operators given by

m2L2 = �20
9 (⇥3) , �2 (⇥2) , �8

9 (⇥3) ; 0 (⇥2) ; 4�
p
6 (⇥2) , 4 +

p
6 (⇥2) ,

�+ = 5
3 (⇥3) , 2 (⇥2) , 8

3 ; 3 ; 1+
p
6 (⇥2) , 2 +

p
6 ,

�� = 4
3 , 1 , 1

3 (⇥3) ; 0 (⇥2) ; 2�
p
6 , 1�

p
6 (⇥2) .

(3.11)
The highlighted conformal dimensions in (3.11) appear as eigenvalues of the matrix (3.3).

3.2 N = 2 vacuum with SU(2)⇥U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves
U(1)2 and is located at

z1 = �z̄3 = c

✓
�� + i

1p
2

◆
, z2 = i c , z4 = z6 = i and z5 = z7 =

1p
2
(1 + i) . (3.12)

This family of AdS4 solutions has a vacuum energy given by

V0 = �3 g2 c�1 , (3.13)

and a spectrum of Z
3
2 invariant normalised scalar masses of the form

m2L2 = 0 (⇥1) , 3±
p
17 (⇥2) , �2 (⇥1) , 2 (⇥4) , �2 + 4�2 (⇥2)

�1 + 4�2 ±
p

16�2 + 1 (⇥1) ,
(3.14)

where L2 = �3/V0 is the AdS4 radius. A generic solution in this family preserves U(1)2 ,
but the residual symmetry gets enhanced to SU(2)⇥U(1) when � = 0 .

This N = 2 & SU(2) ⇥ U(1) symmetric AdS4 vacuum was uplifted to a family of type
IIB S-folds with N = 2 supersymmetry in [2]. Setting the modulus � = 0 yields

z1 = z3 = i c
1p
2

, z2 = i c , z4 = z6 = i and z5 = z7 =
1p
2
(1 + i) , (3.15)

with masses in (3.14) given by

m2L2 = �2 (⇥4) , 0 (⇥2) , 3±
p
17 (⇥2) , 2 (⇥4) . (3.16)
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Figure 2: Holographic RG flow from N = 4 SYM4 (UV, right) to N = 1&SU(3) J-fold
CFT3 (IR, left) with ⇤ = �1 and � = 0 .
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Figure 3: Holographic RG flow from N = 4 SYM4 (UV, right) to N = 1&SU(3) J-fold
CFT3 (IR, left) with ⇤ = �1 and � = �0.16 .

Behaviour of the flows

Fixing � = 0 implies Rez1,2,3 = 0 in the IR boundary conditions (3.3). In this case we obtain
the numerical flow5 depicted in Figure 2 that approaches the deformed D3-brane solution in
the UV (z ! 1). As previously discussed in Section 2.3.2, the UV behaviour of this flow is
understood as a sub-leading correction in the electromagnetic deformation c of the D3-brane
solution in (2.32) with

Rez1,2,3 = 0 and �0 = 0 . (3.4)

3
To be fully consistent with the forthcoming sections, we are denoting by ⌃

I
either an axion �i or its

corresponding dilaton log(yi) in the parameterisation (2.1).
4
Setting ⇤ = 0, 1 does not produce regular flows.

5
All the figures presented in this work are produced by setting the initial value of the radial coordinate to

zini = log(10
�2

) . Note that this value can be set at will by virtue of (3.1).
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This N = 2 & SU(2) ⇥ U(1) symmetric AdS4 vacuum was uplifted to a family of type
IIB S-folds with N = 2 supersymmetry in [2]. Setting the modulus � = 0 yields

z1 = z3 = i c
1p
2

, z2 = i c , z4 = z6 = i and z5 = z7 =
1p
2
(1 + i) , (3.15)

with masses in (3.14) given by

m2L2 = �2 (⇥4) , 0 (⇥2) , 3±
p
17 (⇥2) , 2 (⇥4) . (3.16)

4

[ 2 irrelevant operators ]

!27

Figure 2: Holographic RG flow from N = 4 SYM4 (UV, right) to N = 1&SU(3) J-fold
CFT3 (IR, left) with ⇤ = �1 and � = 0 .

0 10 20 30

-0.4

-0.2

0.0

0.2

0.4

z
Re(z1,2,3)

Re(z4,5,6,7)

0 10 20 30

0.5

1

5

10

50

100

z
Im(z1,2,3)

Im(z4,5,6,7)
D3-brane

Figure 3: Holographic RG flow from N = 4 SYM4 (UV, right) to N = 1&SU(3) J-fold
CFT3 (IR, left) with ⇤ = �1 and � = �0.16 .

Behaviour of the flows

Fixing � = 0 implies Rez1,2,3 = 0 in the IR boundary conditions (3.3). In this case we obtain
the numerical flow5 depicted in Figure 2 that approaches the deformed D3-brane solution in
the UV (z ! 1). As previously discussed in Section 2.3.2, the UV behaviour of this flow is
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4.3 Uplifting the UV: deformed D3-brane at c 6= 0

In this section we investigate various aspects of the Z2 ⇥ SU(3) invariant sector of the
[SO(1, 1)⇥ SO(6)]n R

12 gauged supergravity which is obtained upon identifying the scalar
fields in the Z

3
2 invariant sector as

z1 = z2 = z3 ⌘ z1,2,3 and z4 = z5 = z6 = z7 ⌘ z4,5,6,7 . (4.20)

This sector of the maximal theory is of special interest (see Appendix A for details on its
group theoretical embedding). Perturbing the four-dimensional incarnation of the D3-brane
solution in (2.32), and solving the BPS equations perturbatively in the parameter c , we found
the universal solution in (2.44) which, as already emphasised, is compatible with (4.20). It
will also provide us with a starting point to discuss axion deformations of N = 1 S-folds later
on in Section 4.4.

4.3.1 Type IIB uplift of the Z2 ⇥ SU(3)-invariant sector

Fetching techniques from E7(7) Exceptional Field Theory (E7(7)-ExFT) [48, 49], the type IIB
uplift of the Z2⇥SU(3) invariant sector of the [SO(1, 1)⇥ SO(6)]n R

12 maximal supergravity
can be straightforwardly obtained. This sector is compatible with the scalar identifications
in (4.20).

Ten-dimensional metric

The ten-dimensional metric takes the form

ds210 =
1
2 �

�1
�
ds2DW4

+ 2 (gc)�2�H(zi) d⌘
2
�
+ g�2 F (zi)

⇥
ds2

CP2
+ F (zi)

�2 ⌘2
⇤
, (4.21)

in terms of a four-dimensional space-time given by ds2DW4
in (2.8) and an internal space

M6 = S1⌘ o S5 with S5 = CP2 o S1 . We refer the reader to Appendix A of [36] for a detailed

description of the SU(2)-structure on the five-sphere S5 = CP2oS1 when viewed as a Sasaki-
Einstein manifold. As we will discuss in detail in Section 4.4, a non-trivial monodromy on
M6 is induced by the set of non-zero (constant) axions Rez1,2,3 in the type IIB backgrounds
so that the real one-form ⌘ in (4.21) is given by

⌘ = d� +Rez1,2,3 d⌘ +A1 . (4.22)

In (4.22), A1 = 1
2 sin

2 ↵�3 is the one-form potential on CP2 such that dA1 = 2J with
J being the real two-form specifying the SU(2)-structure of the five-sphere. In addition,
the torsion conditions for the SU(2)-structure of S5 further involve a complex two-form ⌦
(together with ⌘ and J ) and read

d(⌘ � Rez1,2,3 d⌘) = J , dJ = 0 , d⌦ = 3 i (⌘ � Rez1,2,3 d⌘) ^ ⌦ . (4.23)

The standard Fubini-Study metric on CP2 appears in (4.21) which takes the form

ds2
CP2

= d↵2 +

✓
sin↵

2

◆2 �
�21 + �22 + cos2 ↵�23

�
, (4.24)

in terms of a set of SU(2)-invariant one-forms

�1 = � sin d✓ + cos sin ✓ d� ,

�2 = cos d✓ + sin sin ✓ d� ,

�3 = d + cos ✓ d� .

(4.25)
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2 invariant sector as

z1 = z2 = z3 ⌘ z1,2,3 and z4 = z5 = z6 = z7 ⌘ z4,5,6,7 . (4.20)

This sector of the maximal theory is of special interest (see Appendix A for details on its
group theoretical embedding). Perturbing the four-dimensional incarnation of the D3-brane
solution in (2.32), and solving the BPS equations perturbatively in the parameter c , we found
the universal solution in (2.44) which, as already emphasised, is compatible with (4.20). It
will also provide us with a starting point to discuss axion deformations of N = 1 S-folds later
on in Section 4.4.

4.3.1 Type IIB uplift of the Z2 ⇥ SU(3)-invariant sector

Fetching techniques from E7(7) Exceptional Field Theory (E7(7)-ExFT) [48, 49], the type IIB
uplift of the Z2⇥SU(3) invariant sector of the [SO(1, 1)⇥ SO(6)]n R

12 maximal supergravity
can be straightforwardly obtained. This sector is compatible with the scalar identifications
in (4.20).

Ten-dimensional metric

The ten-dimensional metric takes the form

ds210 =
1
2 �

�1
�
ds2DW4

+ 2 (gc)�2�H(zi) d⌘
2
�
+ g�2 F (zi)

⇥
ds2

CP2
+ F (zi)

�2 ⌘2
⇤
, (4.21)

in terms of a four-dimensional space-time given by ds2DW4
in (2.8) and an internal space

M6 = S1⌘ o S5 with S5 = CP2 o S1 . We refer the reader to Appendix A of [36] for a detailed

description of the SU(2)-structure on the five-sphere S5 = CP2oS1 when viewed as a Sasaki-
Einstein manifold. As we will discuss in detail in Section 4.4, a non-trivial monodromy on
M6 is induced by the set of non-zero (constant) axions Rez1,2,3 in the type IIB backgrounds
so that the real one-form ⌘ in (4.21) is given by

⌘ = d� +Rez1,2,3 d⌘ +A1 . (4.22)

In (4.22), A1 = 1
2 sin

2 ↵�3 is the one-form potential on CP2 such that dA1 = 2J with
J being the real two-form specifying the SU(2)-structure of the five-sphere. In addition,
the torsion conditions for the SU(2)-structure of S5 further involve a complex two-form ⌦
(together with ⌘ and J ) and read

d(⌘ � Rez1,2,3 d⌘) = J , dJ = 0 , d⌦ = 3 i (⌘ � Rez1,2,3 d⌘) ^ ⌦ . (4.23)

The standard Fubini-Study metric on CP2 appears in (4.21) which takes the form

ds2
CP2

= d↵2 +

✓
sin↵

2

◆2 �
�21 + �22 + cos2 ↵�23

�
, (4.24)

in terms of a set of SU(2)-invariant one-forms

�1 = � sin d✓ + cos sin ✓ d� ,

�2 = cos d✓ + sin sin ✓ d� ,

�3 = d + cos ✓ d� .

(4.25)
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It will also be useful to introduce a set of frame fields on CP2 such that ds2
CP2

= �ab ea eb

with

e0 = d↵ , e1 = 1
2 sin↵�1 , e2 = 1

2 sin↵�2 , e3 = 1
2 sin↵ cos↵�3 . (4.26)

This assignment of frames on CP2 is compatible with a choice of embedding coordinates Ym

on the five-sphere of the form

Y2 = sin↵ cos ✓2 cos
⇣
 +�
2 + �

⌘
, Y4 = sin↵ sin ✓

2 cos
⇣
 ��
2 + �

⌘
,

Y3 = sin↵ cos ✓2 sin
⇣
 +�
2 + �

⌘
, Y5 = sin↵ sin ✓

2 sin
⇣
 ��
2 + �

⌘
,

Y6 = � cos↵ sin� .

(4.27)

As a result of the type IIB uplift, the metric in (4.21) depends on two scalar-dependent
functions

F (zi) = |z4,5,6,7|�1 Imz4,5,6,7 and H(zi) = F (zi)
�1 (Imz1,2,3)

2 , (4.28)

and the warping factor
� = F (zi) Imz1,2,3 . (4.29)

Note that the axions Rez1,2,3 enter the ten-dimensional geometry (4.21) exclusively through
the one-form ⌘ in (4.22).

Axion-dilaton and background fluxes

The rest of the type IIB fields can systematically be obtained. The two-form potentials
B
↵ = (B2, C2) are given by

B
↵ = A↵� b

� , (4.30)

in terms of the ⌘-dependent SL(2)IIB hyperbolic twist matrix

A↵� =

✓
cosh ⌘ sinh ⌘
sinh ⌘ cosh ⌘

◆
, (A�1)↵� =

✓
cosh ⌘ � sinh ⌘

� sinh ⌘ cosh ⌘

◆
, (4.31)

and the complex combination of potentials

b2 + i |z4,5,6,7|2 b1 = i g�2 e3i� Rez4,5,6,7
�
d↵+ i 1

4 sin(2↵)�3
�
^
�
1
2 sin(↵)(�1 � i�2)

�

= �i g�2Rez4,5,6,7 ⌦ .
(4.32)

Equivalently,

g2 b1 = �|z4,5,6,7|�2 Rez4,5,6,7 Re⌦ , g2 b2 = Rez4,5,6,7 Im⌦ . (4.33)

The associated three-form field strengths H
↵ = dB↵ = (H3, F3) are directly computed from

(4.30), (4.31) and (4.32). They take the form8

H
↵ = A↵�

⇣
d⌘ ^ b� ✓�

� + db�
⌘

, (4.34)

8
We have used the relation @⌘A = A ✓t = A ✓ .
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Equivalently,

g2 b1 = �|z4,5,6,7|�2 Rez4,5,6,7 Re⌦ , g2 b2 = Rez4,5,6,7 Im⌦ . (4.33)

The associated three-form field strengths H
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�
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�
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Equivalently,

g2 b1 = �|z4,5,6,7|�2 Rez4,5,6,7 Re⌦ , g2 b2 = Rez4,5,6,7 Im⌦ . (4.33)

The associated three-form field strengths H
↵ = dB↵ = (H3, F3) are directly computed from

(4.30), (4.31) and (4.32). They take the form8

H
↵ = A↵�

⇣
d⌘ ^ b� ✓�

� + db�
⌘

, (4.34)

8
We have used the relation @⌘A = A ✓t = A ✓ .
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with b↵ given in (4.33) and

g2 db1 = �d

✓
Rez4,5,6,7
|z4,5,6,7|2

◆
^ Re⌦+ 3

Rez4,5,6,7
|z4,5,6,7|2

(⌘ � Rez1,2,3 d⌘) ^ Im⌦ ,

g2 db2 = dRez4,5,6,7 ^ Im⌦+ 3Rez4,5,6,7 (⌘ � Rez1,2,3 d⌘) ^ Re⌦ .

(4.35)

In (4.34) we have introduced the constant matrix

✓�
� =

✓
0 1
1 0

◆
, (4.36)

and used the third of the SU(2)-structure relations in (4.23). Note that neither the gauge
potentials in (4.33) nor the field strengths in (4.34) depend explicitly on the axions Rez1,2,3 .

The axion-dilaton matrix is given by

m↵� = (A�t)↵
� m�� (A

�1)�� with m�� =

✓
|z4,5,6,7|2 0

0 |z4,5,6,7|�2

◆
, (4.37)

thus also being independent of the axions Rez1,2,3 . Finally the self-dual five-form field
strength depends on the axions Rez1,2,3 and is given by

eF5 = g (1 + ?)
h ⇣

4� 6
�
1� F (zi)2

� ⌘
volCP2 ^ (⌘ � Rez1,2,3 d⌘)

+
⇣
4Rez1,2,3 + (Rez4,5,6,7)2

�
1� |z4,5,6,7|�4

� ⌘
volCP2 ^ d⌘

� dRez1,2,3 ^ d⌘ ^ J ^ (⌘ � Rez1,2,3 d⌘)
i
.

(4.38)

This concludes the type IIB uplift of the Z2 ⇥ SU(3) invariant sector of the [SO(1, 1) ⇥
SO(6)]n R

12 maximal supergravity.

Recovering IR and UV geometries

In order to recover the ten-dimensional geometries for the S-folds and the D3-brane, we will
express the metric (4.21) as

ds210 = 1
2 F (zi)�1

⇥
eB(⇢) ⌘↵� dx↵dx� + (gc)�2 eC(⇢) dw2 + d⇢2

⇤

+ g�2
⇥
F (zi) ds2CP2

+ F (zi)�1 ⌘2
⇤
,

(4.39)

with ↵ = 0, 1, 2 , in terms of a rescaled coordinate w = 2�3 ⌘ , a new radial coordinate ⇢
defined as

d⇢ = (Imz1,2,3)
� 1

2 dz ) ⇢ =

Z
(Imz1,2,3)

� 1
2 dz , (4.40)

and the functions

eB = (Imz1,2,3)
�1 e2A and eC = 27 (Imz1,2,3)

2 . (4.41)

Let us first consider the deep IR region of the BPS domain-walls constructed in Section 3.
When approaching this region the scalars get a constant value. Then ⇢ = (Imz1,2,3)

� 1
2 z and

A = L�1 z so that

eB ⇠ e2 (Imz1,2,3)
1
2 L�1⇢ , eC ⇠ cst , (4.42)
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with b↵ given in (4.33) and

g2 db1 = �d

✓
Rez4,5,6,7
|z4,5,6,7|2

◆
^ Re⌦+ 3

Rez4,5,6,7
|z4,5,6,7|2

(⌘ � Rez1,2,3 d⌘) ^ Im⌦ ,

g2 db2 = dRez4,5,6,7 ^ Im⌦+ 3Rez4,5,6,7 (⌘ � Rez1,2,3 d⌘) ^ Re⌦ .

(4.35)
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◆
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4� 6
�
1� F (zi)2

� ⌘
volCP2 ^ (⌘ � Rez1,2,3 d⌘)

+
⇣
4Rez1,2,3 + (Rez4,5,6,7)2

�
1� |z4,5,6,7|�4

� ⌘
volCP2 ^ d⌘

� dRez1,2,3 ^ d⌘ ^ J ^ (⌘ � Rez1,2,3 d⌘)
i
.
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This concludes the type IIB uplift of the Z2 ⇥ SU(3) invariant sector of the [SO(1, 1) ⇥
SO(6)]n R

12 maximal supergravity.
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and the functions
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Let us first consider the deep IR region of the BPS domain-walls constructed in Section 3.
When approaching this region the scalars get a constant value. Then ⇢ = (Imz1,2,3)

� 1
2 z and

A = L�1 z so that

eB ⇠ e2 (Imz1,2,3)
1
2 L�1⇢ , eC ⇠ cst , (4.42)
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b2 + i |z4,5,6,7|2 b1 = �i g�2 Rez4,5,6,7 ⌦
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Finally, using the relation

Ĝik (⌦
�)kj dy

i
^ dy

j = �(⌦�)ijk Y
k
dY

i
^ dY

j
, (3.30)

one obtains the final expression

B↵ = 1
2 Bij

↵
dy

i
^ dy

j = �
1
2 Y

�1
✏
↵� (A�t)�

�
H�� (⌦

�)kij Y
k
dY

i
^ dY

j
, (3.31)

or, using the relations (A.1), the equivalent expression

B↵ = �Y
�1

✏
↵� (A�t)�

�
H�� ⌦

�
, (3.32)

where ⌦
�
⌘ (⌦R

,⌦
I) .

At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that
the scalar-dependent matrix in (3.28) reduces to H�� = 0 and therefore the two-form type IIB
potentials vanish, namely,

B↵ = 0 . (3.33)

At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-(2.22) one has that
the scalar-dependent matrix in (3.28) depends independently on ⇣ and ⇣̃ so the compact
U(1) symmetry associated with kU in (2.16) is broken.

3.4 Axion-dilaton

Setting � = 0 , the blocks of the scalar matrix relevant for the axion-dilaton are given by

M
�k �l = e

�'
�
kl
C

�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
�kl C�� + e

' (1� Y ) Jkl ✏�� .

(3.34)

Using the uplifting formulas in [7], and after some algebra, the SL(2) axion-dilaton matrix
takes the form

m↵� = (A�t)↵
� m�� (A

�1)�� . (3.35)

in terms of the SL(2) scalar-dependent matrix

m�� ⌘
1

Y
C�� =

1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
, (3.36)

and the SL(2) twist (A�1)↵� in (3.26).
At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that

the scalar-dependent SO(1, 1) matrix in (3.36) reduces

m�� =
1

p
1� �2

 
1 ��

�� 1

!
, (3.37)

with � 2 (�1, 1) . At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-
(2.22) one has that the scalar-dependent SO(1, 1) matrix in (3.36) reads

m�� =
2

3 |~⇣|2

0

B@
1 �

q
1� 9

4 |
~⇣|4

�

q
1� 9

4 |
~⇣|4 1

1

CA , (3.38)

with |~⇣|
2
2 ( 0 , 2

3 ] , so the compact U(1) symmetry associated with kU in (2.16) is preserved
by the axion-dilaton background.
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eF5 = g (1 + ?)
h ⇣

4� 6
�
1� F (zi)2

� ⌘
volCP2 ^ (⌘ � Rez1,2,3 d⌘)

+
⇣
4Rez1,2,3 + (Rez4,5,6,7)2

�
1� |z4,5,6,7|�4

� ⌘
volCP2 ^ d⌘
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This concludes the type IIB uplift of the Z2 ⇥ SU(3) invariant sector of the [SO(1, 1) ⇥
SO(6)]n R

12 maximal supergravity.

Recovering IR and UV geometries

In order to recover the ten-dimensional geometries for the S-folds and the D3-brane, we will
express the metric (4.21) as

ds210 = 1
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⇤
,

(4.39)

with ↵ = 0, 1, 2 , in terms of a rescaled coordinate w = 2�3 ⌘ , a new radial coordinate ⇢
defined as

d⇢ = (Imz1,2,3)
� 1

2 dz ) ⇢ =

Z
(Imz1,2,3)

� 1
2 dz , (4.40)

and the functions

eB = (Imz1,2,3)
�1 e2A and eC = 27 (Imz1,2,3)

2 . (4.41)

Let us first consider the deep IR region of the BPS domain-walls constructed in Section 3.
When approaching this region the scalars get a constant value. Then ⇢ = (Imz1,2,3)

� 1
2 z and

A = L�1 z so that

eB ⇠ e2 (Imz1,2,3)
1
2 L�1⇢ , eC ⇠ cst , (4.42)
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10D flows

4.3 Uplifting the UV: deformed D3-brane at c 6= 0

In this section we investigate various aspects of the Z2 ⇥ SU(3) invariant sector of the
[SO(1, 1)⇥ SO(6)]n R

12 gauged supergravity which is obtained upon identifying the scalar
fields in the Z

3
2 invariant sector as

z1 = z2 = z3 ⌘ z1,2,3 and z4 = z5 = z6 = z7 ⌘ z4,5,6,7 . (4.20)

This sector of the maximal theory is of special interest (see Appendix A for details on its
group theoretical embedding). Perturbing the four-dimensional incarnation of the D3-brane
solution in (2.32), and solving the BPS equations perturbatively in the parameter c , we found
the universal solution in (2.44) which, as already emphasised, is compatible with (4.20). It
will also provide us with a starting point to discuss axion deformations of N = 1 S-folds later
on in Section 4.4.

4.3.1 Type IIB uplift of the Z2 ⇥ SU(3)-invariant sector

Fetching techniques from E7(7) Exceptional Field Theory (E7(7)-ExFT) [48, 49], the type IIB
uplift of the Z2⇥SU(3) invariant sector of the [SO(1, 1)⇥ SO(6)]n R

12 maximal supergravity
can be straightforwardly obtained. This sector is compatible with the scalar identifications
in (4.20).

Ten-dimensional metric

The ten-dimensional metric takes the form

ds210 =
1
2 �

�1
�
ds2DW4

+ 2 (gc)�2�H(zi) d⌘
2
�
+ g�2 F (zi)

⇥
ds2

CP2
+ F (zi)

�2 ⌘2
⇤
, (4.21)

in terms of a four-dimensional space-time given by ds2DW4
in (2.8) and an internal space

M6 = S1⌘ o S5 with S5 = CP2 o S1 . We refer the reader to Appendix A of [36] for a detailed

description of the SU(2)-structure on the five-sphere S5 = CP2oS1 when viewed as a Sasaki-
Einstein manifold. As we will discuss in detail in Section 4.4, a non-trivial monodromy on
M6 is induced by the set of non-zero (constant) axions Rez1,2,3 in the type IIB backgrounds
so that the real one-form ⌘ in (4.21) is given by

⌘ = d� +Rez1,2,3 d⌘ +A1 . (4.22)

In (4.22), A1 = 1
2 sin

2 ↵�3 is the one-form potential on CP2 such that dA1 = 2J with
J being the real two-form specifying the SU(2)-structure of the five-sphere. In addition,
the torsion conditions for the SU(2)-structure of S5 further involve a complex two-form ⌦
(together with ⌘ and J ) and read

d(⌘ � Rez1,2,3 d⌘) = J , dJ = 0 , d⌦ = 3 i (⌘ � Rez1,2,3 d⌘) ^ ⌦ . (4.23)

The standard Fubini-Study metric on CP2 appears in (4.21) which takes the form

ds2
CP2

= d↵2 +

✓
sin↵

2

◆2 �
�21 + �22 + cos2 ↵�23

�
, (4.24)

in terms of a set of SU(2)-invariant one-forms

�1 = � sin d✓ + cos sin ✓ d� ,

�2 = cos d✓ + sin sin ✓ d� ,

�3 = d + cos ✓ d� .

(4.25)
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It will also be useful to introduce a set of frame fields on CP2 such that ds2
CP2

= �ab ea eb

with

e0 = d↵ , e1 = 1
2 sin↵�1 , e2 = 1

2 sin↵�2 , e3 = 1
2 sin↵ cos↵�3 . (4.26)

This assignment of frames on CP2 is compatible with a choice of embedding coordinates Ym

on the five-sphere of the form

Y2 = sin↵ cos ✓2 cos
⇣
 +�
2 + �

⌘
, Y4 = sin↵ sin ✓

2 cos
⇣
 ��
2 + �

⌘
,

Y3 = sin↵ cos ✓2 sin
⇣
 +�
2 + �

⌘
, Y5 = sin↵ sin ✓

2 sin
⇣
 ��
2 + �

⌘
,

Y6 = � cos↵ sin� .

(4.27)

As a result of the type IIB uplift, the metric in (4.21) depends on two scalar-dependent
functions

F (zi) = |z4,5,6,7|�1 Imz4,5,6,7 and H(zi) = F (zi)
�1 (Imz1,2,3)

2 , (4.28)

and the warping factor
� = F (zi) Imz1,2,3 . (4.29)

Note that the axions Rez1,2,3 enter the ten-dimensional geometry (4.21) exclusively through
the one-form ⌘ in (4.22).

Axion-dilaton and background fluxes

The rest of the type IIB fields can systematically be obtained. The two-form potentials
B
↵ = (B2, C2) are given by

B
↵ = A↵� b

� , (4.30)

in terms of the ⌘-dependent SL(2)IIB hyperbolic twist matrix

A↵� =

✓
cosh ⌘ sinh ⌘
sinh ⌘ cosh ⌘

◆
, (A�1)↵� =

✓
cosh ⌘ � sinh ⌘

� sinh ⌘ cosh ⌘

◆
, (4.31)

and the complex combination of potentials

b2 + i |z4,5,6,7|2 b1 = i g�2 e3i� Rez4,5,6,7
�
d↵+ i 1

4 sin(2↵)�3
�
^
�
1
2 sin(↵)(�1 � i�2)

�

= �i g�2Rez4,5,6,7 ⌦ .
(4.32)

Equivalently,

g2 b1 = �|z4,5,6,7|�2 Rez4,5,6,7 Re⌦ , g2 b2 = Rez4,5,6,7 Im⌦ . (4.33)

The associated three-form field strengths H
↵ = dB↵ = (H3, F3) are directly computed from

(4.30), (4.31) and (4.32). They take the form8

H
↵ = A↵�

⇣
d⌘ ^ b� ✓�

� + db�
⌘

, (4.34)

8
We have used the relation @⌘A = A ✓t = A ✓ .
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�
1
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�
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(4.32)

Equivalently,

g2 b1 = �|z4,5,6,7|�2 Rez4,5,6,7 Re⌦ , g2 b2 = Rez4,5,6,7 Im⌦ . (4.33)

The associated three-form field strengths H
↵ = dB↵ = (H3, F3) are directly computed from

(4.30), (4.31) and (4.32). They take the form8

H
↵ = A↵�

⇣
d⌘ ^ b� ✓�

� + db�
⌘
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8
We have used the relation @⌘A = A ✓t = A ✓ .
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with b↵ given in (4.33) and

g2 db1 = �d

✓
Rez4,5,6,7
|z4,5,6,7|2

◆
^ Re⌦+ 3

Rez4,5,6,7
|z4,5,6,7|2

(⌘ � Rez1,2,3 d⌘) ^ Im⌦ ,

g2 db2 = dRez4,5,6,7 ^ Im⌦+ 3Rez4,5,6,7 (⌘ � Rez1,2,3 d⌘) ^ Re⌦ .

(4.35)

In (4.34) we have introduced the constant matrix

✓�
� =

✓
0 1
1 0

◆
, (4.36)

and used the third of the SU(2)-structure relations in (4.23). Note that neither the gauge
potentials in (4.33) nor the field strengths in (4.34) depend explicitly on the axions Rez1,2,3 .

The axion-dilaton matrix is given by

m↵� = (A�t)↵
� m�� (A

�1)�� with m�� =

✓
|z4,5,6,7|2 0

0 |z4,5,6,7|�2

◆
, (4.37)

thus also being independent of the axions Rez1,2,3 . Finally the self-dual five-form field
strength depends on the axions Rez1,2,3 and is given by

eF5 = g (1 + ?)
h ⇣

4� 6
�
1� F (zi)2

� ⌘
volCP2 ^ (⌘ � Rez1,2,3 d⌘)

+
⇣
4Rez1,2,3 + (Rez4,5,6,7)2

�
1� |z4,5,6,7|�4

� ⌘
volCP2 ^ d⌘

� dRez1,2,3 ^ d⌘ ^ J ^ (⌘ � Rez1,2,3 d⌘)
i
.

(4.38)

This concludes the type IIB uplift of the Z2 ⇥ SU(3) invariant sector of the [SO(1, 1) ⇥
SO(6)]n R

12 maximal supergravity.

Recovering IR and UV geometries

In order to recover the ten-dimensional geometries for the S-folds and the D3-brane, we will
express the metric (4.21) as

ds210 = 1
2 F (zi)�1

⇥
eB(⇢) ⌘↵� dx↵dx� + (gc)�2 eC(⇢) dw2 + d⇢2

⇤

+ g�2
⇥
F (zi) ds2CP2

+ F (zi)�1 ⌘2
⇤
,

(4.39)

with ↵ = 0, 1, 2 , in terms of a rescaled coordinate w = 2�3 ⌘ , a new radial coordinate ⇢
defined as

d⇢ = (Imz1,2,3)
� 1

2 dz ) ⇢ =

Z
(Imz1,2,3)

� 1
2 dz , (4.40)

and the functions

eB = (Imz1,2,3)
�1 e2A and eC = 27 (Imz1,2,3)

2 . (4.41)

Let us first consider the deep IR region of the BPS domain-walls constructed in Section 3.
When approaching this region the scalars get a constant value. Then ⇢ = (Imz1,2,3)

� 1
2 z and

A = L�1 z so that

eB ⇠ e2 (Imz1,2,3)
1
2 L�1⇢ , eC ⇠ cst , (4.42)
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b2 + i |z4,5,6,7|2 b1 = �i g�2 Rez4,5,6,7 ⌦

Geometry
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As a result of the type IIB uplift, the metric in (4.21) depends on two scalar-dependent
functions
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and the complex combination of potentials

b2 + i |z4,5,6,7|2 b1 = i g�2 e3i� Rez4,5,6,7
�
d↵+ i 1

4 sin(2↵)�3
�
^
�
1
2 sin(↵)(�1 � i�2)

�

= �i g�2Rez4,5,6,7 ⌦ .
(4.32)

Equivalently,

g2 b1 = �|z4,5,6,7|�2 Rez4,5,6,7 Re⌦ , g2 b2 = Rez4,5,6,7 Im⌦ . (4.33)

The associated three-form field strengths H
↵ = dB↵ = (H3, F3) are directly computed from

(4.30), (4.31) and (4.32). They take the form8

H
↵ = A↵�

⇣
d⌘ ^ b� ✓�

� + db�
⌘

, (4.34)

8
We have used the relation @⌘A = A ✓t = A ✓ .
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[ anisotropy in SYM4 ]
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dm↵� = �(|z4,5,6,7|2 + |z4,5,6,7|�2) (A�t ✓A�1)↵� d⌘ + . . .

!29 [ see  Mateos, Trancanelli ’11, Hoyos, Jokela, Penín, Ramallo ’20 ] 



Axions in 10D

SU(3) symmetry : 

General case : 
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�0 = � � �(0)
1,2,3 ⌘

Therefore, the reconstruction of a direct product metric AdS5 ⇥ S5 , as performed when

�(0)
1,2,3 = 0 , is no longer obvious due to the axion-induced terms in (4.9). Nonetheless, for

arbitrary (constant) values of �(0)
1,2,3 , the ten-dimensional metric

ds210 = 1
2 �

�1 ds2DW4
+G⌘⌘ d⌘2 + 2 g�1Gi⌘ dyi d⌘ + g�2Gij dyi dyj , (4.12)

with � given in (4.6), can be related to the one with �(0)
1,2,3 = 0 by a local change of

coordinates as we show now.
Firstly, it is possible to get a better understanding of the internal geometry by moving to

an angular parameterisation exploiting the SO(2)3 symmetry that independently rotates the
planes (Y2,Y3) , (Y4,Y5) and (Y6,Y7) . This parameterisation is given by

Y2 = cos↵ sin ✓1 , Y4 = sin↵ cos� sin ✓2 , Y6 = sin↵ sin� cos ✓3 ,

Y3 = cos↵ cos ✓1 , Y5 = sin↵ cos� cos ✓2 .
(4.13)

Using the angular variables (↵ , � , ✓1 , ✓2 , ✓3) the metric on the round S5 of unit radius
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Bringing the various pieces of the external and internal geometry together, and using the
angular variables to describe the latter, one finds a ten-dimensional metric of the form
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with � given in (4.6). It now becomes obvious that redefining the angular variables as
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with arbitrary (constant) axions �(0)
i makes the S5 geometry in (4.17) go back to its form

in (4.14), namely,
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d�2 + cos2 � d✓022 + sin2 � d✓023

�
. (4.19)

As a result, the ten-dimensional geometry reduces locally to AdS5 ⇥ S5 and the type IIB
backgrounds are still given by (4.4) in terms of the S5 redefined volume vol05 . Consequently,

the resulting type IIB backgrounds with �(0)
1,2,3 6= 0 are locally equivalent to the one in (4.4)

with �(0)
1,2,3 = 0 upon the change of coordinates in (4.18). However, a global obstruction to

this equivalence arises as a consequence of the coordinate redefinitions in (4.18) as we will see
in detail in Section 4.4. This gets reflected in the amount of supersymmetry preserved by the

background which becomes maximal if �(0)
1,2,3 = 0 (see analysis below (2.36)).
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S5  metric :

… so axions induce a fibration of  S5  over  S1  characterised by a non-trivial monodromy 
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Figure 13: Illustration of the symmetry breaking induced by the monodromy and connection
with non-vanishing axions in four dimensions.

in (4.57). The latter can be readily obtained by employing E7(7)-ExFT techniques, as it was
done in Section 4.3.1.

As an example, let us consider the N = 1 S-fold with the largest possible symmetry
G = SU(3) and �i = 0 . Turning on two axions �1 = ��3 = n2⇡

T with n 2 N yields
h(T ) = I so that G0 = SU(3) . However, turning on three axions �1 = �2 = �1

2�3 as in
(3.20) yields G0 = SU(2) ⇥ U(1) . It then becomes clear that a general axion configuration
will yield G0 = U(1)2 so that G = SU(3) gets broken to its Cartan subgroup. Note also that
specific choices of �i might be of special interest, like for example fractional multiples 2⇡

kT ,
as these generate Zk monodromies.

Using the embedding coordinates Ym in (4.27) the action of �h on the angular variables
entering (4.22)-(4.25) reads

�! � � (�1 � �2) ⌘ ,  !  � (�1 + �2 � 2�3) ⌘ , � ! � � �3 ⌘ . (4.63)

Imposing the axions identification �1 = �2 = �3 as required by the Z2 ⇥ SU(3) invariant
sector in (4.20) reduces (4.63) to

� ! � � �3 ⌘ , (4.64)

in perfect agreement with the ten-dimensional result obtained in (4.44). It now becomes clear
that SU(3) invariance restricts the coordinate redefinitions to those inducing a monodromy
only on the U(1) fiber in S5 = CP2 o S1 . Finally, note also that the change of coordinates in
(4.63) is globally well-defined if �i = ni

2⇡
T with

P
i ni = 0 . This will be shown in a moment

to be equivalent to the case �i = 0 .

4.4.2 Monodromies, mapping torus and symmetry breaking

Let us start with a background involving an internal manifold of the form Mn⇥S1 where Mn

is an homogeneous space for a compact group G and S1 is a T -periodic circle parameterised
by a coordinate ⌘ . We will show how to modify this factorised geometry by introducing a
fibration of Mn over S1 in such a way that the original background is mapped to a new one.
This new background is parameterised by an element h 2 G which allows us to define the
mapping torus T (M)h as the quotient

T (M)h =
Mn ⇥ S1

(p, 0) ⇠ (h · p, T ) with h = exp

 
i T

rX

i=0

�i hi

!
2 U(1)r ⇢ G , (4.65)

for some �i , T 2 R where {hi} denotes a normalised basis of the r-dimensional Cartan
subalgebra h of g . We must then find a map from the original background with Mn⇥ S1 to
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SU(3) invariant sector

Lets us look in more detail at the SU(3)-invariant sector that plays a central role in this work.
The branching rules under the relevant embedding SU(4) ⇥ U(1)S � SU(3) ⇥ U(1) ⇥ U(1)S
reads

SU(4)⇥U(1)S � SU(3)⇥U(1)⇥U(1)S

14 + 1�4 ! 1(0,4) + 1(0,�4)

10�2 + 102 !
�
6̄(2,�2) + 3(�2,�2) + 1(�6,�2)

�
+

�
6(�2,2) + 3̄(2,2) + 1(6,2)

�

20’0 ! 6̄(�4,0) + 8(0,0) + 6(4,0)

150 ! 8(0,0) + 3(4,0) + 3̄(�4,0) + 1(0,0)

62 + 6�2 !
�
3(�2,2) + 3̄(2,2)

�
+

�
3(�2,�2) + 3̄(2,�2)

�

10 ! 1(0,0)

41 + 4̄�1 ! 3(1,1) + 1(�3,1) + 3̄(�1,�1) + 1(3,�1)

(A.7)

Then the SU(3) invariant sector of the 4D theory preserves N = 2 supersymmetry and
contains 2 [ denoted (�,�) in [36] ] + 2 [ denoted (⇣, ⇣̃) in [36] ] + 1 [Rez1,2,3 ] + 1 [ Imz1,2,3 ]
scalar fields respectively organised as: 1(0,±4) ⇢ 1±4 (dual to the gauge coupling g and the
theta-angle ✓) and 1(⌥6,⌥2) ⇢ 10�2 or 102 (dual to a fermion bilinear   and its conjugate
 ̄  ̄ ) descending from 5D scalars, 1(0,0) ⇢ 150 (dual to a one-form deformation Vµ) descending
from the unique SU(3)-invariant vector field in 5D, and 1(0,0) ⇢ 10 (generically associated
with placing N = 4 SYM4 on a curved manifold) descending from the 5D metric (KK scalar).

As a consequence of the above group theoretical decompositions, a configuration in an
Einstein-scalar model in 4D that involves a non-trivial profile for the 1(0,0) 2 150 scalar
cannot be connected to a configuration in an Einstein-scalar model in 5D. This scalar is
identified with the axion Rez1,2,3 in the main text which is responsible for the global vs local
issues discussed in Section 4.4. More precisely, when truncating the Einstein-scalar model
from 5D to 4D one has

5D: Mscal =
SU(2, 1)

SU(2)⇥U(1)
�! 4D: Mscal = R

+
��
KK

⇥ SU(2, 1)

SU(2)⇥U(1)
. (A.8)

Finally, the Z2 ⇥ SU(3) invariant sector investigated in this work preserves N = 1 and lies
at the intersection between the SU(3) and Z

3
2 invariant sectors yielding

4D:
SL(2)

SO(2)

����
z1,2,3

⇥ SL(2)

SO(2)

����
z4,5,6,7

⇢ SL(2)

SO(2)

����
z1,2,3

⇥ SU(2, 1)

SU(2)⇥U(1)

����
Univ hyper

, (A.9)

with z1,2,3 = Rez1,2,3 + i Imz1,2,3 and z4,5,6,7 = �1
2 ⇣̃ + ie��. This intersection corresponds to

setting to zero the scalars � and ⇣ in the universal hypermultiplet parameterisation of [36]
which are not invariant under the action of Z

⇤
2 ⇢ Z

3
2 as defined in [37].

SU(2)⇥U(1) and SO(4) invariant sectors

These two sectors of the theory also play an important role in this work. The SU(2)⇥U(1)
invariant sector is defined through the group theoretical embeddings and the corresponding
gravitini decompositions

SU(8) � SU(4)⇥U(1)S � SU(2)⇥U(1)⇥U(1)0 ⇥U(1)S

8 ! 41 + 4̄�1 ! 2(0,1,1) + 1(1,�1,1) + 1(�1,�1,1) + 2(0,�1,�1) + 1(1,1,�1) + 1(�1,1,�1)

(A.10)

40

4D  vs  5D

4D scalars
<latexit sha1_base64="qWXT7BcFVhEQO1/qDEeyYqAHqlI="></latexit>

E7(7)/SU(8)

5D scalars

5D  
vectors/tensors

5D metric

<latexit sha1_base64="FDkGpHFnKqfSnV7l+sZ5Uj0PVRo=">AAACCnicdZDLSgMxFIYz9VbrbdSlm2gR2k2dqbXWXUEElxXtBdpSMmnahmYuJGfEMszaja/ixoUibn0Cd76N6Q1U9IfAz3fO4eT8TiC4Asv6NBILi0vLK8nV1Nr6xuaWub1TU34oKatSX/iy4RDFBPdYFTgI1ggkI64jWN0Zno/r9VsmFfe9GxgFrO2Svsd7nBLQqGPut4DdgXSji7gTFTPFbHw0J9XrIM6Ush0zbeVOLPusaGErZ000MSX72Mb2jKTRTJWO+dHq+jR0mQdUEKWathVAOyISOBUsTrVCxQJCh6TPmtp6xGWqHU1OifGhJl3c86V+HuAJ/T4REVepkevoTpfAQP2ujeFftWYIvVI74l4QAvPodFEvFBh8PM4Fd7lkFMRIG0Il13/FdEAkoaDTS+kQ5pfi/00tn7OLufxVIV0uzOJIoj10gDLIRqeojC5RBVURRffoET2jF+PBeDJejbdpa8KYzeyiHzLevwCb75op</latexit>

E6(6)/USp(8)

A.1 5D supergravity: scalar fields and dual operators

Let us consider the five-dimensional SO(6)-gauged supergravity. The scalar fields in the theory
span the coset space

Mscal =
E6(6)

USp(8)
, (A.1)

thus accounting for 42 scalars. The group theoretical branching of such scalars under
USp(8) � SU(4)⇥U(1)S yields

USp(8) � SU(4)⇥U(1)S

42 ! 14 + 1�4 + 10�2 + 102 + 20’0
(A.2)

corresponding to the following holographic operators: gauge coupling g 2 14 , theta-angle
✓ 2 1�4 , fermion bilinears   2 10�2 and their conjugates  ̄  ̄ 2 102 and, lastly, scalar
bilinears �� 2 20’0 . As a result, the SO(6) ⇠= SU(4) invariant sector of the 5D theory
contains 2 scalars associated with the two singlets 1±4 . Lastly, the eight gravitini of the
theory branch as

USp(8) � SU(4)⇥U(1)S

8 ! 41 + 4̄�1

(A.3)

A.2 4D supergravity: scalar fields and 5D origin

Let us now consider the four-dimensional supergravity with [SO(1, 1)⇥ SO(6)]n R
12 gauging.

The scalar fields in the theory span the coset space

Mscal =
E7(7)

SU(8)
, (A.4)

thus accounting for 70 scalars. In order to establish a connection with the 5D theory, we must
branch such scalars under SU(8) � USp(8) � SU(4)⇥U(1)S . The result of this procedure is

SU(8) � USp(8) � SU(4)⇥U(1)S

70 ! 42 ! 14 + 1�4 + 10�2 + 102 + 20’0

27 ! 150 + 62 + 6�2

1 ! 10

(A.5)

The scalars descending from the 42 are directly identified with the scalars (A.2) in the 5D
theory. On the other hand, the scalars descending from the 27 are connected with vectors
150 and tensor fields (dual to vectors) 6±2 in 5D. Lastly there is an additional scalar 10
descending from the 5D metric (KK scalar).13 As a result, the SO(6) ⇠= SU(4) invariant
sector of the 4D theory contains 2+1 scalars associated with the three singlets 1±4 and 10 .
The eight gravitini of the theory decompose as

SU(8) � SU(4)⇥U(1)S

8 ! 41 + 4̄�1

(A.6)

13
The various entries in the right-most column of (A.5) are in one-to-one correspondence with the set of

possible bosonic deformations of N = 4 SYM4. The latter are parameterised by the bosonic auxiliary fields

of the o↵-shell N = 4 conformal supergravity [51] (see also [52]), which transform in the displayed irreps of

the (global) SU(4) R-symmetry group of undeformed N = 4 SYM4.
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SU(3) invariant sector

Lets us look in more detail at the SU(3)-invariant sector that plays a central role in this work.
The branching rules under the relevant embedding SU(4) ⇥ U(1)S � SU(3) ⇥ U(1) ⇥ U(1)S
reads
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�
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�
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�

10 ! 1(0,0)

41 + 4̄�1 ! 3(1,1) + 1(�3,1) + 3̄(�1,�1) + 1(3,�1)

(A.7)

Then the SU(3) invariant sector of the 4D theory preserves N = 2 supersymmetry and
contains 2 [ denoted (�,�) in [36] ] + 2 [ denoted (⇣, ⇣̃) in [36] ] + 1 [Rez1,2,3 ] + 1 [ Imz1,2,3 ]
scalar fields respectively organised as: 1(0,±4) ⇢ 1±4 (dual to the gauge coupling g and the
theta-angle ✓) and 1(⌥6,⌥2) ⇢ 10�2 or 102 (dual to a fermion bilinear   and its conjugate
 ̄  ̄ ) descending from 5D scalars, 1(0,0) ⇢ 150 (dual to a one-form deformation Vµ) descending
from the unique SU(3)-invariant vector field in 5D, and 1(0,0) ⇢ 10 (generically associated
with placing N = 4 SYM4 on a curved manifold) descending from the 5D metric (KK scalar).

As a consequence of the above group theoretical decompositions, a configuration in an
Einstein-scalar model in 4D that involves a non-trivial profile for the 1(0,0) 2 150 scalar
cannot be connected to a configuration in an Einstein-scalar model in 5D. This scalar is
identified with the axion Rez1,2,3 in the main text which is responsible for the global vs local
issues discussed in Section 4.4. More precisely, when truncating the Einstein-scalar model
from 5D to 4D one has

5D: Mscal =
SU(2, 1)

SU(2)⇥U(1)
�! 4D: Mscal = R

+
��
KK

⇥ SU(2, 1)

SU(2)⇥U(1)
. (A.8)

Finally, the Z2 ⇥ SU(3) invariant sector investigated in this work preserves N = 1 and lies
at the intersection between the SU(3) and Z

3
2 invariant sectors yielding

4D:
SL(2)

SO(2)

����
z1,2,3

⇥ SL(2)

SO(2)

����
z4,5,6,7

⇢ SL(2)

SO(2)

����
z1,2,3

⇥ SU(2, 1)

SU(2)⇥U(1)

����
Univ hyper

, (A.9)

with z1,2,3 = Rez1,2,3 + i Imz1,2,3 and z4,5,6,7 = �1
2 ⇣̃ + ie��. This intersection corresponds to

setting to zero the scalars � and ⇣ in the universal hypermultiplet parameterisation of [36]
which are not invariant under the action of Z

⇤
2 ⇢ Z

3
2 as defined in [37].

SU(2)⇥U(1) and SO(4) invariant sectors

These two sectors of the theory also play an important role in this work. The SU(2)⇥U(1)
invariant sector is defined through the group theoretical embeddings and the corresponding
gravitini decompositions

SU(8) � SU(4)⇥U(1)S � SU(2)⇥U(1)⇥U(1)0 ⇥U(1)S

8 ! 41 + 4̄�1 ! 2(0,1,1) + 1(1,�1,1) + 1(�1,�1,1) + 2(0,�1,�1) + 1(1,1,�1) + 1(�1,1,�1)
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E6(6)/USp(8)

A.1 5D supergravity: scalar fields and dual operators

Let us consider the five-dimensional SO(6)-gauged supergravity. The scalar fields in the theory
span the coset space

Mscal =
E6(6)

USp(8)
, (A.1)

thus accounting for 42 scalars. The group theoretical branching of such scalars under
USp(8) � SU(4)⇥U(1)S yields

USp(8) � SU(4)⇥U(1)S

42 ! 14 + 1�4 + 10�2 + 102 + 20’0
(A.2)

corresponding to the following holographic operators: gauge coupling g 2 14 , theta-angle
✓ 2 1�4 , fermion bilinears   2 10�2 and their conjugates  ̄  ̄ 2 102 and, lastly, scalar
bilinears �� 2 20’0 . As a result, the SO(6) ⇠= SU(4) invariant sector of the 5D theory
contains 2 scalars associated with the two singlets 1±4 . Lastly, the eight gravitini of the
theory branch as

USp(8) � SU(4)⇥U(1)S

8 ! 41 + 4̄�1

(A.3)

A.2 4D supergravity: scalar fields and 5D origin

Let us now consider the four-dimensional supergravity with [SO(1, 1)⇥ SO(6)]n R
12 gauging.

The scalar fields in the theory span the coset space

Mscal =
E7(7)

SU(8)
, (A.4)

thus accounting for 70 scalars. In order to establish a connection with the 5D theory, we must
branch such scalars under SU(8) � USp(8) � SU(4)⇥U(1)S . The result of this procedure is

SU(8) � USp(8) � SU(4)⇥U(1)S

70 ! 42 ! 14 + 1�4 + 10�2 + 102 + 20’0

27 ! 150 + 62 + 6�2

1 ! 10

(A.5)

The scalars descending from the 42 are directly identified with the scalars (A.2) in the 5D
theory. On the other hand, the scalars descending from the 27 are connected with vectors
150 and tensor fields (dual to vectors) 6±2 in 5D. Lastly there is an additional scalar 10
descending from the 5D metric (KK scalar).13 As a result, the SO(6) ⇠= SU(4) invariant
sector of the 4D theory contains 2+1 scalars associated with the three singlets 1±4 and 10 .
The eight gravitini of the theory decompose as

SU(8) � SU(4)⇥U(1)S

8 ! 41 + 4̄�1

(A.6)

13
The various entries in the right-most column of (A.5) are in one-to-one correspondence with the set of

possible bosonic deformations of N = 4 SYM4. The latter are parameterised by the bosonic auxiliary fields

of the o↵-shell N = 4 conformal supergravity [51] (see also [52]), which transform in the displayed irreps of

the (global) SU(4) R-symmetry group of undeformed N = 4 SYM4.
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❖ Global aspects of axions ?  ,  5D picture ?  ,   KK spectra ?  ,  Brane set-ups ?  ….
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D3-brane

N = 1 & SU(3)

N = 2 & SU(2) x U(1) N = 4 & SO(4)

❖ New families of N=1,2 S-folds and RG flows
[ Bobev, Gautason, Pilch, Suh, van Muiden ’19, ’20 ] 

[ Giambrone, Malek, Samtleben, Trigiante ’21 ] 
[ Arav, (Cheung), Gauntlett, Roberts, Rosen ’21 ]

[ Bobev, Gautason, van Muiden ’21 ] 

“strong  
evidence”

❖ Conformal manifold of 3d N=2 S-fold CFT’s

marginal  
deformation
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Singular Janus  &  S-fold interpretation

-                          hyperbolic monodromy  :

J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

Again U(1)φ is broken by the explicit dependence of (3.36) on the angle φ. This concludes

the uplift of the AdS4 vacuum with N = 2 and SU(2) × U(1) symmetry discussed in

section 2.3.3 to a ten-dimensional background of type IIB supergravity. It is worth empha-

sising that, if trivialising the A-twist in (3.30), i.e. Aα
β = δαβ , then the ten-dimensional

equations of motion of type IIB supergravity are no longer satisfied.

3.2 S-fold interpretation

The dependence of the full type IIB solution on the coordinate η along the R direction of

the geometry (3.27) is totally encoded in the local SL(2,R)IIB A-twist in (3.30). This twist

matrix is of hyperbolic type and thus induces a non-trivial monodromy

MS1 = A−1(η)A(η + T ) =

(
coshT sinhT

sinhT coshT

)
, (3.37)

when forcing the η coordinate to be periodic η → η + T with period T , namely, when

replacing R → S1 in the geometry. Generalising the A-twist in (3.30) to a discrete k-family

(k ∈ N with k ≥ 3) of new ones

A(k) = Ag(k) with g(k) =

⎛

⎜⎜⎜⎝

(k2 − 4)
1
4

√
2

0

k√
2(k2−4)

1
4

√
2

(k2 − 4)
1
4

⎞

⎟⎟⎟⎠
, (3.38)

the monodromy (3.37) gets generalised to a k-family of SL(2,Z)IIB hyperbolic monodromies

M(k) = A−1
(k)(η)A(k)

(
η + T (k)

)
=

(
k 1

−1 0

)
, k ≥ 3 , (3.39)

with T (k) = log(k +
√
k2 − 4) − log(2) and TrM(k) > 2. Therefore, as discussed in [27]

(see also [32]), these backgrounds can be interpreted as locally geometric compactifications

on S1 × S5 involving a k-family of S-duality monodromies (3.39). These monodromies can

be written as

M(k) = −ST k with S =

(
0 −1

1 0

)
and T =

(
1 0

1 1

)
, (3.40)

and thus define a k-family of S-fold backgrounds. Moreover, the argument wielded in [27]

for the straightforward uplift of the four-dimensional supersymmetries to ten dimensions

relied on the monodromy (3.37) being in the hyperbolic conjugacy class of SL(2,R)IIB.
This is still our case, so the S-folds presented here preserve N = 2 supersymmetry.

Lastly, various holographic aspects of both N = 4 [27] and N = 1 [32, 36] S-folds with

hyperbolic monodromies have respectively been investigated in [33–35] and [36] within the
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section 2.3.3 to a ten-dimensional background of type IIB supergravity. It is worth empha-

sising that, if trivialising the A-twist in (3.30), i.e. Aα
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equations of motion of type IIB supergravity are no longer satisfied.

3.2 S-fold interpretation

The dependence of the full type IIB solution on the coordinate η along the R direction of

the geometry (3.27) is totally encoded in the local SL(2,R)IIB A-twist in (3.30). This twist

matrix is of hyperbolic type and thus induces a non-trivial monodromy

MS1 = A−1(η)A(η + T ) =
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when forcing the η coordinate to be periodic η → η + T with period T , namely, when
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η + T (k)
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=
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, k ≥ 3 , (3.39)

with T (k) = log(k +
√
k2 − 4) − log(2) and TrM(k) > 2. Therefore, as discussed in [27]
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[ 4 irrelevant operators ]

Upon solving (3.2), the set of normalised scalar masses in (3.16) implies a set of conformal
dimensions �± for the dual operators given by

m2L2 = �2 (⇥4) , 3�
p
17 (⇥2) ; 0 (⇥2) ; 2 (⇥4) , 3 +

p
17 (⇥2) ,

�+ = 2 (⇥2) , 1
2(1+

p
17) (⇥2) ; 3 ; 1

2(3+
p
17) (⇥2) , 1

2(5 +
p
17) ,

�� = 1 (⇥2) , 1
2(5�

p
17) ; 0 (⇥2) ; 1

2(3�
p
17) (⇥2) , 1

2(1�
p
17) (⇥2) .

(3.17)
As in the previous case, some of the conformal dimensions in (3.17) have been highlighted as
they will play a role later on when studying holographic RG flows involving this conformal
fixed point.

3.3 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = i c and z4 = z5 = z6 = �z̄7 =
1p
2
(1 + i) . (3.18)

This AdS4 solution has a vacuum energy given by

V0 = �3 g2 c�1 , (3.19)

as for the previous solution, and a spectrum of Z
3
2 invariant normalised scalar masses of the

form
m2L2 = �2 (⇥3) , 0 (⇥6) , 4 (⇥4) , 10 (⇥1) , (3.20)

where L2 = �3/V0 is the AdS4 radius.
This N = 4 & SO(4) symmetric AdS4 vacuum was first reported in [6], and then uplifted

to a family of type IIB S-folds with N = 4 supersymmetry in [1]. Solving (3.2) for the set
of normalised scalar masses in (3.20) yields a set of conformal dimensions �± for the dual
operators given by

m2L2 = �2 (⇥3) ; 0 (⇥6) ; 4 (⇥4) , 10 (⇥1) ,

�+ = 2 (⇥3) ; 3 (⇥3) ; 4 (⇥1) , 5 ,

�� = 1 ; 0 (⇥3) ; �1 (⇥3) , �2 (⇥1) .

(3.21)

As in the previous case, some of the conformal dimensions in (3.21) have been highlighted as
they will play a role later on when studying holographic RG flows involving this conformal
fixed point.

In the next sections we will explore non-conformal solutions of the BPS equations (2.9).
We start with a class of (semi-)analytic solutions: first in the purely electric case with c = 0 ,
and then turning on the electromagnetic deformation c . Finally, we numerically construct
domain-wall solutions that interpolate between the above supersymmetric AdS4 vacua in the
deep IR ( z ! �1 ) and various scaling behaviours in the deep UV ( z ! 1 ).

4 D3-brane and SYM4

In this section we present (semi-)analytic solutions of the BPS equations (2.9) which control
the UV behaviour of the numerical RG flows to be presented later on in Section 5.
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Figure 5: Holographic RG flow from N = 4 SYM4 (UV) to N = 2&SU(2) J-fold CFT3 (IR).
Top plots: (⇤1,⇤2) = (�1, 0.7) and (�1,�2) = (0, 0) . Bottom plots: (⇤1,⇤2) = (�1, 0) and
(�1,�2) = (0.307, 0.011) .

when evaluated along the numerical flows. In (3.14) we have boxed the N = 2 supersymmetry
realised at the AdS4 vacuum in the deep IR and highlighted (in blue) those gravitino masses
with respect to which the numerical flows are BPS.

3.3 SYM4 to CFT3 with N = 4

Lastly we will solve the BPS equations (2.9) by perturbing around the N = 4&SO(4) AdS4
vacuum (2.28) in the IR (z ! �1). This will trigger again the appearance of generic flows
towards a non-conformal behaviour in the UV (z ! 1).

IR boundary conditions

Around the N = 4&SO(4) solution, there are again four irrelevant modes in the spectrum
(2.31)

�� = �2 and �� = �1 (⇥3) , (3.15)
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[ 4 irrelevant operators ]
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and then turning on the electromagnetic deformation c . Finally, we numerically construct
domain-wall solutions that interpolate between the above supersymmetric AdS4 vacua in the
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Figure 7: Holographic RG flow from N = 4 SYM4 (UV) to N = 4 J-fold CFT3 (IR) with
⇤ = �1 and �i = 0 .
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Figure 8: Holographic RG flow from N = 4 SYM4 (UV) to N = 4 J-fold CFT3 (IR) with
⇤ = �1 and (�1,�2,�3) = (�0.8, 0, 0) .

with � ⌘ �1+�2+�3 . Note that the parameters �i enter the IR boundary conditions (3.16)
in a symmetric manner and fully specify Rezi . As before, one of the parameters, either ⇤
or �i , can be set at will by a shift on the coordinate z . We will set ⇤ = �1 without loss of
generality7, which leaves us also this time with a three-dimensional parameter space to scan.

Behaviour of the flows

The IR boundary conditions (3.16) are highly symmetric. Fixing �i = 0 in (3.16) implies
Rez1,2,3 = 0 . In this case we obtain the flow depicted in Figure 7. The UV ( z ! 1 )
behaviour of this flow is again understood as a sub-leading correction in the electromagnetic
deformation c of the D3-brane solution in (2.32) with

Rez1,2,3 = 0 and �0 = 0 . (3.17)

7
Setting ⇤ = 0, 1 does not produce regular flows.
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