Advanced General Relativity : Exercises sheet (2020-2021)

Exercise 1

In a space-time with torsion, one has that
Puup = Puup(g) - K;wp ) (1)

where I',,”(g) are the torsion-free Christoffel symbols and K,,” is the so-called contorsion

tensor. Show that
/d4x\/—|g|VuV“ : (2)

is not a total derivative. Instead, it can be expressed as a boundary term plus an extra piece
depending on the contorsion tensor, thus spoiling the usual integration by parts.

Note: 6#@ - \/wrpup(g)

Exercise 2

Starting from the action for a spin 1 (Maxwell) field

Sy = / diz /g (—iFWF’“’) : (3)

with field strength
F,uzz = aqu/ - auA,u ’ (4)

and assuming a space-time without torsion :

a) Compute the equation of motion for the Maxwell field A4, .
b) Compute the energy momentum tensor 7}, .

c) Compute T'=T," and V,TH .

Exercise 3

Let us consider a simple wormhole metric of the form
ds? = —dt* + du® + (b + u?)(d6?* + sin® 6 d¢?) | (5)

in terms of a constant parameter by > 0. The ranges of the coordinates are given by

te(—o0,0) , wu€(—oo,00) , Oel0,7] , ¢e€]l0,27n]. (6)
a) Using cylindrical coordinates in the embedding space
ds* = dz? + dr? + r?d¢? | (7)
construct an embedding diagram
z(r) with r? = b 4+ u? (8)

for the equatorial plane 6 = 7/2 at a fixed time ¢. How many asymptotic regions does
the geometry have?

b) Using the Einstein equations, compute the stress tensor 7}, compatible with the metric
(5). What kind of matter would this stress tensor be accounting for? Is it an ordinary
type of matter?



Exercise 4

Consider a field theory including a spin 2 field (metric) and a massive spin 3/2 field (gravitino)
in the presence of a cosmological constant. The action of the theory is given by

S = Sg + SA + S\Il + Sma587 (9)
with )
Sy = 52 d*zeeg ey Rm,ab ,
1 4
SA == —27,{2 d*zel s
| ) (10)
Se = -5 d*reV,y"*D,¥,
1 4 ST uv
Stnass —3,2 d*rem V¥, ¥V, .

The first contribution Sy is the usual Einstein-Hilbert action for the metric. The second
contribution Sy is that of a cosmological constant A. The third contribution Sy is the
Rarita-Schwinger action for the gravitino field. Finally, the fourth contribution Spass with
constant m is just a mass term for the gravitino field.

Show that the above action S is invariant, to lowest order in fermions, under the local
supersymmetry transformations

de€,* = Y v, ,

1
2 (11)
0¥, = Dye—gyue,
with (spinorial) sypersymmetry parameter e, (z) provided two relations of the form
A=cieag® , m=cag, (12)
hold with ¢; and cs being constants. More concretely:

a) Determine the values of ¢; and cy.

b) Discuss the relation between supersymmetry and the sign of the cosmological constant.

Note: 7P, =2,
Note: X Vuips..n A = tnjvymwm“n x with tg=t3=—t; =—ta=1.

Exercise 5

Let us consider two real scalar fields ¢! and ¢? serving as coordinates on a two-dimensional
field space with metric

1
(%)
Assuming a flat Minkowski space-time g¢,, = 7, and taking the scalar fields to be only a
function of time, i.e. ¢! = ¢(t) :

ds? = Kis(0) do' o/ = —= ((do")? + (d0)?) . (13)



a) Show that the action for the scalar fields
1 , .
S = /d4:c ( — 5 Kij Oud’ aﬂqﬁf) : (14)

takes the simple form

5= [ e (02 @) (15)

de’
dt -

b) Show that the Euler-Lagrange equations of motion are given by

where we have denoted (ﬁl =

1
@?

FoSdlF =0 ad @ (@) @) =0 (16)

¢) Show that the Euler-Lagrange equations (16) can be expressed as a geodesic equation
in field space

¢+ T ¢ o =0, (17)
in terms of the Christoffel symbols in field space

iji = %K” (8jKlk + 8kKjl — 8[Kjk) . (18)

d) Can you identify the coset space SL(2)/SO(2) in (13) upon a suitable field redefinition
(change of coordinates in field space)?
Exercise 6

Let us consider the group of diffeomorphisms in a (D + 1)-dimensional theory of gravity with

space-time coordinates =™ = (2#,z). These diffeomorphisms are given by transformations

on the metric of the form
SegMN = & 0pgun + Grrp ONET + Grn OmE” (19)
where
Ma,2) = (8,8, (20)
is the (D + 1)-dimensional diffeomorphism parameter and

g=g') &2 =0()+cz, (21)

with 0(z) being an arbitrary function of x# and ¢ being a constant. In addition to the
above diffeomorphisms, let us also consider scaling transformations on the metric of the form

da gMN =2agMN , (22)

and a being a real constant.

a) Using the Kaluza-Klein Ansatz for the (D + 1)-dimensional metric

N 20 g., +e¥? AL A, ¥ A,
IMN = )

23
€209 4, 286 (23)



with 8 = —(D — 2) v, show that (19) and (22) induce transformations ¢ = 0z +da on the
D-dimensional fields of the form

1
5 - Y- —
¢ "S P¢ (D_2)a(c+a’)7
0A, = £P0,A+A,0.8° +0,0 —cA,, (24)
2
6_9“1/ — ‘SP apg“y + gup aygp + gpl/ 6‘“5#’ + (D — 2) c+a (D - 1) g,uz/ .
b) Discuss the transformations arising upon the particular choices of parameters a = — D ¢ 0

and a = —c.

Exercise 7

Let us consider a Maxwell field By, in D + 1 dimensions, with a (D + 1)-dimensional index
M = p & z splitting into a D-dimensional index p and an additional direction z. The
(D + 1)-dimensional Maxwell field Bjs; can then be decomposed as

By = (By, B.) = (Bu(z), x(x)) - (25)

Using the Kaluza-Klein Ansatz for the (D + 1)-dimensional frame and its inverse

. e eu’ eBe Ay N e el —e A,
eM = ) €A = ) (26)
01><4 eﬂ(b Ol><4 e_ﬂd)

where A, = e,V A, :
a) Show that ey ex™N = ol .

b) Compute gun = en” en®iap, where fap is the (D 4 1)-dimensional Minkowski
metric, and show that the result agrees with (23).

¢) Show that, when = —(D — 2) «, the (D + 1)-dimensional Maxwell action
1~ ~ 1~ =

reduces to a D-dimensional Maxwell-scalar action of the form

Sz = (2nL) [dPz e (—i e 20 F ., Fab _ %e2<D—2)a¢ OuX 8ax> , ”
= (2nL) [dPx /g (—ie—ﬂw Fo FHV — %GQ(D_2)°‘¢ Aux aux> : .

with L being the radius of the (circle) z-direction, and where we have defined
Os = €4" 0y : Fav = Fop — 20X Ay - (29)



