Advanced General Relativity : Exercises sheet (2020-2021)

Exercise 1

In a space-time with torsion, one has that

$$
\begin{equation*}
\Gamma_{\mu \nu}{ }^{\rho}=\Gamma_{\mu \nu}{ }^{\rho}(g)-K_{\mu \nu}{ }^{\rho}, \tag{1}
\end{equation*}
$$

where $\Gamma_{\mu \nu}{ }^{\rho}(g)$ are the torsion-free Christoffel symbols and $K_{\mu \nu}{ }^{\rho}$ is the so-called contorsion tensor. Show that

$$
\begin{equation*}
\int d^{4} x \sqrt{-|g|} \nabla_{\mu} V^{\mu} \tag{2}
\end{equation*}
$$

is not a total derivative. Instead, it can be expressed as a boundary term plus an extra piece depending on the contorsion tensor, thus spoiling the usual integration by parts.

Note: $\partial_{\mu} \sqrt{-|g|}=\sqrt{-|g|} \Gamma_{\rho \mu}{ }^{\rho}(g)$

Exercise 2

Starting from the action for a spin 1 (Maxwell) field

$$
\begin{equation*}
S_{A}=\int d^{4} x \sqrt{-|g|}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right) \tag{3}
\end{equation*}
$$

with field strength

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, \tag{4}
\end{equation*}
$$

and assuming a space-time without torsion :
a) Compute the equation of motion for the Maxwell field A_{μ}.
b) Compute the energy momentum tensor $T_{\mu \nu}$.
c) Compute $T \equiv T_{\mu}{ }^{\mu}$ and $\nabla_{\mu} T^{\mu \nu}$.

Exercise 3

Let us consider a simple wormhole metric of the form

$$
\begin{equation*}
d s^{2}=-d t^{2}+d u^{2}+\left(b_{0}^{2}+u^{2}\right)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right), \tag{5}
\end{equation*}
$$

in terms of a constant parameter $b_{0}>0$. The ranges of the coordinates are given by

$$
\begin{equation*}
t \in(-\infty, \infty) \quad, \quad u \in(-\infty, \infty) \quad, \quad \theta \in[0, \pi] \quad, \quad \phi \in[0,2 \pi] . \tag{6}
\end{equation*}
$$

a) Using cylindrical coordinates in the embedding space

$$
\begin{equation*}
d s^{2}=d z^{2}+d r^{2}+r^{2} d \phi^{2}, \tag{7}
\end{equation*}
$$

construct an embedding diagram

$$
\begin{equation*}
z(r) \quad \text { with } \quad r^{2}=b_{0}^{2}+u^{2}, \tag{8}
\end{equation*}
$$

for the equatorial plane $\theta=\pi / 2$ at a fixed time t. How many asymptotic regions does the geometry have?
b) Using the Einstein equations, compute the stress tensor $T_{\mu \nu}$ compatible with the metric (5). What kind of matter would this stress tensor be accounting for? Is it an ordinary type of matter?

Exercise 4

Consider a field theory including a spin 2 field (metric) and a massive spin $3 / 2$ field (gravitino) in the presence of a cosmological constant. The action of the theory is given by

$$
\begin{equation*}
S=S_{g}+S_{\Lambda}+S_{\Psi}+S_{\mathrm{mass}} \tag{9}
\end{equation*}
$$

with

$$
\begin{align*}
S_{g} & =\frac{1}{2 \kappa^{2}} \int d^{4} x e e_{a}{ }^{\mu} e_{b}^{\nu} R_{\mu \nu}^{a b} \\
S_{\Lambda} & =-\frac{1}{2 \kappa^{2}} \int d^{4} x e \Lambda \\
S_{\Psi} & =-\frac{1}{2 \kappa^{2}} \int d^{4} x e \bar{\Psi}_{\mu} \gamma^{\mu \nu \rho} D_{\nu} \Psi_{\rho} \tag{10}\\
S_{\mathrm{mass}} & =-\frac{1}{2 \kappa^{2}} \int d^{4} x e m \bar{\Psi}_{\mu} \gamma^{\mu \nu} \Psi_{\nu}
\end{align*}
$$

The first contribution S_{g} is the usual Einstein-Hilbert action for the metric. The second contribution S_{Λ} is that of a cosmological constant Λ. The third contribution S_{Ψ} is the Rarita-Schwinger action for the gravitino field. Finally, the fourth contribution $S_{\text {mass }}$ with constant m is just a mass term for the gravitino field.

Show that the above action S is invariant, to lowest order in fermions, under the local supersymmetry transformations

$$
\begin{align*}
\delta_{\epsilon} e_{\mu}{ }^{a} & =\frac{1}{2} \bar{\epsilon} \gamma^{a} \Psi_{\mu}, \tag{11}\\
\delta_{\epsilon} \Psi_{\mu} & =D_{\mu} \epsilon-g \gamma_{\mu} \epsilon,
\end{align*}
$$

with (spinorial) sypersymmetry parameter $\epsilon_{\alpha}(x)$ provided two relations of the form

$$
\begin{equation*}
\Lambda=c_{1} c_{2} g^{2} \quad, \quad m=c_{2} g \tag{12}
\end{equation*}
$$

hold with c_{1} and c_{2} being constants. More concretely:
a) Determine the values of c_{1} and c_{2}.
b) Discuss the relation between supersymmetry and the sign of the cosmological constant.

Note: $\gamma^{\mu \nu \rho} \gamma_{\rho}=2 \gamma^{\mu \nu}$.
Note: $\bar{\chi} \gamma_{\mu_{1} \mu_{2} \ldots \mu_{n}} \lambda=t_{n} \bar{\lambda} \gamma_{\mu_{1} \mu_{2} \ldots \mu_{n}} \chi$ with $t_{0}=t_{3}=-t_{1}=-t_{2}=1$.

Exercise 5

Let us consider two real scalar fields ϕ^{1} and ϕ^{2} serving as coordinates on a two-dimensional field space with metric

$$
\begin{equation*}
d s^{2}=K_{i j}(\phi) d \phi^{i} d \phi^{j}=\frac{1}{\left(\phi^{2}\right)^{2}}\left(\left(d \phi^{1}\right)^{2}+\left(d \phi^{2}\right)^{2}\right) \tag{13}
\end{equation*}
$$

Assuming a flat Minkowski space-time $g_{\mu \nu}=\eta_{\mu \nu}$ and taking the scalar fields to be only a function of time, i.e. $\phi^{i}=\phi^{i}(t)$:
a) Show that the action for the scalar fields

$$
\begin{equation*}
S=\int d^{4} x\left(-\frac{1}{2} K_{i j} \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}\right), \tag{14}
\end{equation*}
$$

takes the simple form

$$
\begin{equation*}
S=\frac{1}{2} \int d t \frac{1}{\left(\phi^{2}\right)^{2}}\left(\left(\dot{\phi}^{1}\right)^{2}+\left(\dot{\phi}^{2}\right)^{2}\right), \tag{15}
\end{equation*}
$$

where we have denoted $\dot{\phi}^{i}=\frac{d \phi^{i}}{d t}$.
b) Show that the Euler-Lagrange equations of motion are given by

$$
\begin{equation*}
\ddot{\phi}^{1}-\frac{2}{\phi^{2}} \dot{\phi}^{1} \dot{\phi}^{2}=0 \quad \text { and } \quad \ddot{\phi}^{2}+\frac{1}{\phi^{2}}\left(\left(\dot{\phi}^{1}\right)^{2}-\left(\dot{\phi}^{2}\right)^{2}\right)=0 . \tag{16}
\end{equation*}
$$

c) Show that the Euler-Lagrange equations (16) can be expressed as a geodesic equation in field space

$$
\begin{equation*}
\ddot{\phi}^{i}+\Gamma_{j k}{ }^{i} \dot{\phi}^{j} \dot{\phi}^{k}=0, \tag{17}
\end{equation*}
$$

in terms of the Christoffel symbols in field space

$$
\begin{equation*}
\Gamma_{j k}{ }^{i}=\frac{1}{2} K^{i l}\left(\partial_{j} K_{l k}+\partial_{k} K_{j l}-\partial_{l} K_{j k}\right) . \tag{18}
\end{equation*}
$$

d) Can you identify the coset space $\mathrm{SL}(2) / \mathrm{SO}(2)$ in (13) upon a suitable field redefinition (change of coordinates in field space)?

Exercise 6

Let us consider the group of diffeomorphisms in a $(D+1)$-dimensional theory of gravity with space-time coordinates $x^{M}=\left(x^{\mu}, z\right)$. These diffeomorphisms are given by transformations on the metric of the form

$$
\begin{equation*}
\delta_{\widehat{\xi}} \widehat{g}_{M N}=\widehat{\xi}^{P} \partial_{P} \widehat{g}_{M N}+\widehat{g}_{M P} \partial_{N} \widehat{\xi}^{P}+\widehat{g}_{P N} \partial_{M} \widehat{\xi}^{P} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{\xi}^{M}(x, z)=\left(\widehat{\xi}^{\mu}, \widehat{\xi}^{z}\right), \tag{20}
\end{equation*}
$$

is the ($D+1$)-dimensional diffeomorphism parameter and

$$
\begin{equation*}
\widehat{\xi}^{\mu}=\xi^{\mu}(x) \quad, \quad \widehat{\xi}^{z}(x, z)=\theta(x)+c z, \tag{21}
\end{equation*}
$$

with $\theta(x)$ being an arbitrary function of x^{μ} and c being a constant. In addition to the above diffeomorphisms, let us also consider scaling transformations on the metric of the form

$$
\begin{equation*}
\delta_{a} \widehat{g}_{M N}=2 a \widehat{g}_{M N}, \tag{22}
\end{equation*}
$$

and a being a real constant.
a) Using the Kaluza-Klein Ansatz for the $(D+1)$-dimensional metric

$$
\widehat{g}_{M N}=\left(\begin{array}{ll}
e^{2 \alpha \phi} g_{\mu \nu}+e^{2 \beta \phi} A_{\mu} A_{\nu} & e^{2 \beta \phi} A_{\mu} \tag{23}\\
e^{2 \beta \phi} A_{\mu} & e^{2 \beta \phi}
\end{array}\right),
$$

with $\beta=-(D-2) \alpha$, show that (19) and (22) induce transformations $\delta=\delta_{\widehat{\xi}}+\delta_{a}$ on the D-dimensional fields of the form

$$
\begin{align*}
\delta \phi & =\xi^{\rho} \partial_{\rho} \phi-\frac{1}{(D-2) \alpha}(c+a) \\
\delta A_{\mu} & =\xi^{\rho} \partial_{\rho} A_{\mu}+A_{\rho} \partial_{\mu} \xi^{\rho}+\partial_{\mu} \theta-c A_{\mu} \tag{24}\\
\delta g_{\mu \nu} & =\xi^{\rho} \partial_{\rho} g_{\mu \nu}+g_{\mu \rho} \partial_{\nu} \xi^{\rho}+g_{\rho \nu} \partial_{\mu} \xi^{\rho}+\frac{2}{(D-2)}[c+a(D-1)] g_{\mu \nu}
\end{align*}
$$

b) Discuss the transformations arising upon the particular choices of parameters $a=-\frac{c}{(D-1)}$ and $a=-c$.

Exercise 7

Let us consider a Maxwell field \widehat{B}_{M} in $D+1$ dimensions, with a $(D+1)$-dimensional index $M=\mu \oplus z$ splitting into a D-dimensional index μ and an additional direction z. The $(D+1)$-dimensional Maxwell field \widehat{B}_{M} can then be decomposed as

$$
\begin{equation*}
\widehat{B}_{M}=\left(\widehat{B}_{\mu}, \widehat{B}_{z}\right) \equiv\left(B_{\mu}(x), \chi(x)\right) . \tag{25}
\end{equation*}
$$

Using the Kaluza-Klein Ansatz for the ($D+1$)-dimensional frame and its inverse

$$
\widehat{e}_{M}^{A}=\left(\begin{array}{ll}
e^{\alpha \phi} e_{\mu}^{a} & e^{\beta \phi} A_{\mu} \tag{26}\\
0_{1 \times 4} & e^{\beta \phi}
\end{array}\right) \quad, \quad \widehat{e}_{A}^{N}=\left(\begin{array}{ll}
e^{-\alpha \phi} e_{a}^{\nu} & -e^{-\alpha \phi} A_{a} \\
0_{1 \times 4} & e^{-\beta \phi}
\end{array}\right)
$$

where $A_{a} \equiv e_{a}{ }^{\nu} A_{\nu}$:
a) Show that $\widehat{e}_{M}{ }^{A} \widehat{e}_{A}{ }^{N}=\delta_{M}{ }^{N}$.
b) Compute $\widehat{g}_{M N}=\widehat{e}_{M}{ }^{A} \widehat{e}_{N}{ }^{B} \widehat{\eta}_{A B}$, where $\widehat{\eta}_{A B}$ is the $(D+1)$-dimensional Minkowski metric, and show that the result agrees with (23).
c) Show that, when $\beta=-(D-2) \alpha$, the $(D+1)$-dimensional Maxwell action

$$
\begin{equation*}
S_{\widehat{B}}=\int d^{D+1} x \sqrt{-|\widehat{g}|}\left(-\frac{1}{4} \widehat{F}_{M N} \widehat{F}^{M N}\right)=\int d^{D+1} x \widehat{e}\left(-\frac{1}{4} \widehat{F}_{A B} \widehat{F}^{A B}\right), \tag{27}
\end{equation*}
$$

reduces to a D-dimensional Maxwell-scalar action of the form

$$
\begin{align*}
S_{\widehat{B}} & =(2 \pi L) \int d^{D} x e\left(-\frac{1}{4} e^{-2 \alpha \phi} \mathcal{F}_{a b} \mathcal{F}^{a b}-\frac{1}{2} e^{2(D-2) \alpha \phi} \partial_{a} \chi \partial^{a} \chi\right) \tag{28}\\
& =(2 \pi L) \int d^{D} x \sqrt{-|g|}\left(-\frac{1}{4} e^{-2 \alpha \phi} \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}-\frac{1}{2} e^{2(D-2) \alpha \phi} \partial_{\mu} \chi \partial^{\mu} \chi\right),
\end{align*}
$$

with L being the radius of the (circle) z-direction, and where we have defined

$$
\begin{equation*}
\partial_{a} \equiv e_{a}^{\nu} \partial_{\nu} \quad, \quad \mathcal{F}_{a b} \equiv F_{a b}-2 \partial_{[a} \chi A_{b]} . \tag{29}
\end{equation*}
$$

