Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

Supergravity algebras and Minkowski vacua in  $\mathcal{N} = 1$  generalised flux compactifications

Adolfo Guarino

Instituto de Física Teórica UAM-CSIC, Madrid

Groningen October 20th, 2009

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Work in collaboration with B. de Carlos and J. M. Moreno.

Fluxes and algebras

- SUGRA models
- Mkw solutions
- IIA duals
- Conclusions

# Motivation & objectives

- Why generalised fluxes ?
  - To restore duality symmetries at the 4D SUGRA models level.
  - Flux induced  $V(\Phi)$  for all IIA/IIB closed string moduli: moduli stabilisation at dS vacua, SUSY breaking, modular inflation...
- What do we want to present in this talk ?
  - A complete set of consistent T-duality invariant  $\mathcal{N} = 1$  SUGRA models which are interesting for phenomenology.
  - The interplay between the flux induced Supergravity algebras and the structure of classical Minkowski extrema for the moduli fields.

# Outlook

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

## Adolfo Guarino

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

1 Fluxes, symmetries and Supergravity algebras

2 Flux induced SUGRA models

**3** The Minkowski solutions

4 Type IIA dual vacua

**5** Conclusions

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# Fluxes, symmetries and Supergravity algebras

## Objective

Classify the isotropic flux-induced Supergravity algebras underlying the set of  $\mathbb{T}^6/(\mathbb{Z}_2\times\mathbb{Z}_2)$  type II orientifold models.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

## Key points

- Make an appropriate *duality frame* choice.
- Use the  $\mathbb{Z}_2 \times \mathbb{Z}_2$  isotropic orbifold symmetry.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# Generalised fluxes, T-duality and 12d algebra

• T-duality transformations give rise to generalised NS-NS flux backgrounds

$$\bar{H}_{abc} \xrightarrow{T_a} \omega_{bc}^a \xrightarrow{T_b} Q_c^{ab} \xrightarrow{T_c} R^{abc}$$

including (geo)metric,  $\omega$ , and non-geometric Q and R fluxes.

Proposal for a T-duality invariant 12d algebra, g, spanned by X<sup>a</sup> (gauge) and Z<sub>a</sub> (isometry) generators, with a = 1, ..., 6,

$$\begin{bmatrix} Z_a , Z_b \end{bmatrix} = \overline{H}_{abc} X^c + \omega^c_{ab} Z_c \\ \begin{bmatrix} Z_a , X^b \end{bmatrix} = -\omega^b_{ac} X^c + Q^{bc}_a Z_c \\ \begin{bmatrix} X^a , X^b \end{bmatrix} = Q^{ab}_{c} X^c + R^{abc} Z_c$$

Shelton, Taylor and Wecht [arXiv:hep-th/0508133]

A D F A 同 F A E F A E F A Q A

totally induced by the generalised NS-NS flux sector playing the role of structure constants  $\Rightarrow$  Jacobi constraints.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# $\mathcal{N}=1$ type II orientifold limits on $\mathbb{T}^6/(\mathbb{Z}_2\times\mathbb{Z}_2)$

•  $\mathcal{N} = 1$  low energy effective theories based on the  $\mathbb{Z}_2 \times \mathbb{Z}_2$  orbifold are promising for moduli stabilisation at classical dS extrema.

Caviezel, Koerber, Körs, Lüst, Tsimpis and Zagermann [arXiv:hep-th/08063458] Flauger, Paban, Robbins and Wrase [arXiv:hep-th/08123886] Caviezel, Koerber, Körs, Lüst, Wrase and Zagermann [arXiv:hep-th/08123551]

• Type II supergravities on  $\frac{\mathbb{T}^6}{\mathbb{Z}_2 \times \mathbb{Z}_2}$  orbifold  $\Rightarrow \mathcal{N} = 2$  Supergravities further broken to  $\mathcal{N} = 1$  in the orientifold limits.

• The orientifold projections allow for Op-planes and project half of the flux entries out of the theory  $\Rightarrow$  (T-) duality frames.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

Type IIB with O3/O7 planes: Fluxes and algebra

- If working in type IIB with O3/O7-planes  $\Rightarrow$  Only  $\bar{H}_3$  and Q fluxes.
- This duality frame is suitable for classifying the algebras

$$\begin{bmatrix} Z_a \,, Z_b \end{bmatrix} = \overline{H}_{abc} X^c \quad \to \quad \text{Extension from } \mathfrak{g}_{gauge} \text{ to } \mathfrak{g} \,. \\ \begin{bmatrix} Z_a \,, X^b \end{bmatrix} = Q_a^{bc} Z_c \quad \to \quad \text{Co-adjoint action } Q^* \text{ of } Q \,. \\ \begin{bmatrix} X^a, X^b \end{bmatrix} = Q_c^{ab} X^c \quad \to \quad \mathfrak{g}_{gauge} \text{ } Q\text{-subalgebra }.$$

• In the double space formalism, this corresponds to having a T-fold space: the  $X^a$  vectors generate  $\mathcal{G}_{gauge}$ , while the  $Z_a$  vectors generate the coset space  $\mathcal{G}/\mathcal{G}_{gauge}$ .

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Quadratic Jacobi identities  $\Rightarrow Q^2 = 0$  and  $\overline{H}_3 Q = 0$ .

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# $\mathbb{Z}_2\times\mathbb{Z}_2$ isotropic orbifold and algebra spliting

- General arguments can be used to determine the set of allowed g algebras in the type IIB with O3/O7 duality frame.
- $(\mathbb{Z}_2 \times \mathbb{Z}_2)$  orbifold symmetry  $+ \mathbb{Z}_3$  isotropy on the fluxes  $\Rightarrow \mathfrak{g}$  can be classified according to the group  $SO(2, 2) \times SO(3) \subset SO(6, 6)$  with the embedding  $(\mathbf{4}, \mathbf{3}) = \mathbf{12} \Rightarrow \mathfrak{g}$  splits into four subspaces endowed with a  $\epsilon_{UK}$  cyclic structure.

Derendinger, Kounnas, Petropoulos and Zwirner [arXiv:hep-th/0411276]

- This makes the simple so(3) ~ su(2) algebra to be the fundamental block ⇒ g<sub>gauge</sub> comes from gluing together two su(2) factors.
- The set of  $\mathfrak{g}_{gauge}$ :  $\mathfrak{so}(3, 1)$ ,  $\mathfrak{so}(4)$ ,  $\mathfrak{iso}(3)$ ,  $\mathfrak{nil}$  and  $\mathfrak{su}(2) + \mathfrak{u}(1)^3$ .

Font, A.G, and Moreno [arXiv:0809.3748 [hep-th]]

A D F A 同 F A E F A E F A Q A

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# The set of compatible *B*-field reductions

• Denoting  $(E^I, \widetilde{E}^I)_{I=1,2,3}$  a basis for  $\mathfrak{g}_{gauge}$ , the entire set of subalgebras is gathered in the gauge brackets

 $[E^{I},E^{J}] = \kappa_{1} \epsilon_{IJK} E^{K} \quad , \quad [E^{I},\widetilde{E}^{J}] = \kappa_{12} \epsilon_{IJK} \widetilde{E}^{K} \quad , \quad [\widetilde{E}^{I},\widetilde{E}^{J}] = \kappa_{2} \epsilon_{IJK} E^{K}$ 

restricted by Jacobi to the branches

 $\kappa_1 = \kappa_{12}$  or  $\kappa_{12} = \kappa_2 = 0$ 

• We will refer to these brackets as the canonical form of  $g_{gauge}$ .

• Five non-equivalent g<sub>gauge</sub> ⇒ Five non-equivalent *B*-field reductions.

 $\mathfrak{so}(3,1)$  ,  $\mathfrak{so}(3)$  ,  $\mathfrak{iso}(3)$  ,  $\mathfrak{nil}$  ,  $\mathfrak{su}(2) + \mathfrak{u}(1)^3$ 

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# The extension to a full Supergravity algebra

- Question: How to go from  $\mathfrak{g}_{gauge}$  to a full 12d algebra  $\mathfrak{g}$  ?
- In addition to the gauge brackets, the algebra  $\mathfrak{g}$  will also involve a new set of isometry generators denoted  $(D_I, \widetilde{D}_I)_{I=1,2,3}$ .
- The mixed gauge-isometry brackets are demanded to be given by the co-adjoint action of the g<sub>gauge</sub> structure constants ⇒ Not extra parameters added.
- The isometry-isometry brackets are only demanded to satisfy the 12d Jacobi identities ⇒ Adding two real (ε<sub>1</sub>, ε<sub>2</sub>) degrees of freedom determining the extension from g<sub>gauge</sub> to g.

## The extensions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Guarino Fluxes and algebras

Adolfo

- SUGRA models
- Mkw solution:
- IIA duals
- Conclusions

• The most general 12d brackets are given by

| $\kappa_1 = \kappa_{12}$ | $E^J$                      | $\widetilde{E}^{J}$         | $D_J$                                                                   | $\widetilde{D}_J$                                                      |
|--------------------------|----------------------------|-----------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|
| EI                       | $\kappa_1 E^K$             | $\kappa_1 \widetilde{E}^K$  | $\kappa_1 D_K$                                                          | $\kappa_1 \widetilde{D}_K$                                             |
| $\widetilde{E}^{I}$      | $\kappa_1 \widetilde{E}^K$ | $\kappa_2 E^K$              | $-\kappa_2 \widetilde{D}_K$                                             | $-\kappa_1 D_K$                                                        |
| $D_I$                    | $\kappa_1 D_K$             | $-\kappa_2 \widetilde{D}_K$ | $-\epsilon_1 \kappa_2  E^K - \epsilon_2 \kappa_2  \widetilde{E}^K$      | $\epsilon_2  \kappa_2  E^K + \epsilon_1  \kappa_1  \widetilde{E}^K$    |
| $\widetilde{D}_I$        | $\kappa_1 \widetilde{D}_K$ | $-\kappa_1 D_K$             | $\epsilon_2  \kappa_2  E^{K} + \epsilon_1  \kappa_1  \widetilde{E}^{K}$ | $-\epsilon_1 \kappa_1  E^{K} - \epsilon_2 \kappa_1  \widetilde{E}^{K}$ |

| $\kappa_{12} = \kappa_2 = 0$ | $E^J$          | $\widetilde{E}^J$ | $D_J$                      | $\widetilde{D}_J$                      |
|------------------------------|----------------|-------------------|----------------------------|----------------------------------------|
| $E^{I}$                      | $\kappa_1 E^K$ | 0                 | $\kappa_1 D_K$             | 0                                      |
| $\widetilde{E}^{I}$          | 0              | 0                 | 0                          | 0                                      |
| D <sub>I</sub>               | $\kappa_1 D_K$ | 0                 | $-\epsilon_1 \kappa_1 E^K$ | 0                                      |
| $\widetilde{D}_I$            | 0              | 0                 | 0                          | $-\epsilon_2 \kappa_1 \widetilde{E}^K$ |

 We will also refer to them as the canonical form of g ⇒ This form involves the parameters κ<sub>1,2</sub> and ε<sub>1,2</sub>.

# Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

| Semisimple <i>B</i> -field | reductions |
|----------------------------|------------|
|----------------------------|------------|

| $\mathfrak{g}_{gauge}$ | g                                                                                           | EXTENSION                                                                    |  |
|------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| co(2, 1)               | $\mathfrak{so}(3,1)^2$                                                                      | $\epsilon_1^2 + \epsilon_2^2 \neq 0$                                         |  |
| 50(3,1)                | $\mathfrak{so}(\mathfrak{z},\mathfrak{1})\oplus_{\mathbb{Z}_3}\mathfrak{u}(\mathfrak{1})^6$ | $\epsilon_1^2+\epsilon_2^2=0$                                                |  |
| <b>so</b> (4)          | $\mathfrak{so}(3,1)^2$                                                                      | $(\epsilon_1+\epsilon_2)>0$ , $(\epsilon_1-\epsilon_2)>0$                    |  |
|                        | iso(3) <sup>2</sup>                                                                         | $(\epsilon_1+\epsilon_2)=0$ , $(\epsilon_1-\epsilon_2)=0$                    |  |
|                        | $\mathfrak{so}(4)^2$                                                                        | $(\epsilon_1+\epsilon_2)<0$ , $(\epsilon_1-\epsilon_2)<0$                    |  |
|                        | $\mathfrak{so}(3,1) + \mathfrak{iso}(3)$                                                    | $(\epsilon_1+\epsilon_2)\geqslant 0$ , $(\epsilon_1-\epsilon_2)\geqslant 0$  |  |
|                        | $\mathfrak{so}(3,1) + \mathfrak{so}(4)$                                                     | $(\epsilon_1+\epsilon_2)\gtrless 0$ , $(\epsilon_1-\epsilon_2)\lessgtr 0$    |  |
|                        | $\mathfrak{iso}(3) + \mathfrak{so}(4)$                                                      | $(\epsilon_1+\epsilon_2) \gtrless 0$ , $(\epsilon_1-\epsilon_2) \leqslant 0$ |  |

de Carlos, A.G, and Moreno [arXiv:0907.5580 [hep-th]]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

## Non-semisimple B-field reductions

| $\mathfrak{g}_{gauge}$                 | g                                                                                                                                                                                                                                          | EXTENSION                                                |                                         |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| i\$0(3)                                | $ \begin{array}{c} \mathfrak{so}(3,1) \oplus_{\mathbb{Z}_3} \mathfrak{u}(1)^6 \\ \overline{\mathfrak{iso}}(3) \oplus_{\mathbb{Z}_3} \mathfrak{u}(1)^6 \\ \overline{\mathfrak{so}}(4) \oplus_{\mathbb{Z}_3} \mathfrak{u}(1)^6 \end{array} $ | $\epsilon_1 > 0$<br>$\epsilon_1 = 0$<br>$\epsilon_1 < 0$ | $\epsilon_2 = free$                     |
| nil                                    | nil <sub>12</sub> (4)<br>nil <sub>12</sub> (2)                                                                                                                                                                                             | $\epsilon_1 = free$                                      | $\epsilon_2 \neq 0$<br>$\epsilon_2 = 0$ |
|                                        | $\frac{\mathfrak{so}(3,1) + \mathfrak{nil}}{\mathfrak{so}(3,1) + \mathfrak{u}(1)^6}$                                                                                                                                                       | $\epsilon_1 > 0$                                         | $\epsilon_2 \neq 0$<br>$\epsilon_2 = 0$ |
| $\mathfrak{su}(2) + \mathfrak{u}(1)^3$ | $\frac{\mathfrak{iso}(3) + \mathfrak{nil}}{\mathfrak{iso}(3) + \mathfrak{u}(1)^6}$                                                                                                                                                         | $\epsilon_1 = 0$                                         | $\epsilon_2 \neq 0$<br>$\epsilon_2 = 0$ |
|                                        | $\frac{\mathfrak{so}(4) + \mathfrak{nil}}{\mathfrak{so}(4) + \mathfrak{u}(1)^6}$                                                                                                                                                           | $\epsilon_1 < 0$                                         | $\epsilon_2 \neq 0$<br>$\epsilon_2 = 0$ |
| $\mathfrak{u}(\mathfrak{l})^6$         | $\mathfrak{nil}_{12}(2)$                                                                                                                                                                                                                   | UNCONS                                                   | FRAINED                                 |

de Carlos, A.G, and Moreno [arXiv:0907.5580 [hep-th]]

• If  $\mathfrak{g}_{gauge} = \mathfrak{u}(\mathfrak{1})^6 \Rightarrow$  only gauge fluxes, i.e.  $\mathfrak{g} = \mathfrak{n}\mathfrak{i}\mathfrak{l}^2$ .

Roest [arXiv:0902.0479 [hep-th]]

## Adolfo Guarino

Fluxes and algebras

SUGRA models

Mkw solution

IIA duals

Conclusions

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Fluxes and algebras

- SUGRA models
- Mkw solution
- IIA duals
- Conclusions

## Review

- If we are given a background for the Q and  $\bar{H}_3$  fluxes satisfying  $Q^2 = 0$ and  $\bar{H}_3Q = 0$ , then it will correspond to one of the previously discussed algebras with a non-canonical embedding within the fluxes.
- Provided a *B*-field reduction based on a g<sub>gauge</sub>, its extension to a full 12d algebra g is totally in the two (ε<sub>1</sub>, ε<sub>2</sub>) real parameters.

# Question

• At the SUGRA models level, which are the consequences of bringing the brackets induced by the Q and  $\overline{H}_3$  fluxes into their canonical form?

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# Flux induced Supergravity models

# Objective

Following with the  $\mathbb{Z}_2 \times \mathbb{Z}_2$  isotropic orbifold, we want to derive the characteristic  $\mathcal{N} = 1$  flux-induced SUGRA models for the five non-equivalent *B*-field reductions previously found.

# Key points

- The choice of the embedding of  $\mathfrak{g}$  within the *Q* and  $\overline{H}_3$  fluxes becomes a symmetry of the SUGRA models up to a global volume factor.
- The R-R flux sector can be efficiently parameterised making use of the axion shift symmetries.

A D F A 同 F A E F A E F A Q A

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# Type IIB with O3/O7: Fluxes and effective action

- The set of isotropic flux backgrounds comprises the  $\overline{H}_3$  and Q fluxes in the generalised NS-NS sector together with a  $\overline{F}_3$  flux in the R-R sector.
- The Ansatz of isotropic fluxes is compatible with vacua in which the geometric moduli are also isotropic  $\Rightarrow$  One complex structure modulus U + one Kähler modulus T + the axio-dilaton S.
- The  $\mathcal{N} = 1$  effective action is defined by

$$K \quad = \quad -3\,\log\left(-i\left(U-\bar{U}\right)\right) \, - \,\log\left(-i\left(S-\bar{S}\right)\right) - 3\,\log\left(-i\left(T-\bar{T}\right)\right)$$

$$W = \int_{Y} (\bar{F}_{3} \wedge \Omega) - S(\bar{H}_{3} \wedge \Omega) + (Q \mathcal{J} \wedge \Omega)$$

Aldazabal, Cámara, Font and Ibáñez [arXiv:hep-th/0602089]

A D F A 同 F A E F A E F A Q A

where  $\Omega(U)$  is the holomorphic 3-form and  $\mathcal{J}(T)$  is the complexified Kähler 4-form.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

• Computing the superpotential the superpotential,

$$W(U,S,T) = \underbrace{P_1(U)}_{\bar{F}_3} + \underbrace{P_2(U)}_{\bar{H}_3} S + \underbrace{P_3(U)}_Q T$$

it involves cubic polynomials in the complex structure modulus U.

• The coefficients in  $P_2(U)$  and  $P_3(U)$  expand the  $\overline{H}_3$  and Q fluxes respectively  $\Rightarrow$  restricted by Jacobi identities.

• Only Supersymmetric vacua structure found.

Shelton, Taylor and Wecht [arXiv:hep-th/0607015] Font, A.G, and Moreno [arXiv:0809.3748 [hep-th]]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fluxes and algebras

SUGRA models

Mkw solution:

IIA duals

Conclusions

# A new approach: The characteristic $g_{gauge}$ based SUGRA models

• Provided a consistent background for the *Q* and  $\overline{H}_3$  fluxes in a type IIB with O3/O7 orientifold model, it can always be taken into the canonical form of g by applying a rotation of the form

$$\left(\begin{array}{c}E^{I}\\\widetilde{E}^{I}\end{array}\right) = \frac{\Gamma}{|\Gamma|^{2}} \left(\begin{array}{c}-X^{2I-1}\\X^{2I}\end{array}\right) \text{ and } \left(\begin{array}{c}-D_{I}\\\widetilde{D}_{I}\end{array}\right) = \frac{\mathrm{Adj}(\Gamma)}{|\Gamma|^{2}} \left(\begin{array}{c}-Z_{2I-1}\\Z_{2I}\end{array}\right)$$

via the general  $\Gamma \in GL(2,\mathbb{R})$  matrix,  $\Gamma \equiv \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ .

- After performing this rotation:  $Q = Q(\kappa_i)$  and  $\bar{H}_3 = \bar{H}_3(\kappa_i, \epsilon_i)$
- The κ<sub>1</sub> and κ<sub>2</sub> parameters in the gauge brackets can be normalised to +1, 0, -1 via a rescaling of the {E<sup>I</sup>, Ẽ<sup>I</sup>} generators ⇒ rescaling of Γ.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

• At the effective SUGRA models level, this rotation translates into a transformation on the *U* modulus

$$U \rightarrow \mathcal{Z} \equiv \Gamma U = \frac{\alpha U + \beta}{\gamma U + \delta}$$

and the generalised NS-NS flux induced polynomials result in

$$P_2(U) = (\gamma U + \delta)^3 \mathcal{P}_2(\mathcal{Z})$$
,  $P_3(U) = (\gamma U + \delta)^3 \mathcal{P}_3(\mathcal{Z})$ 

|                              | $\mathcal{P}_3(\mathcal{Z})/3$                    | $\mathcal{P}_2(\mathcal{Z})$                                                                                                                |
|------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $\kappa_1 = \kappa_{12}$     | $\kappa_2  \mathcal{Z}^3 - \kappa_1  \mathcal{Z}$ | $\kappa_2 \left(\epsilon_1 \mathcal{Z}^3 + 3 \epsilon_2 \mathcal{Z}^2\right) + \kappa_1 \left(\epsilon_2 + 3 \epsilon_1 \mathcal{Z}\right)$ |
| $\kappa_{12} = \kappa_2 = 0$ | $\kappa_1 Z$                                      | $\kappa_1  \left(\epsilon_1  \mathcal{Z}^3 + \epsilon_2  ight)$                                                                             |

 The polynomial P<sub>3</sub>(Z) results totally fixed after the B-field reduction choice while P<sub>2</sub>(Z) depends on the ε<sub>1,2</sub> parameters specifying its extension to a full 12d algebra.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

• In terms of the  $\mathcal{Z}$  modulus, the R-R  $\overline{F}_3$  flux-induced polynomial

$$P_1(U) = (\gamma U + \delta)^3 \mathcal{P}_1(\mathcal{Z})$$

can be conveniently expanded as

 $\mathcal{P}_1(\mathcal{Z}) = \xi_s \, \mathcal{P}_2(\mathcal{Z}) \, + \, \xi_t \, \mathcal{P}_3(\mathcal{Z}) \, - \, \xi_3 \widetilde{\mathcal{P}}_2(\mathcal{Z}) \, + \, \xi_7 \, \widetilde{\mathcal{P}}_3(\mathcal{Z})$ where  $\widetilde{\mathcal{P}}_i(\mathcal{Z})$  denotes the dual of  $\mathcal{P}_i(\mathcal{Z})$  such that  $\mathcal{P}_i \to \frac{\widetilde{\mathcal{P}}_i}{\mathcal{Z}^3}$  when  $\mathcal{Z} \to -\frac{1}{\mathcal{Z}}$ .

• This parametrization allows us to remove the R-R flux degrees of freedom,  $(\xi_s, \xi_t)$ , from the effective theory through the real shifts

$$\mathcal{S} = S + \xi_s \qquad , \qquad \mathcal{T} = T + \xi_t$$

on the dilaton and the Kähler moduli fields  $\Rightarrow$  This leaves us with two ( $\xi_3, \xi_7$ ) real parameters which relate to localised sources.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

• The modulus redefinition  $U \to \mathcal{Z}$  corresponds to a Kähler transformation  $e^{K}|W|^{2} \to e^{K}|W|^{2}$  of the model to an equivalent one described by

$$\mathcal{K} = -3 \log \left(-i \left(\mathcal{Z} - \bar{\mathcal{Z}}\right)\right) - \log \left(-i \left(\mathcal{S} - \bar{\mathcal{S}}\right)\right) - 3 \log \left(-i \left(\mathcal{T} - \bar{\mathcal{T}}\right)\right)$$

$$\mathcal{W} = |\Gamma|^{3/2} \left[ \mathcal{T} \mathcal{P}_3(\mathcal{Z}) + \mathcal{S} \mathcal{P}_2(\mathcal{Z}) - \xi_3 \widetilde{\mathcal{P}}_2(\mathcal{Z}) + \xi_7 \widetilde{\mathcal{P}}_3(\mathcal{Z}) \right]$$

Font, A.G, and Moreno [arXiv:0809.3748 [hep-th]]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Review

Provided a *B*-field reduction based on a  $\mathfrak{g}_{gauge}$  gauge subalgebra, the resulting SUGRA models are totally determined by two NS-NS like  $(\epsilon_1, \epsilon_2)$  parameters plus two R-R like  $(\xi_3, \xi_7)$  parameters.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# The Minkowski solutions

# Objective

To find the **complete** set of Minkowski moduli extrema for the set of N = 1SUGRA models based on the five non-equivent *B*-field reductions.

## Key points

- The stabilisation of the  ${\cal S}$  and  ${\cal T}$  moduli field in a Mkw vacuum can be analytically computed.
- After using the scaling properties of the SUGRA models, the parameter space is further reduce to a 2-torus with coordinates (θ<sub>ε</sub>, θ<sub>ξ</sub>).

## The equations of motion

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• The dynamics of the moduli fields  $\Phi \equiv (\mathcal{Z}, \mathcal{S}, \mathcal{T})$  is determined by the standard  $\mathcal{N} = 1$  scalar potential

$$V = e^{\mathcal{K}} \left( \sum_{\Phi} \mathcal{K}^{\Phi \bar{\Phi}} |D_{\Phi} \mathcal{W}|^2 - 3|\mathcal{W}|^2 \right)$$

• Moduli fields are stabilised at the minima of the potential taking a vacuum expectation value  $\Phi_0$  (VEV) determined by the conditions

$$\left. \frac{\partial V}{\partial \Phi} \right|_{\Phi = \Phi_0} = 0$$

• Our strategy will consist in finding the Mkw extrema, and then to look for dS vacua continuously connected to them via a parameter deformation.

#### Adolfo Guarino

- Fluxes and algebras
- SUGRA models
- Mkw solutions
- IIA duals
- Conclusions

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

## Stabilising the $\,\mathcal{S}\,$ and $\,\mathcal{T}\,$ moduli

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Since the moduli  $\mathcal{S}$  and  $\mathcal{T}$  enter the superpotential linearly,

$$e^{-\mathcal{K}}V = \left(1, \operatorname{Re}\mathcal{S}, \operatorname{Re}\mathcal{T}\right) M^{(\operatorname{axi})} \begin{pmatrix} 1\\ \operatorname{Re}\mathcal{S}\\ \operatorname{Re}\mathcal{T} \end{pmatrix} + \left(1, \operatorname{Im}\mathcal{S}, \operatorname{Im}\mathcal{T}\right) M^{(\operatorname{vol})} \begin{pmatrix} 1\\ \operatorname{Im}\mathcal{S}\\ \operatorname{Im}\mathcal{T} \end{pmatrix}$$

with  $M^{(axi)}$  and  $M^{(vol)}$  being 3 × 3 symmetric matrices that depend on the  $\mathcal{Z}$  modulus and on the  $\epsilon_{1,2}$  and  $\xi_{3,7}$  real parameters.

• At a Mkw extremum,  $\frac{\partial V}{\partial Im\Phi} = 0 \Rightarrow \frac{\partial (e^{-\mathcal{K}} V)}{\partial Im\Phi} = 0$ , and the stabilisation of the moduli S and T can be worked out analytically.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# Stabilizing the $\,\mathcal{Z}\,$ modulus

• Once the *S* and *T* moduli field stabilisation has been studied analytically, the next step is to study the stabilisation of *Z* 

$$\frac{\partial V}{\operatorname{Re}\mathcal{Z}}\Big|_{\Phi=\Phi_0} = \left.\frac{\partial V}{\operatorname{Im}\mathcal{Z}}\right|_{\Phi=\Phi_0} = 0$$

together with the Minkowski condition

$$e^{-\mathcal{K}}V\Big|_{\Phi=\Phi_0}=0$$

- After substituting the S<sub>0</sub> and T<sub>0</sub> VEVs, the system results in a high degree polynomial conditions on the Z<sub>0</sub> modulus components ⇒ It has to be takled numerically.
- The SUGRA models based on the nil *B*-field reduction are excluded to accommodate for Mkw extrema ⇒ Algebraic geometry techniques.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# Scaling properties and parameter space

• Applying the parameter redefinitions of

$$\epsilon_1 \to |\epsilon|\cos(\theta_\epsilon) \ , \ \epsilon_2 \to |\epsilon|\sin(\theta_\epsilon) \ , \ \xi_3 \to \frac{|\xi|}{|\epsilon|}\cos(\theta_\xi) \ , \ \xi_7 \to |\xi|\sin(\theta_\xi)$$

and the moduli rescalings 
$$S \to \frac{S |\xi|}{|\epsilon|}$$
 and  $T \to T |\xi|$ ,

$$\mathcal{W} o |\Gamma|^{\frac{3}{2}} |\xi| \ \mathcal{W}\left(\Phi\,;\, heta_{\epsilon}, heta_{\xi}
ight) \qquad ext{and} \qquad V o rac{|\Gamma|^3 \ |\epsilon|}{|\xi|^2} \ V\left(\Phi\,;\, heta_{\epsilon}, heta_{\xi}
ight) \ .$$

 The effective parameter space then acquires the topology of a 2-torus with coordinates (θ<sub>ε</sub>, θ<sub>ξ</sub>).



▲□▶▲□▶▲□▶▲□▶ □ のQ@

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# Generalities of the Mkw solutions

- $Im\Phi_0 > 0$  at any physical Mkw extremum. The distribution of such extrema depends crucially on the sort of SUGRA model it belongs to.
- Non-semisimple *B*-field reductions  $\Rightarrow$  unstable extrema.
  - Only one Mkw extremum  $Z_0^*$  which is rescaled to generate the entire set of them (this can be seen analytically).
  - They draw open lines in both the parameter space (θ<sub>ε</sub>, θ<sub>ξ</sub>) and the complex plane Z<sub>0</sub>.
- Semisimple *B*-field reductions ⇒ unstable/stable extrema.
  - Extrema without a scaling nature.
  - The set of Mkw extrema draws closed lines in both the parameter space (θ<sub>ε</sub>, θ<sub>ξ</sub>) and the complex plane Z<sub>0</sub>.

# Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

## Models based on the iso(3) *B*-field reduction



▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Points A and A: Underlying  $\mathfrak{g} = \mathfrak{iso}(\mathfrak{z}) \oplus_{\mathbb{Z}_3} \mathfrak{u}(\mathfrak{z})^6$ , and  $|\Phi_0| \to \infty$ .
- Point B : Special point where  $|\Phi_0| \rightarrow 0$ .
- Line  $\overline{AA}$ : Underlying  $\mathfrak{g} = \mathfrak{so}(4) \oplus_{\mathbb{Z}_3} \mathfrak{u}(1)^6$ .

# Models based on the $\mathfrak{su}(2) + \mathfrak{u}(1)^3$ *B*-field reduction

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>



- Points A and A': Underlying  $\mathfrak{g} = \mathfrak{iso}(\mathfrak{z}) + \mathfrak{nil}$ , and  $|\Phi_0| \to \infty$ .
- Point B : Underlying  $\mathfrak{g} = \mathfrak{so}(4) + \mathfrak{u}(\mathfrak{1})^6$ , and  $|\Phi_0| \to 0$ .
- Lines  $\overline{AB}$  and  $\overline{BA}$ : Underlying  $\mathfrak{g} = \mathfrak{so}(4) + \mathfrak{nil}$ .

#### Adolfo Guarino

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions



- Points D and D': Underlying  $\mathfrak{g} = \mathfrak{iso}(3) + \mathfrak{so}(4)$ . At these points,  $\text{Im}\mathcal{S}_0 \to \infty$  while  $\text{Im}\mathcal{T}_0 \to 0$  and  $\text{Im}\mathcal{Z}_0 \to 0$ .
- Line  $\overline{DD'}$  through point B: Underlying  $\mathfrak{g} = \mathfrak{so}(4)^2$ , and  $\operatorname{Im}\Phi_0 \to 0$  at point B.
- Line  $\overline{DD'}$  through point A : Underlying  $\mathfrak{g} = \mathfrak{so}(3, 1) + \mathfrak{so}(4)$ . Special A, C and C' points in which  $\operatorname{Im}\mathcal{T}_0 \to 0$  dynamically.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

## Models based on the $\mathfrak{so}(4)$ *B*-field reduction

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions



- Unique  $\mathfrak{g} = \mathfrak{so}(\mathfrak{z}, \mathfrak{1})^2$  Supergravity algebra.
- Lines  $\overline{\text{DE}} \& \overline{\text{D'E'}}$ : Stable Mkw vacua!!  $\Rightarrow$  They are continuously connected to dS stable vacua via the deformation  $\theta_{\xi} \rightarrow \theta_{\xi} + \delta \theta_{\xi}$  with  $0 < \delta \theta_{\xi} < \delta \theta_{\xi}^{(crit)}$ .

- Point B: Special point where  $Im\Phi_0 \rightarrow 0$ .
- Points C and C' : Special points in which  $Im S_0 \rightarrow 0$  dynamically.

## Models based on the $\mathfrak{so}(3, 1)$ *B*-field reduction

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

## Review

- The set of Minkowski extrema can be obtained for the SUGRA models based on the five inequivalent *B*-field reduction.
- All these extrema become unstable except for a small region within the parameter space of those SUGRA models based on the  $\mathfrak{so}(3, 1)$  *B*-field reduction. This region has an underlying  $\mathfrak{g} = \mathfrak{so}(3, 1)^2$  Supergravity algebra and accommodates for non-supersymmetric stable Mkw vacua continuously connect to dS ones.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fluxes and algebras

SUGRA models

Mkw solution

IIA duals

Conclusions

# Type IIA dual Minkowski extrema

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# Objective

Understand the previous type IIB with O3/O7 orientifold models (and moduli extrema) from their type IIA with O6/D6 description.

# Key points

- The mapping IIB  $\leftrightarrow$  IIA between the contributions to the potential energy.
- No-go theorems concerning the existence of Mkw/dS extrema are formulated in a type IIA generalised flux language.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# Type IIA with O6-planes and no-go theorems

• Fluxes and localised sources map between the IIB with O3/O7 and the IIA with O6 descriptions of the  $\mathcal{N}=1$  type II orientifold models.

| Description    | IIB with O3/O7    | IIA with O6                                           |
|----------------|-------------------|-------------------------------------------------------|
| NS-NS fluxes   | $\bar{H}_3$ , $Q$ | $ar{H}_3 \;,\; \omega \;,\; Q \;,\; R$                |
| R-R fluxes     | $\overline{F}_3$  | $\bar{F}_0$ , $\bar{F}_2$ , $\bar{F}_4$ , $\bar{F}_6$ |
| Sources type 1 | O3/D3             | O6/D6 (orient)                                        |
| Sources type 2 | O7/D7             | O6/D6 (orient + orbif)                                |

Shelton, Taylor and Wecht [arXiv:hep-th/0508133]

Aldazabal, Cámara, Font and Ibáñez [arXiv:hep-th/0602089]

• In the type IIA language, a few simple conditions for Mkw extrema to exist have been stated involving the flux-induced terms in *V*,

Hertzberg, Kachru, Taylor and Tegmark [arXiv:0711.2512 [hep-th]] Haque, Shiu, Underwood and Van Riet [arXiv:0810.5328 [hep-th]]

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

From non-geometric IIB models to ...

- IIB with O3 models are non-geometric due to the *Q* flux  $\Rightarrow$  IIA duals ?
- Computing the IIA dual flux-induced terms:
  - IIB models based on the *B*-field reductions of nil, iso(3) and  $su(2) + u(1)^3$  (at the  $\theta_{\epsilon} = \pm \frac{\pi}{2}$  circle), give rise to  $V_Q = V_R = 0 \implies geometric$  IIA models.
  - IIB models based on the *B*-field reductions of  $\mathfrak{so}(4)$ ,  $\mathfrak{so}(3, 1)$  and  $\mathfrak{su}(2) + \mathfrak{u}(1)^3$  (far from the  $\theta_{\epsilon} = \pm \frac{\pi}{2}$  circle), give rise to  $V_Q \neq 0$  and/or  $V_R \neq 0 \implies non-geometric$  IIA models.

de Carlos, A.G, and Moreno [arXiv:0907.5580 [hep-th]]

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

## Geometric type IIA Mkw extrema (Universal)

• Models based on  $\mathfrak{g}_{gauge} = \mathfrak{iso}(3)$  with  $\mathfrak{g} = \mathfrak{so}(4) \oplus_{\mathbb{Z}_3} \mathfrak{u}(1)^6$ .



• Looking into the ReS and ReT axion stabilisation  $\Rightarrow V_{\bar{F}_4} = V_{\bar{F}_6} = 0 \Longrightarrow V_{\bar{H}_3} = V_{\bar{F}_0}$  and  $V_{\omega} = V_{\bar{F}_2}$  at any Mkw extremum.

・ コット (雪) ( 小田) ( コット 日)

• These Mkw extrema need type 1 O6-planes and type 2 D6-branes.

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

## Non-geometric type IIA Mkw vacua

- Models based on  $g_{gauge} = \mathfrak{so}(3, 1)$  with  $g = \mathfrak{so}(3, 1)^2$ .
- Region with stable vacua.
- Supersymmetry is broken:  $F_Z \neq 0$ ,  $F_S \neq 0$ ,  $F_T \neq 0$

Gómez-Reino and Scrucca [arXiv:hep-th/0602246]

• F-term scalings:  $F_{\mathbb{Z}} \propto |\xi|$  and  $F_{\mathcal{S}} \propto |\epsilon|$ 



• dS saddle point with  $\eta$ -problem close to the Mkw vacuum.

Flauger, Paban, Robbins and Wrase [arXiv:hep-th/08123886] Caviezel, Koerber, Körs, Lüst, Wrase and Zagermann [arXiv:hep-th/08123551]

• These Mkw vacua also require type 1 O6-planes and type 2 D6-branes.

Silverstein [arXiv:0712.1196 [hep-th]]

Fluxes and algebras

SUGRA models

Mkw solutions

IIA duals

Conclusions

# Conclusions

- A plethora of non-supersymmetric Mkw/dS classical extrema take place in N = 1 type II orientifold models including generalised fluxes.
- Understanding the Supergravity algebras underlying these flux-induced models, becomes crucial for removing redundant degrees of freedom from the effective SUGRA models, and allows us to be exhaustive when performing a scanning of vacua.
- The Mkw extrema are found to describe lines in the parameter space connecting points associated to either a special algebra or a moduli space singularity.
- In the IIB with O3/O7 duality frame, non-supersymmetric Mkw/dS stable vacua exist for those SUGRA models based on g = so(3, 1)<sup>2</sup>, built from a g<sub>gauge</sub> = so(3, 1) *B*-field reduction.
- Extended N ≥ 2 origin (if any) of these vacua based on gaugings at (e-m) angles?
   de Roo, Westra and Panda [arXiv:hep-th/0606282] A.G and Weatherill [arXiv:0811.2190 [hep-th]]

Aldazabal, Cámara and Rosabal [arXiv:0811.2190 [hep-th]] Roest [arXiv:0902.0479 [hep-th]]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Fluxes and algebras

SUGRA models

Mkw solution:

IIA duals

Conclusions

# ...thank you all !