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Electric-magnetic  duality  in  maximal  supergravity



Ungauged  (abelian)  supergravity:   Reduction  of  M-theory  on  a  torus  T7 
down to 4D produces  N = 8  supergravity with  G = U(1)28

Gauged (non-abelian) supergravity: 

❖ M-theory on   !   produces  N = 8  supergravity with  G = SO(8)

❖ Type IIA on   !   produces  N = 8  supergravity with

❖ Type IIB on               produces  N = 8  supergravity with

S7
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N=8  supergravity in 4D

 • SUGRA  :      metric  +  8 gravitini  +  28 vectors  +  56 dilatini  +  70 scalars
(s = 2)             (s = 3/2)                (s = 1)               (s = 1/2)                (s = 0)       

✱  These supergravities believed to be unique for 30 years…

[ Cremmer, Julia ’79 ] 

[ de Wit, Nicolai ’82 ] 
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[ Hull ’84 ] 

SO(8)c     vs    ISO(7)c 
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SO(8)c  theories  :  physical meaning in 4D
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G = SO(8)

D = @ � g (Aelec � c Ãmag)

! = Arg(1 + ic)
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Why ISO(7)c works ?
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SO(7)

R7

G = ISO(7) = SO(7)n R7

! = Arg(1 + ic)

D = @ � g Aelec

SO(7)
� g (Aelec

R7 � c ÃR7 mag)
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Higher-dimensional origin?
Obstruction for SO(8)c ,  cf.  [ de Wit, Nicolai ’13 ]

[ Lee, Strickland-Constable, Waldram ’15 ] 

G = [ SO(1, 1)⇥ SO(6) ]n R12
<latexit sha1_base64="H1L1l9KRRTRYPi0fRceWEY5dlRY="></latexit>

[ Inverso, Samtleben, Trigiante ’16 ] 

[ E7(7) symmetry ] 

R⇥ S5
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 1)  Family of  SO(8)c  theories  :  c = [0,           ] is a continuous parameter

Electric-magnetic deformations

Type IIB   :    AdS5  x  S5    ( D3-brane ~ N = 4  SYM  in  4d )    

M-theory :    AdS4  x  S7    ( M2-brane ~ ABJM  theory  in  3d )  

 • N=8 supergravity in 4D admits a deformation parameter   c   yielding  inequivalent 
theories.  It is an electric/magnetic deformation

 • Uniqueness historically inherited from the connection with NH geometries of branes 
and SCFT’s

D = @ � g (Aelec � c Ãmag)

 • There are  two generic situations : 

 2)  Family of  CSO(p,q,r)c  theories :  c = 0 or 1  is an  (on/off)  parameter                     

g = 4D gauge coupling
c = deformation param.

[ Dall’Agata, Inverso, Marrani ’14 ]

p
2� 1
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[ Dall’Agata, Inverso, Trigiante ’12 ] 

[ Maldacena ’97 ] 

[ Aharony, Bergman, Jafferis, Maldacena ’08 ] 



 The questions arise:   

 • Does such an electric/magnetic deformation of 4D maximal supergravity enjoy a  
    string/M-theory origin, or is it just a 4D feature ? 

 • For deformed 4D supergravities with supersymmetric AdS4  vacua, are these 
    AdS4/CFT3-dual to any identifiable 3d CFT ? 
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M-theory

electric/magnetic
deformation

higher-dimensional
origin

Holographic 
AdS4/CFT3 dual ?

X
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? ?
Obstruction for SO(8)c ,  cf.  [ de Wit, Nicolai ’13 ]

[ Lee, Strickland-Constable, Waldram ’15 ] 



(massive) Type IIA

electric/magnetic
deformation

higher-dimensional
origin

Holographic 
AdS4/CFT3 dual ?

X X X

g c = F̂(0) = k/(2⇡`s)
[ AG, Jafferis, Varela ’15 ] 
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[ AG, Varela ’15 ] 

[ AG, Tarrío, Varela ’16, ’19 ] 

[ AG, Tarrío & AG ’17 ] 



!9

Type IIB

electric/magnetic
deformation

higher-dimensional
origin

Holographic 
AdS4/CFT3 dual ?

X X X
[ this talk ]



❖  Higher-dimensional origin as type IIB on 

[ SO(1,1) × SO(6) ] ⋉ R12  supergravity

❖  Holographic expectation:   N=4  S-fold  CFT3     ( defects in SYM )

❖  New AdS4 vacuum with  N=4 & SO(4)R  symmetry

Question :   Holographic duals for  N = 0, 1, 2  S-fold CFT3 ? 

❖  Superconformal interfaces in N=4  SYM4

N=4 N=2 & SU(2) N=1 & SU(3) N=0 & SO(6)

[ D’Hoker, Ester, Gutperle ’06 ( N = 1 , 2 , 4 ) ] 

[ Gaiotto, Witten ’08 ]
[ Assel, Tomasiello ’18 ( N = 3 , 4 ) ]

[ Garozzo, Lo Monaco, Mekareeya ’18 ’19 ]    
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[ Gallerati, Samtleben, Trigiante ’14 ] 

➡ Singular Janus-like solutions : AdS4 ⇥ R⇥M5
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M5 = S2 ⇥ S2 ⇥ I
<latexit sha1_base64="ZGg9p766DeLhXwCFXiZpXl5UiBU="></latexit>

[ J-fold  =  S-fold with hyperbolic monodromy  J  ]

[ Dall’Agata, Inverso  ’11 ]
[ Inverso, Samtleben, Trigiante ’16 ]

[ largest flavour symmetry ]

[ Bak, Gutperle, Hirano ’03 ( N = 0 ) ]
[ Clark, Freedman, Karch, Schnabl ’04 ]

[ D’Hoker, Ester, Gutperle ’07, ’07   ( N = 4 ) ] 

[ T[U(N)] + CSk ]

R (or S1)⇥ S5
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[ Hull, (Çatal-Özer) ’04,  (’03) ] 
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D = 10

D = 4

D = 3

Type IIB & S-fold with AdS4 × S1 × S5 geometry

[SO(1, 1) × SO(6)] ! R12

gauging with an AdS4 vacuum

N = 4 SYM

with a localised interface

J-fold CFT3

Reduction

on R× S5
Uplift method : E7(7)-EFT involving

hyperbolic twists A(k) along S1

AdS4/CFT3

J ∈ SL(2,Z)IIB action

Figure 1. Type IIB S-folds with hyperbolic monodromies M(k) = −ST k along S1 and connection
with three-dimensional J-fold CFT’s.

The paper is organised as follows. In section 2 we perform a study of multi-parametric

families of AdS4 vacua in the [SO(1, 1)× SO(6)]! R12 maximal supergravity. We find four

families of vacua, one of them being N = 2 supersymmetric and containing a vacuum

with a residual symmetry enhancement to SU(2) × U(1). In section 3, by implementing

a generalised Scherk-Schwarz (S-S) ansatz in E7(7)-EFT, we uplift such an AdS4 vacuum

to a class of AdS4 × S1 × S5 N = 2 S-folds of type IIB supergravity with SU(2) × U(1)

symmetry and a non-trivial hyperbolic monodromy along S1. In section 4 we present our

conclusions and discuss future directions.

2 AdS4 vacua of [SO(1, 1) × SO(6)] ! R12 maximal supergravity

We continue the study of AdS4 vacua initiated in [31], and further investigated in [28]

and [32], for the dyonically-gauged maximal supergravity with non-abelian gauge group

G = [SO(1, 1)× SO(6)]! R12 . (2.1)

We will show how the AdS4 vacua of [28, 31, 32] actually correspond to very special points

(featuring residual symmetry enhancements) within multi-parametric families of solutions.

Each of these families preserves a given amount supersymmetry, namely, N = 0, 1, 2 or 4.

More specifically we find:

• A three-parameter family of N = 0&SU(2) symmetric AdS4 vacua with symmetry

enhancements to SU(2)×U(1)2, SU(3)×U(1) and SO(6) ∼ SU(4) at specific values

of the three arbitrary parameters.

• A two-parameter family of N = 1&U(1)2 symmetric AdS4 vacua with symmetry

enhancements to SU(2) × U(1) and SU(3) at specific values of the two arbitrary

parameters.

• A one-parameter family of N = 2&U(1)2 symmetric AdS4 vacua with a symmetry

enhancement to SU(2)×U(1) at a special value of the arbitrary parameter.

• A single N = 4&SO(4) symmetric AdS4 vacuum.

– 3 –

The picture…
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S-folds  in  4D



A truncation :          invariant sector

•	Truncation	:		Retaining	the	fields	and	couplings	which	are	invariant	(singlets)	under	a									

																								action													N	=	1		supergravity	coupled	to	7	chiral	multiplets																			

!13

Z3
2
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•	The	model	:

J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

Exponentiating (2.10) and (2.11) with coefficients ϕi and χi as

V = Exp

[
−12

7∑

i=1

χigχi

]
Exp

[
1

4

7∑

i=1

ϕigϕi

]
, (2.12)

yields a parameterisation of an MMN = VVt ∈ [SL(2)/SO(2)]7 subspace of the coset space

in (2.3). The kinetic terms in the resulting N = 1 sector follow from (2.2) and (2.12), and

are given by

Lkin = −1

4

7∑

i=1

[
(∂ϕi)

2 + e2ϕi(∂χi)
2
]
. (2.13)

These match the standard kinetic terms Lkin = −(∂2
zi,z̄jK)dzi ∧ ∗dz̄j for a set of seven

chiral fields zi with Kähler potential

K = −
7∑

i=1

log[−i(zi − z̄i)] . (2.14)

Lastly, when restricted to the Z3
2 invariant sector entering (2.12), the scalar potential, as

computed from (2.4), can be recovered from a holomorphic superpotential

W = 2g
[
z1z5z6 + z2z4z6 + z3z4z5 + (z1z4 + z2z5 + z3z6)z7

]
+ 2gc(1− z4z5z6z7) , (2.15)

using the standard N = 1 formula

VN=1 = eK
[
Kziz̄jDziWDz̄jW̄ − 3WW̄

]
, (2.16)

where DziW ≡ ∂ziW + (∂ziK)W is the Kähler derivative and Kziz̄j is the inverse of the

Kähler metric Kziz̄j ≡ ∂2
zi,z̄jK. Note that only the last term in the superpotential (2.15)

turns out to be sensitive to the electromagnetic parameter c.

2.3 New families of AdS4 vacua

A thorough study of the structure of extrema of the scalar potential (2.4), restricted to

the Z3
2 invariant sector, reveals a rich structure of (fairly) symmetric AdS4 vacua. We find

four families of vacua preserving N = 0, 1, 2 or 4 supersymmetry as well as various resid-

ual gauge symmetries ranging from U(1)2 to SO(6) ∼ SU(4). The three supersymmetric

families are also supersymmetric within the N = 1 model with seven chirals presented in

the previous section, and therefore satisfy the F-flatness conditions

DziW = 0 , (2.17)

that follow from the superpotential (2.15) and Kähler potential (2.14). Importantly, all the

AdS4 vacua we will present in this section are genuinely dyonic, namely, they disappear if

taking the limit c → 0 to a purely electric gauging of G in (2.1).

– 6 –

•	AdS

4

	vacua		(max.	sym.	solutions	of	N=1	BPS	equations)	:

N=4 & SO(4)R N=2 & SU(2) × U(1)R N=1 & SU(3) N=0 & SO(6)

               Most symmetric  AdS4  vacua within multi-parametric families !!

[ dyonic gauging ]

[ AG, Sterckx, Trigiante ’20 ] 

zi = ��i + i yi
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zi
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characterised by a Kähler potential of the form

K = �
7X

i=1

log[�i(zi � z̄i)] , (2.3)

and interact according to an N = 1 superpotential given by

W = 2 g
⇥
z1z5z6 + z2z4z6 + z3z4z5 + (z1z4 + z2z5 + z3z6) z7

⇤
+ 2 g c (1� z4z5z6z7) , (2.4)

which is originated from the gauging in the maximal theory. Truncating away the fermions
and vectors, the Lagrangian acquires an Einstein-scalar form and reads

e�1 LE-s = 1
2 R�KIJ @µ⌃I @µ⌃J � V ,

= 1
2 R� 1

4

7X

i=1

1

4y2i

⇥
(@yi)

2 + (@�i)
2
⇤
� V ,

(2.5)

where ⌃I = { y1 , �1 , y2 , �2 , . . . , y7 , �7 } denotes the real and imaginary components of
the complex fields zi . The kinetic matrix for these (real) fields reads

KIJ = diag

✓
1

4y21
,

1

4y21
,

1

4y22
,

1

4y22
, . . . ,

1

4y27
,

1

4y27

◆
. (2.6)

The scalar potential V can be recovered from the holomorphic superpotential (2.4) as

V = eK
h
Kziz̄j DziW Dz̄jW̄ � 3W W̄

i
, (2.7)

where DziW ⌘ @ziW + (@ziK)W is the Kähler derivative and Kziz̄j is the inverse of the
Kähler metric Kziz̄j ⌘ @2

zi,z̄jK . This is the N = 1 supergravity model we will be focused on
during the rest of the note.

In order to study RG flows holographically, we will investigate flat-sliced domain-wall
(DW4) solutions whose metric takes the form

ds2DW4
= e2A(z) ⌘↵� dx

↵dx� + dz2 with ⌘↵� = diag(�1, 1, 1) , (2.8)

where z 2 (�1,1) is the coordinate transverse to the domain-wall and A(z) is the scale
factor. Asking for the vanishing of the supersymmetry variations of fermions (gravitino and
chiralini) in the N = 1 supergravity model, one gets a set of first order equations

@zA = ⌥ |W| and @z⌃
I = ±KIJ @⌃J |W| . (2.9)

referred to as the BPS equations. The real superpotential |W| is constructed from the

(complex) gravitino mass W = e
K
2 W = m3/2 and fully specifies the BPS equations in (2.9).

3 S-folds and J-fold CFT3’s

The simplest solutions to the BPS equations (2.9) are supersymmetric AdS4 vacua. These
solutions have constant scalars and thus satisfy (2.9) provided

@⌃I |W| = 0 and A(z) = ⌥ |W0| z + cst , (3.1)

2

(yi > 0)

<latexit sha1_base64="5Q6JIVaL5MqpiegYrHogLXGQI5U=">AAAB9HicdVDLSgMxFM3UV62vqks3wSLUzZCpQx8bKbpxWcE+oB1KJs20oZmHSaYwDP0ONy4UcevHuPNvzLQVVPTAhcM593LvPW7EmVQIfRi5tfWNza38dmFnd2//oHh41JFhLAhtk5CHoudiSTkLaFsxxWkvEhT7Lqddd3qd+d0ZFZKFwZ1KIur4eBwwjxGstOSUYTJM2RxeQgTPh8USMhv1asWuQmQiVLMqVkYqNfvChpZWMpTACq1h8X0wCkns00ARjqXsWyhSToqFYoTTeWEQSxphMsVj2tc0wD6VTro4eg7PtDKCXih0BQou1O8TKfalTHxXd/pYTeRvLxP/8vqx8upOyoIoVjQgy0VezKEKYZYAHDFBieKJJpgIpm+FZIIFJkrnVNAhfH0K/yedimnZZuPWLjWvVnHkwQk4BWVggRpoghvQAm1AwD14AE/g2ZgZj8aL8bpszRmrmWPwA8bbJ6kzkMI=</latexit>

[ upper half-plane]



!14

N=0  family of  AdS4  vacua with  U(1)3  symmetry
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2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√
2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)

2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj)

2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 ̸= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2) × U(1) → SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) , (2.22)
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2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√
2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)

2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj)

2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 ̸= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2) × U(1) → SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) , (2.22)
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•	Location	:	

•	Flavour	symmetry	enhancements	:	
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2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√
2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)

2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj)

2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 ̸= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2) × U(1) → SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) , (2.22)
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N=1  family of  AdS4  vacua with  U(1)2  symmetry
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•	Location	:	 [ 2  free parameters :                          ]

J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√
2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)

2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj)

2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 ̸= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2) × U(1) → SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) , (2.22)
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subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√
2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)

2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj)

2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 ̸= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2) × U(1) → SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) , (2.22)
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)
0
5
0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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•	Location	:	 [ 1  free parameter ]

N=2  family of  AdS4  vacua with  U(1) x U(1)R  symmetry

J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×30) , 3±
√
17(×2) , −2(×4) , 2(×6) , −2 + 4χ2(×6)

− 1 + 4χ2 ±
√

16χ2 + 1(×2) , χ2 ±
√
χ2 + 2(×8) ,

(2.29)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×2) , 4(×2) , 2(×4) ,

4χ2(×2) , 2 + χ2 ±
√
χ2 + 2(×8) .

(2.30)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 30 massless scalars in (2.29), only 4 of them correspond to

physical directions in the scalar potential. However, the residual symmetry gets enhanced

to SU(2) × U(1) when χ = 0 and two additional vectors become massless. This special

AdS4 vacuum will be uplifted to a ten-dimensional family of type IIB S-fold backgrounds

in section 3.

2.3.4 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = ic and z4 = z5 = z6 = −z̄7 =
1√
2
(1 + i) . (2.31)

This AdS4 solution has a vacuum energy given by

V0 = −3g2c−1 , (2.32)

as for the previous solution, and a spectrum of normalised scalar masses of the form

m2L2 = 0(×48) , 10(×1) , 4(×10) , −2(×11) , (2.33)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×6) , 6(×7) , 2(×15) , (2.34)

thus reflecting the SO(4) residual symmetry at the AdS4 solution. Therefore, out of the

48 massless scalars in (2.33), only 26 of them correspond to physical directions in the

scalar potential. This N = 4 solution was first reported in [28], and then uplifted to a

ten-dimensional family of type IIB S-fold backgrounds in [27].

3 S-folds with N = 2 supersymmetry

From this moment on we will set

g = c = 1 , (3.1)

without loss of generality. From (2.18), (2.22), (2.27) and (2.31) it becomes clear that

varying c amounts to a rescaling of the vacuum expectation values of z1,2,3 ∝ c at the AdS4
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J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×30) , 3±
√
17(×2) , −2(×4) , 2(×6) , −2 + 4χ2(×6)

− 1 + 4χ2 ±
√

16χ2 + 1(×2) , χ2 ±
√
χ2 + 2(×8) ,

(2.29)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×2) , 4(×2) , 2(×4) ,

4χ2(×2) , 2 + χ2 ±
√
χ2 + 2(×8) .

(2.30)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 30 massless scalars in (2.29), only 4 of them correspond to

physical directions in the scalar potential. However, the residual symmetry gets enhanced

to SU(2) × U(1) when χ = 0 and two additional vectors become massless. This special

AdS4 vacuum will be uplifted to a ten-dimensional family of type IIB S-fold backgrounds

in section 3.

2.3.4 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = ic and z4 = z5 = z6 = −z̄7 =
1√
2
(1 + i) . (2.31)

This AdS4 solution has a vacuum energy given by

V0 = −3g2c−1 , (2.32)

as for the previous solution, and a spectrum of normalised scalar masses of the form

m2L2 = 0(×48) , 10(×1) , 4(×10) , −2(×11) , (2.33)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×6) , 6(×7) , 2(×15) , (2.34)

thus reflecting the SO(4) residual symmetry at the AdS4 solution. Therefore, out of the

48 massless scalars in (2.33), only 26 of them correspond to physical directions in the

scalar potential. This N = 4 solution was first reported in [28], and then uplifted to a

ten-dimensional family of type IIB S-fold backgrounds in [27].

3 S-folds with N = 2 supersymmetry

From this moment on we will set

g = c = 1 , (3.1)

without loss of generality. From (2.18), (2.22), (2.27) and (2.31) it becomes clear that

varying c amounts to a rescaling of the vacuum expectation values of z1,2,3 ∝ c at the AdS4
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•	Location	:	

•	AdS

4

	radius		          										&			scalar	mass	spectrum	:	

N=4   AdS4  vacuum with  SO(4)R  symmetry

J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√
5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√
6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj)

2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj)

2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2) × U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2
(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)
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Next  step :   Uplift  to  type IIB  on                   using  E7(7)-EFT

J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×30) , 3±
√
17(×2) , −2(×4) , 2(×6) , −2 + 4χ2(×6)

− 1 + 4χ2 ±
√

16χ2 + 1(×2) , χ2 ±
√
χ2 + 2(×8) ,

(2.29)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×2) , 4(×2) , 2(×4) ,

4χ2(×2) , 2 + χ2 ±
√
χ2 + 2(×8) .

(2.30)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 30 massless scalars in (2.29), only 4 of them correspond to

physical directions in the scalar potential. However, the residual symmetry gets enhanced

to SU(2) × U(1) when χ = 0 and two additional vectors become massless. This special

AdS4 vacuum will be uplifted to a ten-dimensional family of type IIB S-fold backgrounds

in section 3.

2.3.4 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = ic and z4 = z5 = z6 = −z̄7 =
1√
2
(1 + i) . (2.31)

This AdS4 solution has a vacuum energy given by

V0 = −3g2c−1 , (2.32)

as for the previous solution, and a spectrum of normalised scalar masses of the form

m2L2 = 0(×48) , 10(×1) , 4(×10) , −2(×11) , (2.33)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×6) , 6(×7) , 2(×15) , (2.34)

thus reflecting the SO(4) residual symmetry at the AdS4 solution. Therefore, out of the

48 massless scalars in (2.33), only 26 of them correspond to physical directions in the

scalar potential. This N = 4 solution was first reported in [28], and then uplifted to a

ten-dimensional family of type IIB S-fold backgrounds in [27].

3 S-folds with N = 2 supersymmetry

From this moment on we will set

g = c = 1 , (3.1)

without loss of generality. From (2.18), (2.22), (2.27) and (2.31) it becomes clear that

varying c amounts to a rescaling of the vacuum expectation values of z1,2,3 ∝ c at the AdS4
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J
H
E
P
0
4
(
2
0
2
0
)
0
5
0

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×30) , 3±
√
17(×2) , −2(×4) , 2(×6) , −2 + 4χ2(×6)

− 1 + 4χ2 ±
√

16χ2 + 1(×2) , χ2 ±
√
χ2 + 2(×8) ,

(2.29)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×2) , 4(×2) , 2(×4) ,

4χ2(×2) , 2 + χ2 ±
√
χ2 + 2(×8) .

(2.30)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 30 massless scalars in (2.29), only 4 of them correspond to

physical directions in the scalar potential. However, the residual symmetry gets enhanced

to SU(2) × U(1) when χ = 0 and two additional vectors become massless. This special

AdS4 vacuum will be uplifted to a ten-dimensional family of type IIB S-fold backgrounds

in section 3.

2.3.4 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = ic and z4 = z5 = z6 = −z̄7 =
1√
2
(1 + i) . (2.31)

This AdS4 solution has a vacuum energy given by

V0 = −3g2c−1 , (2.32)

as for the previous solution, and a spectrum of normalised scalar masses of the form

m2L2 = 0(×48) , 10(×1) , 4(×10) , −2(×11) , (2.33)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×6) , 6(×7) , 2(×15) , (2.34)

thus reflecting the SO(4) residual symmetry at the AdS4 solution. Therefore, out of the

48 massless scalars in (2.33), only 26 of them correspond to physical directions in the

scalar potential. This N = 4 solution was first reported in [28], and then uplifted to a

ten-dimensional family of type IIB S-fold backgrounds in [27].

3 S-folds with N = 2 supersymmetry

From this moment on we will set

g = c = 1 , (3.1)

without loss of generality. From (2.18), (2.22), (2.27) and (2.31) it becomes clear that

varying c amounts to a rescaling of the vacuum expectation values of z1,2,3 ∝ c at the AdS4
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[ Gallerati, Samtleben, Trigiante ’14 ] 

R⇥ S5
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S-folds  in  10D



- Space-time :  external ( D=4 ) + generalised internal   (        coordinates in 56 of E7(7) )   

Generalised diffs  =  ordinary internal diffs  +  internal gauge transfos

 Generalised Lie derivative built from an E7(7)-invariant structure Y-tensor

Y PQ
MN @P ⌦ @Q = 0

Two maximal solutions :   M-theory  ( 7 dimensional )    &   Type IIB   ( 6 dimensional )

Closure requires a section constraint  :

[ momentum, winding, … ]

[ massless theories ]

L⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ [ no density term ]

E7(7)-EFT

[ Coimbra, Strickland-Constable, Waldram ’11 ]

Y M
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yi=1...5 (elec) , ỹ1 = sinh ⌘ (mag)
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- E7(7)-EFT action   [                           ]

with field strengths & potential term given by 

Dµ = @µ � LAµ

VEFT(M, g) = � 1
48 M

MN @MMKL @NMKL + 1
2 M

MN @MMKL @LMNK

� 1
2 g

�1@Mg @NMMN � 1
4 M

MN g�1@Mg g�1@N g � 1
4 M

MN @Mgµ⌫ @N gµ⌫

- Two-derivative potential :   ungauged  N=8  D=4  SUGRA  when  

Fµ⌫
M = 2 @[µA⌫]

M �
⇥
Aµ, A⌫

⇤M
E

+ two-form terms

!20

( tensor hierarchy )

E7(7)-EFT
[ Hohm, Samtleben ’13 ]

SEFT =

Z
d4x d56Y e

⇥
R̂ + 1

48 g
µ⌫ DµMMN D⌫MMN � 1

8 MMN Fµ⌫MFµ⌫
N

+ e�1 Ltop � VEFT(M, g)
⇤
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Generalised Scherk-Schwarz reductions

3.1 Generalised Scherk-Schwarz reductions

The generalised Scherk-Schwarz ansatz for the various fields of the E7(7)-ExFT is of the form

gµ⌫(x, Y ) = ⇢
�2(Y )gµ⌫(x)

MMN (x, Y ) = UM
K(Y )UN

L(Y )MKL(x)

Aµ
M (x, Y ) = ⇢

�1
Aµ

N (x) (U�1)NM (Y )

Bµ⌫ ↵(x, Y ) = ⇢
�2(Y )U↵

�(Y )Bµ⌫ �(x)

Bµ⌫M (x, Y ) = �2 ⇢�2(Y ) (U�1)SP (Y ) @MUP
R(Y ) (t↵)RS

Bµ⌫ ↵(x) .

(3.2)

In order for this ansatz to factor out the internal dependences at the level of the equations
of motion and to yield back the equations of motion of the four-dimensional theory, the twist
matrix must fulfill the two conditions :

(U�1)MP (U�1)NQ
@PUQ

K
��
912

= 1
7 ⇢⇥M

↵ (t↵)NK
,

@N (U�1)MN
� 3 ⇢�1

@N⇢ (U�1)MN = 2 ⇢ ✓M
(3.3)

where ⇥M
↵ is the embedding tensor in the four-dimensional gauged supergravity, ✓M is a

constant tensor, and |912 is the projection on the 912 irreducible representation of E7(7) .
In the case of the [SO(1, 1) ⇥ SO(6)] n R2 gauging the SL(8) twit matrix U

�1(Y ) and
the function ⇢(Y ) in (3.2) are given by

(U�1)A
B =

✓
⇢̊

⇢̂

◆ 1
2

0

BBBBB@

1 0 0 �⇢̊
�2

c ỹ1

0 �
ij + K̂ y

i
y
j

�� ⇢̂
2
y
i 0

0 �� ⇢̂
2
y
j
K̂ ⇢̂

4 0

�⇢̊
�2

c ỹ1 0 0 ⇢̊
�4(1 + ỹ

2
1)

1

CCCCCA
, (3.4)

with

⇢̊
4 = 1� c ỹ

2
1 , ⇢̂

4 = 1 + � |~y|
2 and K̂ = �2F1

�
1 , 2 , 1

2 ; 1� |~y|
2
�
, (3.5)

so that

(U�1)M
N =

 
(U�1)[AB]

[CD] 0

0 (U�1)[AB]
[CD] = U[CD]

[AB]

!
, (3.6)

with
(U�1)[AB]

[CD] = (U�1)A
C (U�1)B

D
� (U�1)B

C (U�1)A
D

. (3.7)

The uplifting formulae are

M
mn = G

�1/2
G

mn
,

M
m

n↵ = G
�1/2

G
mk Bkn

�
✏�↵ ,

Mm↵n� = G
�1/2

Gmnm↵� +G
�1/2

G
kl Bmk

� Bnl
�
✏↵� ✏�� ,

M
⇢
lmn = �4G�1/2

G
⇢k
�
Cklmn �

3
8 ✏↵� Bk[l

↵ Bmn]
�
�
,

(3.8)

which can be inverted as

G
mn = G

1/2
M

mn
,

Bmn
↵ = G

1/2
Gmp ✏

↵�
M

p
n� ,

m↵� = 1
6 G

�
M

mn
Mm↵n� +M

m
k↵M

k
m�

�
,

Cklmn = �
1
4 G

1/2
Gk⇢M

⇢
lmn + 3

8 ✏↵� Bk[l
↵ Bmn]

�
.

(3.9)
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• EFT fields = Twist × 4D fields  :

• Type IIB fields = EFT fields   :

3.1 Generalised Scherk-Schwarz reductions

The generalised Scherk-Schwarz ansatz for the various fields of the E7(7)-ExFT is of the form

gµ⌫(x, Y ) = ⇢
�2(Y )gµ⌫(x)

MMN (x, Y ) = UM
K(Y )UN

L(Y )MKL(x)

Aµ
M (x, Y ) = ⇢

�1
Aµ

N (x) (U�1)NM (Y )

Bµ⌫ ↵(x, Y ) = ⇢
�2(Y )U↵

�(Y )Bµ⌫ �(x)

Bµ⌫M (x, Y ) = �2 ⇢�2(Y ) (U�1)SP (Y ) @MUP
R(Y ) (t↵)RS

Bµ⌫ ↵(x) .

(3.2)

In order for this ansatz to factor out the internal dependences at the level of the equations
of motion and to yield back the equations of motion of the four-dimensional theory, the twist
matrix must fulfill the two conditions :

(U�1)MP (U�1)NQ
@PUQ

K
��
912

= 1
7 ⇢⇥M

↵ (t↵)NK
,

@N (U�1)MN
� 3 ⇢�1

@N⇢ (U�1)MN = 2 ⇢ ✓M
(3.3)

where ⇥M
↵ is the embedding tensor in the four-dimensional gauged supergravity, ✓M is a

constant tensor, and |912 is the projection on the 912 irreducible representation of E7(7) .
In the case of the [SO(1, 1) ⇥ SO(6)] n R2 gauging the SL(8) twit matrix U

�1(Y ) and
the function ⇢(Y ) in (3.2) are given by

(U�1)A
B =

✓
⇢̊

⇢̂

◆ 1
2

0

BBBBB@

1 0 0 �⇢̊
�2

c ỹ1

0 �
ij + K̂ y

i
y
j

�� ⇢̂
2
y
i 0

0 �� ⇢̂
2
y
j
K̂ ⇢̂

4 0

�⇢̊
�2

c ỹ1 0 0 ⇢̊
�4(1 + ỹ

2
1)

1

CCCCCA
, (3.4)

with

⇢̊
4 = 1� c ỹ

2
1 , ⇢̂

4 = 1 + � |~y|
2 and K̂ = �2F1

�
1 , 2 , 1

2 ; 1� |~y|
2
�
, (3.5)

so that

(U�1)M
N =

 
(U�1)[AB]

[CD] 0

0 (U�1)[AB]
[CD] = U[CD]

[AB]

!
, (3.6)

with
(U�1)[AB]

[CD] = (U�1)A
C (U�1)B

D
� (U�1)B

C (U�1)A
D

. (3.7)

The uplifting formulae are

M
mn = G

�1/2
G

mn
,

M
m

n↵ = G
�1/2

G
mk Bkn

�
✏�↵ ,

Mm↵n� = G
�1/2

Gmnm↵� +G
�1/2

G
kl Bmk

� Bnl
�
✏↵� ✏�� ,

M
⇢
lmn = �4G�1/2

G
⇢k
�
Cklmn �

3
8 ✏↵� Bk[l

↵ Bmn]
�
�
,

(3.8)

which can be inverted as

G
mn = G

1/2
M

mn
,

Bmn
↵ = G

1/2
Gmp ✏

↵�
M

p
n� ,

m↵� = 1
6 G

�
M

mn
Mm↵n� +M

m
k↵M

k
m�

�
,

Cklmn = �
1
4 G

1/2
Gk⇢M

⇢
lmn + 3

8 ✏↵� Bk[l
↵ Bmn]

�
.

(3.9)
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• SL(8) twist (geometry)  :
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[ Baguet, Hohm, Samtleben ’15 ]
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which is of course the case at both AdS4 solutions. A direct evaluation shows that Y = 6
5

for the N = 1 / SU(3) solution with hypermultiplet scalars in (2.35), and Y = 1 for the

N = 0 / SO(6) solution with hypermultiplet scalars in (2.38).

In order to perform the uplift we will fetch techniques from the E7(7) Exceptional

Field Theory (E7(7)-ExFT) constructed in [29]. This is a field theory formally living

(4 + 56)-dimensional space-time which has a manifest E7(7) invariance under so-called

generalised diffeomorphisms acting on a 56-dimensional internal space with coordinates

Y M . This generalised diffeomorphisms provide a unified description of both ordinary

GL(n) diffeomorphisms and internal gauge transformations for the various p-form fields

of eleven-dimensional and type IIB supergravity. Importantly, the E7(7)-ExFT requires a

section constraint for its consistent formulation which essentially reduces it to either eleven-

dimensional supergravity in a 4+7 dimensional split where internal GL(7) diffeomorphisms

are manifest, or type IIB supergravity in a 4 + 6 dimensional split where internal GL(6)

diffeomorphisms are manifest. In this work we will be concerned with the type IIB solution

of the section constraint and will perform the uplift of the previous AdS4 solutions to type

IIB supergravity by employing a so-called generalised Scherk-Schwarz (SS) ansatz for the

various fields of E7(7)-ExFT [30].

3.1 Exceptional Field Theory and consistent truncations

We are interested in uplifting AdS4 solutions for which the four-dimensional scalars param-

eterising MKL(x) ∈ E7(7)/SU(8) take constant vacuum expectation values and vectors, as

well as tensor fields, vanish identically. The relevant fields in the E7(7)-ExFT of [29] are then

the metric gµν(x, Y ) and the generalised metric MMN (x, Y ). These fields are connected

with the four-dimensional fields in (2.5) via the generalised Scherk-Schwarz ansatz [30]

gµν(x, Y ) = ρ−2(Y )gµν(x) ,

MMN (x, Y ) = UM
K(Y )UN

L(Y )MKL(x) ,
(3.5)

which is encoded into an SL(8) twist matrix UM
N (Y ) and an R+ scaling function ρ(Y ).

In order for this ansatz to factorise out the dependence on the internal coordinates Y M

at the level of the equations of motion and to give back the equations of motion of the

four-dimensional theory, the twist matrix UM
N (Y ) and the scaling function ρ(Y ) must

fulfil the two conditions

(U−1)MP (U−1)NQ ∂PUQ
K
∣∣
912

= 1
7 ρXMN

K ,

∂N (U−1)MN − 3 ρ−1 ∂Nρ (U−1)MN = 2 ρ ϑM ,
(3.6)

where XMN
K is the embedding tensor in the four-dimensional gauged supergravity, ϑM

is a constant (scaling) tensor, and |912 is the projection onto the 912 ∈ E7(7) irreducible

representation. For the twist matrix UM
N (Y ) and the scaling function ρ(Y ) to be describing

a background of type IIB supergravity, the dependence on the coordinates Y M of the

generalised internal space must be such that the section constraint holds.

We will make use of various group-theoretical decompositions in order to establish

a mapping between physical coordinates on the ordinary internal space and generalised

– 12 –

⇢ = ⇢̊(ỹ1) ⇢̂(y
i)

<latexit sha1_base64="qkltdX7Q3bTJYn8sLkaXDgkyUAY="></latexit>
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Finally, using the relation

Ĝik (⌦
�)kj dy

i
^ dy

j = �(⌦�)ijk Y
k
dY

i
^ dY

j
, (3.30)

one obtains the final expression

B↵ = 1
2 Bij

↵
dy

i
^ dy

j = �
1
2 Y

�1
✏
↵� (A�t)�

�
H�� (⌦

�)kij Y
k
dY

i
^ dY

j
, (3.31)

or, using the relations (A.1), the equivalent expression

B↵ = �Y
�1

✏
↵� (A�t)�

�
H�� ⌦

�
, (3.32)

where ⌦
�
⌘ (⌦R

,⌦
I) .

At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that
the scalar-dependent matrix in (3.28) reduces to H�� = 0 and therefore the two-form type IIB
potentials vanish, namely,

B↵ = 0 . (3.33)

At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-(2.22) one has that
the scalar-dependent matrix in (3.28) depends independently on ⇣ and ⇣̃ so the compact
U(1) symmetry associated with kU in (2.16) is broken.

3.4 Axion-dilaton

Setting � = 0 , the blocks of the scalar matrix relevant for the axion-dilaton are given by

M
�k �l = e

�'
�
kl
C

�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
�kl C�� + e

' (1� Y ) Jkl ✏�� .

(3.34)

Using the uplifting formulas in [7], and after some algebra, the SL(2) axion-dilaton matrix
takes the form

m↵� = (A�t)↵
� m�� (A

�1)�� . (3.35)

in terms of the SL(2) scalar-dependent matrix

m�� ⌘
1

Y
C�� =

1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
, (3.36)

and the SL(2) twist (A�1)↵� in (3.26).
At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that

the scalar-dependent SO(1, 1) matrix in (3.36) reduces

m�� =
1

p
1� �2

 
1 ��

�� 1

!
, (3.37)

with � 2 (�1, 1) . At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-
(2.22) one has that the scalar-dependent SO(1, 1) matrix in (3.36) reads

m�� =
2

3 |~⇣|2

0

B@
1 �

q
1� 9

4 |
~⇣|4

�

q
1� 9

4 |
~⇣|4 1

1

CA , (3.38)

with |~⇣|
2
2 ( 0 , 2

3 ] , so the compact U(1) symmetry associated with kU in (2.16) is preserved
by the axion-dilaton background.
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with                                                and     

[ (hyperbolic)  SO(1,1)-twist] 

!22

[ AG, Sterckx ’19 ] 

A↵
� ⌘

 p
1 + ỹ2 ỹ

ỹ
p

1 + ỹ2

!
=

 
cosh ⌘ sinh ⌘

sinh ⌘ cosh ⌘

!

<latexit sha1_base64="3mBDd8yY2lYvN8HDvusHiGoc9EY="></latexit>

[ Bak, Gutperle, Hirano ’03 ] unstable !! No untwisted limit !!
( genuinely dyonic )

3.3 Summary of type IIB backgrounds

By uplifting two families of AdS4 vacua of the dyonically-gauged [ SO(1, 1) × SO(6) ]! R12

maximal supergravity, we have obtained two classes of ten-dimensional type IIB backgrounds.
In both classes the metric is non-singular and of the form AdS4×R×M5 with η ∈ (−∞ , ∞)
being the coordinate along the R direction. The dependence of the backgrounds on the
coordinate η is fully encoded in an SO(1, 1) ⊂ SL(2)IIB matrix

Aαβ =

(
cosh η sinh η

sinh η cosh η

)

, (A−1)αβ =

(
cosh η − sinh η

− sinh η cosh η

)

, (3.70)

which acts as a twist on a constant type IIB axion-dilaton

mγδ =
1√

1− σ2

(
1 −σ

−σ 1

)

with σ ∈ (−1, 1) , (3.71)

and an SL(2)IIB doublet of η-independent three-form fluxes. From an effective N = 2 four-
dimensional perspective, the free parameter σ in the type IIB solutions corresponds to a
four-dimensional axion in the universal hypermultiplet (see Section 2.2).

We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,
and preserves an SU(3) symmetry arising from a CP

2 ⊂ M5 factor in the geometry.
The various ten-dimensional fields are given by

ds210 =
3
√
6

10
ds2AdS4

+
1

3

√
10
3 dη2 +

[√
5

6
ds2

CP2 +

√
6

5
η2

]

,

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = Aαβ hβ ,

(3.72)

with

hβ = − 5

12
ϵβγ

[
3Hγδ (iΩ ∧ η)δ − θγ

λHλδ dη ∧Ωδ
]
, (3.73)

and where, in order to present Hα in a concise form, we have introduced the two constant
matrices

θγ
λ =

(
0 1

1 0

)

, (3.74)

and

Hαβ =
2
√
6

5 (1 − σ2)
1
4

(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

sin γ − cos γ

)

. (3.75)

The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-
dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π] . As a result there is a
(σ, γ)-family of three-form fluxes Hα . Note also that the internal geometry in (3.72) has
an additional U(1)β isometry that is broken in the background by the dependence of
the three-form fluxes Hα on the complex (2, 0)-form Ω (see Appendix A).
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C4 potential. An explicit computation using the third uplift formula in (3.16) in combi-

nation with the first equation in (3.33) shows that the purely internal four-form potential

is of the form

C1jkl = 0 ,

Cijkl − 3
2 ϵαβ Bi[j

α Bkl]
β = −1

2

∆√
1− |y⃗|2

ϵjklk′l′ Gii′ Kmn
i′ Kk′l′

pq Mmnpq ,
(3.48)

where we have introduced the geometric tensor

Kk′l′
pq = δk

′l′
pq + 2 K̂ δk

′
p Yq y

l′ . (3.49)

Substituting the first scalar-dependent block in (3.22) we arrive at

Cijkl − 3
2 ϵαβ Bi[j

α Bkl]
β = ϵj′jklk′

1√
1−|y⃗|2

Y −1

Y
Ĝi i′

[
J i′j′Jk′l Yl + δj

′l′ Ki′ Kl′ yk
′
]

+Ĉijkl ,

(3.50)

with

Ĉijkl = ϵijklk′
yk

′

√
1− |y⃗|2

(1 + K̂) . (3.51)

A careful analysis of the expression in (3.50) reveals that the contribution

− 3

2
ϵαβ Bi[j

α
Bkl]

β = −6
1− Y

Y
ϵαβ Ωi[j

αΩkl]
β , (3.52)

in the left hand side precisely cancels against the contribution coming from the first term

in the right hand side so that

Cijkl = Ĉijkl . (3.53)

The purely internal five-form flux then takes the form

dC = Ω ∧ Ω̄ ∧ η = 4Y
3
4 vol5 , (3.54)

where

vol5 = Y − 3
4 ê5 ∧ ê6 ∧ ê7 ∧ ê8 ∧ ê9 , (3.55)

is the volume form on the deformed S5 in (3.27). Finally the gauge-invariant five-form flux

is given by

F̃5 = dC +
1

2
ϵαβ B

α ∧H
β =

(
4 +

6 (1− Y )

Y

)
Y

3
4 (1 + ⋆) vol5 , (3.56)

which breaks the U(1)U symmetry whenever Y ≠ 1. When particularised to the AdS4
solutions obtained in the previous section the result is:

i) For the N = 1 / SU(3) solution in (2.34)–(2.35) one has

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 . (3.57)

ii) For the N = 0 / SO(6) solution in (2.37)–(2.38) one has

F̃5 = 4 (1 + ⋆) vol5 . (3.58)
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We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,

and preserves an SU(3) symmetry arising from a CP
2 ⊂ M5 factor in the geometry.

The various ten-dimensional fields are given by

ds210 =
3
√
6

10
ds2AdS4

+
1

3

√
10
3 dη2 +

[√
5

6
ds2

CP2 +

√
6

5
η2

]

,

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = − 5

12
ϵαδ (A−t)δγ

[
3Hγβ (iΩ ∧ η)β − θγλHλβ dη ∧Ωβ

]
,

(3.72)

where, in order to present Hα in a concise form, we have introduced the two constant

matrices

θγ
λ =

(
0 1

1 0

)

, (3.73)

and

Hαβ =
2
√
6

5 (1− σ2)
1
4

(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

sin γ − cos γ

)

. (3.74)

The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-

dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π]. As a result there is a

(σ, γ)-family of three-form fluxes Hα. Note also that the internal geometry in (3.72)

has an additional U(1)β isometry that is broken in the background by the dependence

of the three-form fluxes Hα on the complex (2, 0)-form Ω (see appendix A).

• The second class of solutions is non-supersymmetric and preserves an SO(6) symme-

try arising from an M5 = S5 factor in the geometry. The various ten-dimensional

fields are given by

ds210 =
1√
2
ds2AdS4

+
1

2
dη2 + ds2

S5
,

F̃5 = 4 (1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = 0 .

(3.75)

This class of solutions features perturbative instabilities, as already noticed in (2.39)

when looking at scalar fluctuations in the consistent truncation to a four-dimensional

effective theory.
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N=1 & SU(3)  solution

Finally, using the relation

Ĝik (⌦
�)kj dy

i
^ dy

j = �(⌦�)ijk Y
k
dY

i
^ dY

j
, (3.30)

one obtains the final expression

B↵ = 1
2 Bij

↵
dy

i
^ dy

j = �
1
2 Y

�1
✏
↵� (A�t)�

�
H�� (⌦

�)kij Y
k
dY

i
^ dY

j
, (3.31)

or, using the relations (A.1), the equivalent expression

B↵ = �Y
�1

✏
↵� (A�t)�

�
H�� ⌦

�
, (3.32)

where ⌦
�
⌘ (⌦R

,⌦
I) .

At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that
the scalar-dependent matrix in (3.28) reduces to H�� = 0 and therefore the two-form type IIB
potentials vanish, namely,

B↵ = 0 . (3.33)

At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-(2.22) one has that
the scalar-dependent matrix in (3.28) depends independently on ⇣ and ⇣̃ so the compact
U(1) symmetry associated with kU in (2.16) is broken.

3.4 Axion-dilaton

Setting � = 0 , the blocks of the scalar matrix relevant for the axion-dilaton are given by

M
�k �l = e

�'
�
kl
C

�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
�kl C�� + e

' (1� Y ) Jkl ✏�� .

(3.34)

Using the uplifting formulas in [7], and after some algebra, the SL(2) axion-dilaton matrix
takes the form

m↵� = (A�t)↵
� m�� (A

�1)�� . (3.35)

in terms of the SL(2) scalar-dependent matrix

m�� ⌘
1

Y
C�� =

1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
, (3.36)

and the SL(2) twist (A�1)↵� in (3.26).
At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that

the scalar-dependent SO(1, 1) matrix in (3.36) reduces

m�� =
1

p
1� �2

 
1 ��

�� 1

!
, (3.37)

with � 2 (�1, 1) . At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-
(2.22) one has that the scalar-dependent SO(1, 1) matrix in (3.36) reads

m�� =
2

3 |~⇣|2

0

B@
1 �

q
1� 9

4 |
~⇣|4

�

q
1� 9

4 |
~⇣|4 1

1

CA , (3.38)

with |~⇣|
2
2 ( 0 , 2

3 ] , so the compact U(1) symmetry associated with kU in (2.16) is preserved
by the axion-dilaton background.
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with                                                and     A↵
� ⌘

 p
1 + ỹ2 ỹ

ỹ
p

1 + ỹ2

!
=

 
cosh ⌘ sinh ⌘

sinh ⌘ cosh ⌘

!
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No untwisted limit !!
( genuinely dyonic )

3.3 Summary of type IIB backgrounds

By uplifting two families of AdS4 vacua of the dyonically-gauged [ SO(1, 1) × SO(6) ]! R12

maximal supergravity, we have obtained two classes of ten-dimensional type IIB backgrounds.
In both classes the metric is non-singular and of the form AdS4×R×M5 with η ∈ (−∞ , ∞)
being the coordinate along the R direction. The dependence of the backgrounds on the
coordinate η is fully encoded in an SO(1, 1) ⊂ SL(2)IIB matrix

Aαβ =

(
cosh η sinh η

sinh η cosh η

)

, (A−1)αβ =

(
cosh η − sinh η

− sinh η cosh η

)

, (3.70)

which acts as a twist on a constant type IIB axion-dilaton

mγδ =
1√

1− σ2

(
1 −σ

−σ 1

)

with σ ∈ (−1, 1) , (3.71)

and an SL(2)IIB doublet of η-independent three-form fluxes. From an effective N = 2 four-
dimensional perspective, the free parameter σ in the type IIB solutions corresponds to a
four-dimensional axion in the universal hypermultiplet (see Section 2.2).

We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,
and preserves an SU(3) symmetry arising from a CP

2 ⊂ M5 factor in the geometry.
The various ten-dimensional fields are given by

ds210 =
3
√
6

10
ds2AdS4

+
1

3

√
10
3 dη2 +

[√
5

6
ds2

CP2 +

√
6

5
η2

]

,

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = Aαβ hβ ,

(3.72)

with

hβ = − 5

12
ϵβγ

[
3Hγδ (iΩ ∧ η)δ − θγ

λHλδ dη ∧Ωδ
]
, (3.73)

and where, in order to present Hα in a concise form, we have introduced the two constant
matrices

θγ
λ =

(
0 1

1 0

)

, (3.74)

and

Hαβ =
2
√
6

5 (1 − σ2)
1
4

(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

sin γ − cos γ

)

. (3.75)

The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-
dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π] . As a result there is a
(σ, γ)-family of three-form fluxes Hα . Note also that the internal geometry in (3.72) has
an additional U(1)β isometry that is broken in the background by the dependence of
the three-form fluxes Hα on the complex (2, 0)-form Ω (see Appendix A).
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We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,

and preserves an SU(3) symmetry arising from a CP
2 ⊂ M5 factor in the geometry.

The various ten-dimensional fields are given by

ds210 =
3
√
6

10
ds2AdS4

+
1

3

√
10
3 dη2 +

[√
5

6
ds2

CP2 +

√
6

5
η2

]

,

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = − 5

12
ϵαδ (A−t)δγ

[
3Hγβ (iΩ ∧ η)β − θγλHλβ dη ∧Ωβ

]
,

(3.72)

where, in order to present Hα in a concise form, we have introduced the two constant

matrices

θγ
λ =

(
0 1

1 0

)

, (3.73)

and

Hαβ =
2
√
6

5 (1− σ2)
1
4

(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

sin γ − cos γ

)

. (3.74)

The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-

dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π]. As a result there is a

(σ, γ)-family of three-form fluxes Hα. Note also that the internal geometry in (3.72)

has an additional U(1)β isometry that is broken in the background by the dependence

of the three-form fluxes Hα on the complex (2, 0)-form Ω (see appendix A).

• The second class of solutions is non-supersymmetric and preserves an SO(6) symme-

try arising from an M5 = S5 factor in the geometry. The various ten-dimensional

fields are given by

ds210 =
1√
2
ds2AdS4

+
1

2
dη2 + ds2

S5
,

F̃5 = 4 (1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = 0 .

(3.75)

This class of solutions features perturbative instabilities, as already noticed in (2.39)

when looking at scalar fluctuations in the consistent truncation to a four-dimensional

effective theory.
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We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,

and preserves an SU(3) symmetry arising from a CP
2 ⊂ M5 factor in the geometry.

The various ten-dimensional fields are given by

ds210 =
3
√
6

10
ds2AdS4

+
1

3

√
10
3 dη2 +

[√
5

6
ds2

CP2 +

√
6

5
η2

]

,

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = − 5

12
ϵαδ (A−t)δγ

[
3Hγβ (iΩ ∧ η)β − θγλHλβ dη ∧Ωβ

]
,

(3.72)

where, in order to present Hα in a concise form, we have introduced the two constant

matrices

θγ
λ =

(
0 1

1 0

)

, (3.73)

and

Hαβ =
2
√
6

5 (1− σ2)
1
4

(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

sin γ − cos γ

)

. (3.74)

The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-

dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π]. As a result there is a

(σ, γ)-family of three-form fluxes Hα. Note also that the internal geometry in (3.72)

has an additional U(1)β isometry that is broken in the background by the dependence

of the three-form fluxes Hα on the complex (2, 0)-form Ω (see appendix A).

• The second class of solutions is non-supersymmetric and preserves an SO(6) symme-

try arising from an M5 = S5 factor in the geometry. The various ten-dimensional

fields are given by

ds210 =
1√
2
ds2AdS4

+
1

2
dη2 + ds2

S5
,

F̃5 = 4 (1 + ⋆) vol5 ,

mαβ = (A−t)αγ mγδ (A−1)δβ ,

Hα = 0 .

(3.75)

This class of solutions features perturbative instabilities, as already noticed in (2.39)

when looking at scalar fluctuations in the consistent truncation to a four-dimensional

effective theory.

– 22 –

B↵ = A
↵
� b

� = A
↵
�

�
� 5

12 H
�
�(zi) ⌦

��

<latexit sha1_base64="9h54JsQY4BkeSj436JBqOEzx9LQ="></latexit>

[ charged under U(1)η ]

[ (hyperbolic)  SO(1,1)-twist ] 

[ AG, Sterckx ’19 ] 
[ Lüst, Tsimpis ’09 (local form) ] 



Finally, using the relation

Ĝik (⌦
�)kj dy

i
^ dy

j = �(⌦�)ijk Y
k
dY

i
^ dY

j
, (3.30)

one obtains the final expression

B↵ = 1
2 Bij

↵
dy

i
^ dy

j = �
1
2 Y

�1
✏
↵� (A�t)�

�
H�� (⌦

�)kij Y
k
dY

i
^ dY

j
, (3.31)

or, using the relations (A.1), the equivalent expression

B↵ = �Y
�1

✏
↵� (A�t)�

�
H�� ⌦

�
, (3.32)

where ⌦
�
⌘ (⌦R

,⌦
I) .

At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that
the scalar-dependent matrix in (3.28) reduces to H�� = 0 and therefore the two-form type IIB
potentials vanish, namely,

B↵ = 0 . (3.33)

At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-(2.22) one has that
the scalar-dependent matrix in (3.28) depends independently on ⇣ and ⇣̃ so the compact
U(1) symmetry associated with kU in (2.16) is broken.

3.4 Axion-dilaton

Setting � = 0 , the blocks of the scalar matrix relevant for the axion-dilaton are given by

M
�k �l = e

�'
�
kl
C

�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
�kl C�� + e

' (1� Y ) Jkl ✏�� .

(3.34)

Using the uplifting formulas in [7], and after some algebra, the SL(2) axion-dilaton matrix
takes the form

m↵� = (A�t)↵
� m�� (A

�1)�� . (3.35)

in terms of the SL(2) scalar-dependent matrix

m�� ⌘
1

Y
C�� =

1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
, (3.36)

and the SL(2) twist (A�1)↵� in (3.26).
At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that

the scalar-dependent SO(1, 1) matrix in (3.36) reduces

m�� =
1

p
1� �2

 
1 ��

�� 1

!
, (3.37)

with � 2 (�1, 1) . At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-
(2.22) one has that the scalar-dependent SO(1, 1) matrix in (3.36) reads

m�� =
2

3 |~⇣|2

0

B@
1 �

q
1� 9

4 |
~⇣|4

�

q
1� 9

4 |
~⇣|4 1

1

CA , (3.38)

with |~⇣|
2
2 ( 0 , 2

3 ] , so the compact U(1) symmetry associated with kU in (2.16) is preserved
by the axion-dilaton background.
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↵
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�
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Flavour :  SU(2) ~ S2

3.2 Connection with linear dilaton solutions

We can perform a global ⇤ 2 SL(2)IIB transformation based on the matrix element

⇤ =
1p
2

 
1 �1

1 1

!
, (3.14)

such that we find an equivalent type IIB background given by

ds
2 = 1

2 �
�1
⇥
ds

2
AdS4

+ d⌘
2 + d✓

2 + sin2 ✓ d�2 + cos2 ✓
�
�
2
2 + 8�4

�
�
2
1 + �

2
3

��⇤
,

e
� = 1

2 �
2
e
�2⌘

�
5� cos(2✓)� 2 sin2 ✓ sin(2�)

�
,

C0 = �2 e2⌘
cos(2�) sin2 ✓

5� cos(2✓)� 2 sin2 ✓ sin(2�)
,

B2 = 1
2 e

�⌘ cos ✓
�
(cos�+ sin�) d✓ + 1

2 sin(2✓) (cos�� sin�) d�
�
^ �2

+ 2�4
e
�⌘ cos ✓ sin(2✓) (cos�+ sin�)�1 ^ �3 ,

C2 = 1
2 e

⌘ cos ✓
�
(cos�� sin�) d✓ � 1

2 sin(2✓) (cos�+ sin�) d�
�
^ �2

+ 2�4
e
⌘ cos ✓ sin(2✓) (cos�� sin�)�1 ^ �3 ,

eF5 = 4�4 sin ✓ cos3 ✓ (1 + ?)
h
3 d✓ ^ d� ^ �1 ^ �2 ^ �3

� d⌘ ^
�
cos(2�) d✓ � 1

2 sin(2✓) sin(2�) d�
�
^ �1 ^ �2 ^ �3

i
,

(3.15)

with
��4 = 6� 2 cos(2✓) . (3.16)

4 Conclusions

TO BE COMPLETED...
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A Type IIB supergravity

The bosonic massless spectrum of ten-dimensional (chiral) type IIB supergravity contains –
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⇥
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being an SO(1, 1) ⇢ SL(2)IIB element encoding the dependence of the two-form potentials
on the direction ⌘ . The two-form potentials in (3.8) preserve SU(2)⇥ U(1)� but break the
U(1)� factor due to the explicit dependence on the coordinate � .
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�Re⌧ 1

!
= (A�t)↵

� m�� (A
�1)�� , (3.10)
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involving the warping factor in (3.5). The axion-dilaton matrix (3.11) is again compatible
with an SU(2)⇥U(1)� symmetry.

Four-form potential

The solution we are investigating shares various similarities with the Pilch-Warner solution
[6] (see also appendix D.1 of [7]). The five-form field strength is given by
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(3.12)
where

volM5 =
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2�3/2 sin ✓ cos3 ✓ d✓ ^ d� ^ �1 ^ �2 ^ �3 , (3.13)

denotes the volume of the deformed five-sphere. We have explicitly verified that the 10D
equations of motion and Bianchi identities of type IIB supergravity are satisfied.
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Again U(1)φ is broken by the explicit dependence of (3.36) on the angle φ. This concludes

the uplift of the AdS4 vacuum with N = 2 and SU(2) × U(1) symmetry discussed in

section 2.3.3 to a ten-dimensional background of type IIB supergravity. It is worth empha-

sising that, if trivialising the A-twist in (3.30), i.e. Aα
β = δαβ , then the ten-dimensional

equations of motion of type IIB supergravity are no longer satisfied.

3.2 S-fold interpretation

The dependence of the full type IIB solution on the coordinate η along the R direction of

the geometry (3.27) is totally encoded in the local SL(2,R)IIB A-twist in (3.30). This twist

matrix is of hyperbolic type and thus induces a non-trivial monodromy

MS1 = A−1(η)A(η + T ) =

(
coshT sinhT

sinhT coshT

)
, (3.37)

when forcing the η coordinate to be periodic η → η + T with period T , namely, when

replacing R → S1 in the geometry. Generalising the A-twist in (3.30) to a discrete k-family

(k ∈ N with k ≥ 3) of new ones

A(k) = Ag(k) with g(k) =

⎛

⎜⎜⎜⎝

(k2 − 4)
1
4

√
2

0

k√
2(k2−4)

1
4

√
2

(k2 − 4)
1
4

⎞

⎟⎟⎟⎠
, (3.38)

the monodromy (3.37) gets generalised to a k-family of SL(2,Z)IIB hyperbolic monodromies

M(k) = A−1
(k)(η)A(k)

(
η + T (k)

)
=

(
k 1

−1 0

)
, k ≥ 3 , (3.39)

with T (k) = log(k +
√
k2 − 4) − log(2) and TrM(k) > 2. Therefore, as discussed in [27]

(see also [32]), these backgrounds can be interpreted as locally geometric compactifications

on S1 × S5 involving a k-family of S-duality monodromies (3.39). These monodromies can

be written as

M(k) = −ST k with S =

(
0 −1

1 0

)
and T =

(
1 0

1 1

)
, (3.40)

and thus define a k-family of S-fold backgrounds. Moreover, the argument wielded in [27]

for the straightforward uplift of the four-dimensional supersymmetries to ten dimensions

relied on the monodromy (3.37) being in the hyperbolic conjugacy class of SL(2,R)IIB.
This is still our case, so the S-folds presented here preserve N = 2 supersymmetry.

Lastly, various holographic aspects of both N = 4 [27] and N = 1 [32, 36] S-folds with

hyperbolic monodromies have respectively been investigated in [33–35] and [36] within the
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with T (k) = log(k +
√
k2 − 4) − log(2) and TrM(k) > 2. Therefore, as discussed in [27]

(see also [32]), these backgrounds can be interpreted as locally geometric compactifications

on S1 × S5 involving a k-family of S-duality monodromies (3.39). These monodromies can

be written as

M(k) = −ST k with S =

(
0 −1

1 0

)
and T =

(
1 0

1 1

)
, (3.40)

and thus define a k-family of S-fold backgrounds. Moreover, the argument wielded in [27]

for the straightforward uplift of the four-dimensional supersymmetries to ten dimensions

relied on the monodromy (3.37) being in the hyperbolic conjugacy class of SL(2,R)IIB.
This is still our case, so the S-folds presented here preserve N = 2 supersymmetry.

Lastly, various holographic aspects of both N = 4 [27] and N = 1 [32, 36] S-folds with

hyperbolic monodromies have respectively been investigated in [33–35] and [36] within the
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D3-brane and SYM4 
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#�j < 0 2 4 4 ⇥

Table 1: Summary of the AdS4 supersymmetric vacua with the largest possible residual
symmetry within their respective families. In the last line, #�j < 0 denotes the number of
dual irrelevant operators at each such vacua.

4.1 Analytic flows at c = 0

Let us now focus on the BPS equations (2.9) when the gauging in the maximal theory is
purely electric, namely, c = 0 . In this case there is a simple analytic solution of the BPS
equations given by

z1,2,3 = ��1,2,3 + i
(g z)2

8
, z4 = z5 = z6 = z7 = i e�

1
2�0 and eA = (g z)3 , (4.1)

subject to the constraint2
3X

i=1

�i = 0 , (4.2)

and with �0 being an arbitrary constant. A first remark is that the condition (4.2) is required
by the BPS equations (2.9) but not by the second-order Euler-Lagrange equations that follow

2
The axions �1,2,3 must be constant by virtue of the BPS equations (2.9) when setting c = 0 .

6

ds210 = 1
2 g

2 ��1(zi)
�
e2A(z) ⌘↵� dx↵dx� + dz2

�
+�2(zi) d⌘2 + d̊s2S5 ,

eF5 = 4L�1
5 (1 + ?) vol5 , B↵ = 0 ,

m↵� =

 
e��0 0

0 e�0

!
.
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that a non-removable correction to the scale factor in (4.1) of the type (gz)�4 appears already
at second-order in the parameter c . More concretely we find

eA = (g z)3

1 + c

✓
�0 +

3

2

�1

gz

◆
+ c2

✓
✏0 +

3

2

�0
1

gz
+

3

4

�2
1

(gz)2
+ cosh2�0

16

(gz)4
+ . . .

◆�
,

(4.28)
together with a similar non-removable correction of the type (gz)�4 to the imaginary parts
of the scalars

Imz4,5,6,7 = e�
1
2�0


1 + c ⌧ + c2

✓
�0 + cosh�0 (sinh�0 � 1

4 cosh�0)
32

(gz)4
+ . . .

◆�
,

(4.29)
where the ellipsis in (4.28)-(4.29) stand for additional terms, which are sub-leading in powers
of 1/(gz) around z ! 1 (UV), involving additional integration constants. With this power
series analysis we conclude our semi-analytic characterisation of the dyonic deformation in-
duced by the parameter c on the purely electric (c = 0) solution (4.1)-(4.2) that uplifts to
the D3-brane in (4.4).

As a recap, we have by now understood how the D3-brane can be seen as a DW4 solution
of the BPS equations (2.9). We have shown that, for the analytic solution (4.1) in the purely
electric theory at c = 0 , the axions �1,2,3 can be seen as reparameterisations of S5 . We
have also characterised the sub-leading corrections induced by the deformation parameter c
around the UV region of such analytic four-dimensional solution. In the next section we will
construct holographic RG flows connecting (a deformation of) N = 4 SYM4 in the UV to
the various J-fold CFT’s dual to the AdS4 vacua of Section 3 in the IR.

5 Holographic RG flows: SYM4 to J-fold CFT3’s

J-fold CFT’s correspond to new three-dimensional CFT’s on a localized interface of SYM4

preserving various amounts of supersymmetry as well as of residual symmetry. In this section
we numerically construct holographic RG flows across dimensions connecting (deformations
of) N = 4 SYM4 in the UV to di↵erent J-fold CFT3’s with various amounts of supersymmetry
and the largest possible flavour symmetry in the IR : N = 1&SU(3) , N = 2&SU(2)⇥U(1)
and N = 4&SO(4) . Featuring the largest possible flavour symmetry in the field theory side
translates into the requirement that �1,2,3 = 0 in the deep IR.

On the gravity side, these RG flows are described by ten-dimensional interpolating solu-
tions of the form

IR UV

AdS4 ⇥ R (or S1)⇥ S5 AdS5 ⇥ S5

ds210 =
1
2 g

2��1
IR

�
ds2AdS4

+ f(zi) dw2
�
+ ds2

S5
ds210 = ds2AdS5

+ d̊s2
S5

(5.1)

where d̊s2
S5

corresponds with the round five-sphere in the UV and ds2
S5

with a deformed

five-sphere in the IR. The function �IR is the warping function at the J-fold solution in the
IR, to be distinguished from its UV behaviour in (4.7). It can also be seen from (4.8) that the
AdS5 metric singles out the coordinate w(⌘) to span the R (or S1) factor of the geometry
in the IR. This is the same coordinate along which the type IIB fields acquire a dependence
on as a consequence of the SL(2,R) monodromy (S-fold) [1, 4, 2]. Note also that the RG
flow occurs along the radial direction r of AdS5 . Therefore, the dependence of the type IIB
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( IR )   N=1 & SU(3)  J-fold CFT3                  SYM4   ( UV )

where L2 = �3/V0 is the AdS4 radius. As discussed in [2], a generic solution in this family
preserves U(1)2 . However, the residual symmetry gets enhanced to SU(2) ⇥ U(1) when
imposing a pairwise identification between the axions �1,2,3 . Finally there is a symmetry
enhancement to SU(3) when setting �1,2,3 = 0 .

This N = 1 & SU(3) symmetric AdS4 vacuum was uplifted to a family of type IIB S-folds
with N = 1 supersymmetry in [4]. Setting the moduli �1,2,3 = 0 yields

z1 = z2 = z3 = i c

p
5

3
and z4 = z5 = z6 = z7 =

1p
6
(1 + i

p
5) , (3.9)

with masses in (3.8) given by

m2L2 = �20
9 (⇥3) , �8

9 (⇥3) , 0 (⇥2) , 4±
p
6 (⇥2) , �2 (⇥2) . (3.10)

By virtue of (3.2), the set of normalised scalar masses in (3.10) implies a set of conformal
dimensions �± for the dual operators given by

m2L2 = �20
9 (⇥3) , �2 (⇥2) , �8

9 (⇥3) ; 0 (⇥2) ; 4�
p
6 (⇥2) , 4 +

p
6 (⇥2) ,

�+ = 5
3 (⇥3) , 2 (⇥2) , 8

3 ; 3 ; 1+
p
6 (⇥2) , 2 +

p
6 ,

�� = 4
3 , 1 , 1

3 (⇥3) ; 0 (⇥2) ; 2�
p
6 , 1�

p
6 (⇥2) .

(3.11)
The highlighted conformal dimensions in (3.11) appear as eigenvalues of the matrix (3.3).

3.2 N = 2 vacuum with SU(2)⇥U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves
U(1)2 and is located at

z1 = �z̄3 = c

✓
�� + i

1p
2

◆
, z2 = i c , z4 = z6 = i and z5 = z7 =

1p
2
(1 + i) . (3.12)

This family of AdS4 solutions has a vacuum energy given by

V0 = �3 g2 c�1 , (3.13)

and a spectrum of Z
3
2 invariant normalised scalar masses of the form

m2L2 = 0 (⇥1) , 3±
p
17 (⇥2) , �2 (⇥1) , 2 (⇥4) , �2 + 4�2 (⇥2)

�1 + 4�2 ±
p

16�2 + 1 (⇥1) ,
(3.14)

where L2 = �3/V0 is the AdS4 radius. A generic solution in this family preserves U(1)2 ,
but the residual symmetry gets enhanced to SU(2)⇥U(1) when � = 0 .

This N = 2 & SU(2) ⇥ U(1) symmetric AdS4 vacuum was uplifted to a family of type
IIB S-folds with N = 2 supersymmetry in [2]. Setting the modulus � = 0 yields

z1 = z3 = i c
1p
2

, z2 = i c , z4 = z6 = i and z5 = z7 =
1p
2
(1 + i) , (3.15)

with masses in (3.14) given by

m2L2 = �2 (⇥4) , 0 (⇥2) , 3±
p
17 (⇥2) , 2 (⇥4) . (3.16)
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Figure 2: Holographic RG flow from N = 4 SYM4 (UV, right) to N = 1&SU(3) J-fold
CFT3 (IR, left) with ⇤ = �1 and � = 0 .

Figure 3: Holographic RG flow from N = 4 SYM4 (UV, right) to N = 1&SU(3) J-fold
CFT3 (IR, left) with ⇤ = �1 and � = �0.16 .

Behaviour of the flows

Fixing � = 0 implies �1,2,3 = 0 in the IR boundary conditions (5.5). In this case we obtain
the numerical flow depicted in Figure 2 that approaches the D3-brane solution in the UV
(z ! 1). As previously discussed in Section 4.2, the UV behaviour of this flow is understood
as a sub-leading correction in the electric-magnetic deformation c of the D3-brane solution
in (4.1) with

�1,2,3 = 0 and �0 = 0 . (5.6)

Activating the parameter � makes the axions �1,2,3 run along the flow. In this case, the UV
region is reached with

3X

i=1

�i ⇡ c sinh�0 ,

y4,5,6,7 ⇡ e�
1
2�0 ,

(5.7)

and �0 6= 0 . This agrees with the results in (4.23) and (4.24) obtained at first-order in the
deformation parameter c . One such generic flows is depicted in Figure 3.
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Figure 4: Holographic RG flow from N = 4 SYM4 (UV) to N = 2&SU(2) ⇥ U(1) J-fold
CFT3 (IR) with ⇤1 = �1 , ⇤2 = 0 and (�1,�2) = (0, 0) .

this flow is again understood as a sub-leading correction in the electric-magnetic deformation
c of the D3-brane solution in (4.1) with

�1,2,3 = 0 and �0 = 0 . (5.11)

Now we can explore the UV behaviour of the flows when activating the parameters ⇤2 and
�1,2 in the boundary conditions (5.10). The parameter ⇤2 controls the UV values of �2 and
y4,5,6,7 so that

3P
i=1

�i ⇡ c sinh�0 ,

y4,5,6,7 ⇡ e�
1
2�0 ,

(5.12)

with �0 6= 0 . Turning on the remaining parameters �1,2 makes more scalars run along the
flow. Flows of these types are presented in Figure 5.

Study of the parameter space

This time we must perform a numerical scan of flows in a three-dimensional parameter space
(⇤2 ; �1 , �2) . Various sections of the parameter space allowing for regular flows are depicted
in Figure 6. It is worth mentioning here that, within our numerical precision, we do not
observe flows reaching the N = 1&SU(3) conformal AdS4 vacuum in the UV. The three pa-
rameters ⇤2 and �1,2 simply turn out to control the values of the axions when approaching
the D3-brane solution in the UV.

5.3 SYM4 to J-fold CFT3 with N = 4&SO(4)

Lastly we move to solve the BPS equations (2.9) numerically perturbing the N = 4&SO(4)
AdS4 vacuum (3.18) in the IR (z ! �1) and flowing to a non-conformal behaviour in the
UV (z ! 1).
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Upon solving (3.2), the set of normalised scalar masses in (3.16) implies a set of conformal
dimensions �± for the dual operators given by

m2L2 = �2 (⇥4) , 3�
p
17 (⇥2) ; 0 (⇥2) ; 2 (⇥4) , 3 +

p
17 (⇥2) ,

�+ = 2 (⇥2) , 1
2(1+

p
17) (⇥2) ; 3 ; 1

2(3+
p
17) (⇥2) , 1

2(5 +
p
17) ,

�� = 1 (⇥2) , 1
2(5�

p
17) ; 0 (⇥2) ; 1

2(3�
p
17) (⇥2) , 1

2(1�
p
17) (⇥2) .

(3.17)
As in the previous case, some of the conformal dimensions in (3.17) have been highlighted as
they will play a role later on when studying holographic RG flows involving this conformal
fixed point.

3.3 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = i c and z4 = z5 = z6 = �z̄7 =
1p
2
(1 + i) . (3.18)

This AdS4 solution has a vacuum energy given by

V0 = �3 g2 c�1 , (3.19)

as for the previous solution, and a spectrum of Z
3
2 invariant normalised scalar masses of the

form
m2L2 = �2 (⇥3) , 0 (⇥6) , 4 (⇥4) , 10 (⇥1) , (3.20)

where L2 = �3/V0 is the AdS4 radius.
This N = 4 & SO(4) symmetric AdS4 vacuum was first reported in [6], and then uplifted

to a family of type IIB S-folds with N = 4 supersymmetry in [1]. Solving (3.2) for the set
of normalised scalar masses in (3.20) yields a set of conformal dimensions �± for the dual
operators given by

m2L2 = �2 (⇥3) ; 0 (⇥6) ; 4 (⇥4) , 10 (⇥1) ,

�+ = 2 (⇥3) ; 3 (⇥3) ; 4 (⇥1) , 5 ,

�� = 1 ; 0 (⇥3) ; �1 (⇥3) , �2 (⇥1) .

(3.21)

As in the previous case, some of the conformal dimensions in (3.21) have been highlighted as
they will play a role later on when studying holographic RG flows involving this conformal
fixed point.

In the next sections we will explore non-conformal solutions of the BPS equations (2.9).
We start with a class of (semi-)analytic solutions: first in the purely electric case with c = 0 ,
and then turning on the electromagnetic deformation c . Finally, we numerically construct
domain-wall solutions that interpolate between the above supersymmetric AdS4 vacua in the
deep IR ( z ! �1 ) and various scaling behaviours in the deep UV ( z ! 1 ).

4 D3-brane and SYM4

In this section we present (semi-)analytic solutions of the BPS equations (2.9) which control
the UV behaviour of the numerical RG flows to be presented later on in Section 5.

5

( IR )   N=2 & SU(2)  J-fold CFT3                  SYM4   ( UV )
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Figure 7: Holographic RG flow from N = 4 SYM4 (UV) to N = 4&SO(4) J-fold CFT3

(IR) with ⇤ = �1 and �i = 0 .

Figure 8: Holographic RG flow from N = 4 SYM4 (UV) to N = 4&SO(4) J-fold CFT3

(IR) with ⇤ = �1 and (�1,�2,�3) = (�0.8, 0, 0) .

Turning on the parameters �i activates the asymptotic values of the axions �i in the UV.
More concretely, the UV region is again reached as

3P
i=1

Re�i ⇡ c sinh�0 ,

y4,5,6,7 ⇡ e�
1
2�0 ,

(5.16)

with �0 6= 0 . This agrees with the results in (4.23) and (4.24) obtained at first-order in the
deformation parameter c . A generic flow with �1 6= 0 and �1 6= 0 in the UV is depicted in
Figure 8.

Study of the parameter space

The fact that �1,2,3 enter the IR boundary conditions (5.14) symmetrically renders the three
parameters completely interchangeable as far as the induced flows are concerned. In Figure 9
the section of the parameter space allowing for regular holographic RG flows with �1 = 0 is
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Upon solving (3.2), the set of normalised scalar masses in (3.16) implies a set of conformal
dimensions �± for the dual operators given by
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17) (⇥2) , 1

2(5 +
p
17) ,
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As in the previous case, some of the conformal dimensions in (3.17) have been highlighted as
they will play a role later on when studying holographic RG flows involving this conformal
fixed point.

3.3 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = i c and z4 = z5 = z6 = �z̄7 =
1p
2
(1 + i) . (3.18)

This AdS4 solution has a vacuum energy given by

V0 = �3 g2 c�1 , (3.19)

as for the previous solution, and a spectrum of Z
3
2 invariant normalised scalar masses of the

form
m2L2 = �2 (⇥3) , 0 (⇥6) , 4 (⇥4) , 10 (⇥1) , (3.20)

where L2 = �3/V0 is the AdS4 radius.
This N = 4 & SO(4) symmetric AdS4 vacuum was first reported in [6], and then uplifted

to a family of type IIB S-folds with N = 4 supersymmetry in [1]. Solving (3.2) for the set
of normalised scalar masses in (3.20) yields a set of conformal dimensions �± for the dual
operators given by

m2L2 = �2 (⇥3) ; 0 (⇥6) ; 4 (⇥4) , 10 (⇥1) ,

�+ = 2 (⇥3) ; 3 (⇥3) ; 4 (⇥1) , 5 ,

�� = 1 ; 0 (⇥3) ; �1 (⇥3) , �2 (⇥1) .

(3.21)

As in the previous case, some of the conformal dimensions in (3.21) have been highlighted as
they will play a role later on when studying holographic RG flows involving this conformal
fixed point.

In the next sections we will explore non-conformal solutions of the BPS equations (2.9).
We start with a class of (semi-)analytic solutions: first in the purely electric case with c = 0 ,
and then turning on the electromagnetic deformation c . Finally, we numerically construct
domain-wall solutions that interpolate between the above supersymmetric AdS4 vacua in the
deep IR ( z ! �1 ) and various scaling behaviours in the deep UV ( z ! 1 ).

4 D3-brane and SYM4

In this section we present (semi-)analytic solutions of the BPS equations (2.9) which control
the UV behaviour of the numerical RG flows to be presented later on in Section 5.

5

( IR )   N=4  J-fold CFT3                  SYM4   ( UV )
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Holographic RG-flows :

D3-brane

N = 1 & SU(3)

N = 2 & U(2) N = 4 & SO(4)

Figure 1: Network of domain-walls connecting the D3-brane behaviour (SYM4 in the UV) and
the known supersymmetric AdS4 solutions (J-fold CFT3’s in the IR) of the dyonically-gauged
[ SO(1, 1)⇥ SO(6) ]nR

12 maximal supergravity. Actual plots of these new domain-walls can
be found in the main text.

1 Introduction

We investigate classes of domain-wall solutions appearing in a Z
3
2 invariant sector of the

dyonically-gauged maximal supergravity with [SO(1, 1)⇥ SO(6)]n R
12 gauging. This super-

gravity model contains three families of supersymmetric vacua and a rich structure of BPS
domain-wall solutions, as we will show. We will review the model and the BPS equations in
the first section, and then study analytic and semi-analytical solutions. These solutions will
be connected to deformations of the standard D3-brane solution. Finally, we will numerically
compute holographic RG flows from the D3-brane to the various supersymmetric vacua of the
model (S-folds). The question of whether there exist CFT to CFT RG flows remains open
although we do not observe them in our systematic numerical study.

2 N = 1 supergravity model and first-order flow equations

Let us consider the maximal supergravity with gauge group [SO(1, 1)⇥ SO(6)]n R
12 that

arises upon dimensional reduction of type IIB supergravity on S5 ⇥ R [1]. For the sake of
tractability, we restrict ourselves to the Z

3
2 invariant sector of the theory constructed in [2].

This sector describes a minimal N = 1 supergravity coupled to seven chiral multiplets zi
(and no vector multiplets). We parameterise the complex scalars of the chiral multiplets as

zi = ��i + i yi with i = 1, . . . , 7 and yi > 0 . (2.1)

The seven complex fields serve as coordinates on a Kähler scalar geometry

Mscal = [SL(2)/SO(2)]7 , (2.2)

1

Question :    CFT3  to  CFT3   flows ? 

IR UV

AdS4 ⇥ R (or S1)⇥ S5 AdS5 ⇥ S5

ds210 = 1
2 g

2 ��1
IR

�
ds2AdS4

+ f(zi) d⌘2
�
+ ds2S5 ds210 = ds2AdS5

+ d̊s2S5

<latexit sha1_base64="plTYVxlZ2Sp0/XW8zWIToxlzFE4=">AAAD5nicfVNLbxMxEN4mPEp4NIUjlxFRV6loo92oEfSAVAQHuJWWtJXidOX1ehOr692V7SCC8Q/gwgGEuPKbuPFfOGAnaUgThPew429mvnk6LjMmVRD8WqtUr12/cXP9Vu32nbv3Nuqb909kMRKEdkmRFeIsxpJmLKddxVRGz0pBMY8zehpfvHD603dUSFbkb9W4pH2OBzlLGcHKQtHm2m8U0wHLNRYCj40m5CMhpoYUfa8E16+PjO/7l7fuiUGo1+a8Pzd4nhybSO8Z </latexit>
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Summary

❖ Dyonic  [SO(1,1) × SO(6)] ⋉ R12   gauging connected  with   type IIB  on  

!32

❖ Type IIB  (S-folds) :     Gravity  duals  of  J-fold  CFT3 ’s  with  various (super) symmetries

[ J = - STk  monodromies   (k > 2) ]

N = 0 & SO(6)
<latexit sha1_base64="dP1sfSDzQqhAoZlLhfOQ6/T5f/0=">AAACGnicbVDLSgMxFM3UV62vUZdugkWpIGXGR3UjFNy40or2AZ1SMmnahmYeJHfEMsx3uPFX3LhQxJ248W9MH4K23hDu4Zx7Sc5xQ8EVWNaXkZqZnZtfSC9mlpZXVtfM9Y2KCiJJWZkGIpA1lygmuM/KwEGwWigZ8VzBqm7vfKBX75hUPPBvoR+yhkc6Pm9zSkBTTdN2PAJdSkR8mZxZ2NnXZ3fYsAPsHqQX//Sbq1xhL0maZtbKW8PC08AegywaV6lpfjitgEYe84EKolTdtkJoxEQCp4IlGSdSLCS0RzqsrqFPPKYa8dBagnc008LtQOrrAx6yvzdi4inV91w9OTCiJrUB+Z9Wj6B92oi5H0bAfDp6qB0JDAEe5IRbXDIKoq8BoZLrv2LaJZJQ0GlmdAj2pOVpUDnI24f54+ujbLEwjiONttA2yiEbnaAiukAlVEYUPaAn9IJejUfj2Xgz3kejKWO8s4n+lPH5Dfvxn5Q=</latexit>

unstable !!

❖
Brane	set-ups	?		,		axions											(	flavour	sym	breaking	)	?			,			non-abelian	T-duals	?				….

N = 1 & SU(3)
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N = 2 & SU(2)⇥U(1)
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❖
Holographic	RG-flows	on	the	D3-brane	:			(deformed)	SYM

4

		to		J-fold	CFT

3

’s

[ see also Bobev, Gautason, Pilch, Suh, van Muiden ’19, ’20  (5D approach) ] 

[ Dall’Agata, Inverso  ’11 ]
[ Inverso, Samtleben, Trigiante ’16 ]

�1,2,3
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R (or S1)⇥ S5

<latexit sha1_base64="6TSUvtFr+R3huviep89odpcs3OQ=">AAACLXicbVBdSwJBFJ21L7Mvq8dehiQwENkNo3qT6qFH+1AD12R2HHVw9oOZu5Es+4d66a9E0IMRvfY3mlWD1A4MnHvuvdw5xwkEV2CaQyO1sLi0vJJezaytb2xuZbd3asoPJWVV6gtf3jtEMcE9VgUOgt0HkhHXEazu9C+Sfv2RScV97w4GAWu6pOvxDqcEtNTKXtougZ7jRDcxtgt5G9gTSDfyZVLaBfwr3MYPkRUf6pq7TE3Jx3ErmzOL5gh4nlgTkkMTVFrZN7vt09BlHlBBlGpYZgDNiEjgVLA4Y4eKBYT2SZc1NPWIvtmMRm5jfKCVNu74Uj8P8Ej9uxERV6mB6+jJxJua7SXif71GCJ3TZsS9IATm0fGhTigw+DiJDre5ZBTEQBNCJdd/xbRHJKGgA87oEKxZy/OkdlS0SsWz61KufD6JI4320D7KIwudoDK6QhVURRQ9o1c0RB/Gi/FufBpf49GUMdnZRVMwvn8AjKKo+w==</latexit>



Thank you !

!33


