Deformed $\mathrm{N}=8$ supergravity from IIA strings and its Chern-Simons duals

Adolfo Guarino
(Nikhef, Amsterdam)

SUPERGRAVITY 2015
October 29-30, Padova

Niمnef

With Daniel Jafferis and Oscar Varela :
arXiv:1504.08009, arXiv:1508.04432, arXiv:1509.02526

Outlook

"Gong show" motivation

Deformed SO(8)-gauged supergravity

Deformed ISO(7)-gauged supergravity

Massive type IIA strings on S^{6}

New $\mathrm{AdS}_{4} \mathrm{~N}=2$ solution in massive IIA and its CFT_{3} dual

"Gong show" motivation

[Sorry for those who were in Leuven...]

electric-magnetic deformations

- The uniqueness of the maximal supergravities is historically inherited from their connection to sphere reductions

$$
\mathrm{AdS}_{5} \times \mathrm{S}^{5} \text { (D3-brane) , } \mathrm{AdS}_{4} \times \mathrm{S}^{7} \text { (M2-brane) , } \mathrm{AdS}_{7} \times \mathrm{S}^{4} \text { (M5-brane) }
$$

- $N=8$ supergravity in 4D admits a deformation parameter c yielding inequivalent theories. It is an electric/magnetic deformation

$$
D=\partial-g\left(A^{\mathrm{elec}}-c \tilde{A}_{\mathrm{mag}}\right)
$$

$$
\begin{aligned}
& g=4 \mathrm{D} \text { gauge coupling } \\
& c=\text { deformation param. }
\end{aligned}
$$

- There are two generic situations :

1) Family of $\mathrm{SO}(8)_{c}$ theories : $c=[0, \sqrt{2}-1]$ is a continuous param. [similar for $\mathrm{SO}(p, q)_{c}$]
2) Family of $\operatorname{ISO}(7)_{c}$ theories : $c=0$ or 1 is an (on/off) param. [same for $\operatorname{ISO}(p, q)_{c}$]

The questions arise:

- Does such an electric/magnetic deformation of 4D maximal supergravity enjoy a string/M-theory origin, or is it just a 4D feature ?

Obstruction for $\mathrm{SO}(8)_{c}, c f$. [Lee, Strickland-Constable, Waldram '15]

- For deformed 4D supergravities with supersymmetric AdS_{4} vacua, are these $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$-dual to any identifiable 3d CFT ?

A new 10D / 4D / 3d correspondence

massive IIA on S^{6} 《 $\operatorname{ISO}(7)_{c}$-gauged sugra 》 $\mathrm{SU}(N)_{k}$ C-S-M theory

$g c=$ elec $/$ mag deformation in 4 D
$\hat{F}_{(0)}=$ Romans mass in 10D
$k=$ Chern-Simons level in 3d
[Schwarz '04]
[AG, Jafferis, Varela '15] [AG, Varela '15]

Deformed SO(8)-gauged supergravity

$N=8$ supergravities in 4D

- SUGRA : metric +8 gravitini +28 vectors +56 dilatini +70 scalars

$$
(s=2) \quad(s=3 / 2) \quad(s=1) \quad(s=1 / 2) \quad(s=0)
$$

Ungauged (abelian) supergravity: Reduction of M-theory on a torus T^{7} down to 4 D produces $N=8$ supergravity with $G=\mathrm{U}(1)^{28}$

Gauged (non-abelian) supergravity: Reduction of M-theory on a sphere S^{7} down to 4D produces $N=8$ supergravity with $G=S O$ (8)

* $\mathrm{SO}(8)$-gauged supergravity believed to be unique for 30 years...
... but ... is this true?

Framework to study $N=8$ supergravities in 4D

[de Wit, Samtleben \& Trigiante '03 , '07]

Gauging procedure : Part of the global E7 symmetry group is promoted to a local symmetry group G (gauging)

$$
[\alpha=1, \ldots, 133]
$$

Embedding tensor : It is a "selector" specifying which generators of E_{7} (there are 133!!) become the gauge symmetry G and, therefore, have associated gauge fields.

Formulation in terms of 56 vectors A_{μ}^{M}, though... $M=1, \ldots, 56=28$ (elec) +28 (mag)
Sp(56) Elec/Mag group

$$
A_{\mu}=A_{\mu}^{M} \Theta_{M}^{\alpha} t_{\alpha}
$$

Redundancy!!
$X_{M}=\Theta_{M}{ }^{\alpha} t_{\alpha} \quad \Rightarrow \quad\left[X_{M}, X_{N}\right]=X_{M N}{ }^{P} X_{P} \quad$ with $\quad X_{M N}{ }^{P}=\Theta_{M}{ }^{\alpha}\left[t_{\alpha}\right]_{N}{ }^{P}$

* Closure of the gauge algebra : $\quad \Omega^{M N} \Theta_{M}{ }^{\alpha} \Theta_{N}{ }^{\beta}=0$

A family of $G=S O(8)$ supergravities in 4D

- Choose G = SO(8)
- Solve $\Omega^{M N} \Theta_{M}{ }^{\alpha} \Theta_{N}{ }^{\beta}=0 \Rightarrow$ One-parameter (c) family of $\mathrm{SO}(8)_{\mathrm{c}}$ theories !!
[Dall' Agata, Inverso \& Trigiante '12]
- Immediate questions :

1) What?
2) Are these c-theories equivalent?
3) Are there new AdS_{4} solutions?
4) Higher-dimensional origin?
5) $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ dual?
(Yes, surprising but true)
(No)
(Yes)
(Good question...)
(Good question too... ABJ?)

Physical meaning in 4D: electric/magnetic deformation

$$
D=\partial-g\left(A^{\mathrm{elec}}-c \tilde{A}_{\mathrm{mag}}\right)
$$

Physical meaning 10D / 11D ...

Holographic $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ meaning ...

In this talk we are going to investigate the electric/magnetic deformation of a different $\mathrm{N}=8$ supergravity closely related to the $\mathrm{G}=\mathrm{SO}(8)$ theory \ldots

$$
\ldots \text { the } \mathrm{G}=\mathrm{ISO}(7)=\mathrm{SO}(7) \ltimes \mathbb{R}^{7} \text { supergravity !! }
$$

```
electric/magnetic
    deformation
```

higher-dimensional origin

Holographic
$\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ dual ?

Deformed ISO(7)-gauged supergravity

A family of $G=I S O(7)$ supergravities in $4 D$

- Choose $\mathrm{G}=\mathrm{ISO}(7)$
- Solve $\Omega^{M N} \Theta_{M}{ }^{\alpha} \Theta_{N}{ }^{\beta}=0 \Rightarrow$ One-parameter (c) family of ISO(7)c theories !!
[Hull '84 (electric)]
[Dall'Agata, Inverso, Marrani '14]
- Immediate questions :

1) What?
(Yes, and still surprising)
2) Are these c-theories equivalent?
(No)
3) Are there new AdS_{4} solutions?
(Yes)
4) Higher-dimensional origin?
5) $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ dual?

Physical meaning in 4D $=$ electric/magnetic deformation

Deformed ISO(7)c Lagrangian $(m=g c)$

$$
\begin{aligned}
\mathbb{M} & =1, \ldots, 56 \\
\Lambda & =1, \ldots, 28 \\
I & =1, \ldots, 7
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{bos}} & =(R-V) \operatorname{vol}_{4}-\frac{1}{48} D \mathcal{M}_{\mathbb{M N}} \wedge * D \mathcal{M}^{\mathbb{M N}}+\frac{1}{2} \mathcal{I}_{\Lambda \Sigma} \mathcal{H}_{(2)}^{\Lambda} \wedge * \mathcal{H}_{(2)}^{\Sigma}-\frac{1}{2} \mathcal{R}_{\Lambda \Sigma} \mathcal{H}_{(2)}^{\Lambda} \wedge \mathcal{H}_{(2)}^{\Sigma} \\
& +m\left[\mathcal{B}^{I} \wedge\left(\tilde{\mathcal{H}}_{(2) I}-\frac{g}{2} \delta_{I J} \mathcal{B}^{J}\right)-\frac{1}{4} \tilde{\mathcal{A}}_{I} \wedge \tilde{\mathcal{A}}_{J} \wedge\left(d \mathcal{A}^{I J}+\frac{g}{2} \delta_{K L} \mathcal{A}^{I K} \wedge \mathcal{A}^{J L}\right)\right]
\end{aligned}
$$

\uparrow Setting $m=0$, all the magnetic pieces in the Lagrangian disappear.

* Ingredients :
- Electric vectors $(21+7): \mathcal{A}^{I J}=\mathcal{A}^{[I J]}[\mathrm{SO}(7)]$ and $\mathcal{A}^{I}\left[\mathrm{R}^{7}\right]$ with $\mathcal{H}_{(2)}^{\Lambda}=\left(\mathcal{H}_{(2)}^{I J}, \mathcal{H}_{(2)}^{I}\right)$
- Auxiliary magnetic vectors (7): $\tilde{\mathcal{A}}_{I}\left[R^{7}\right]$ with $\tilde{\mathcal{H}}_{(2) I}$
- $\mathrm{E}_{7} / \mathrm{SU}(8)$ scalars : $\mathcal{M}_{\mathrm{M} \mathbb{N}}$
- Auxiliary two-forms (7): $\mathcal{B}^{I}\left[\mathrm{R}^{7}\right]$
- Topological term : $m[\ldots]$
- Scalar potential : $\quad V(\mathcal{M})=\frac{g^{2}}{672} X_{\mathbb{M} \mathbb{N}^{\mathbb{R}}} X_{\mathbb{P} \mathbb{Q}}^{\mathbb{S}} \mathcal{M}^{\mathbb{M} \mathbb{P}}\left(\mathcal{M}^{\mathbb{N Q}} \mathcal{M}_{\mathbb{R S}}+7 \delta_{\mathbb{R}}^{\mathbb{Q}} \delta_{\mathbb{S}}^{\mathbb{N}}\right)$

A truncation: $G_{0}=S U(3)$ invariant sector

- Truncation : Retaining the fields and couplings which are invariant (singlets) under the action of a subgroup $G_{0} \subset \operatorname{ISO}(7)$
- SU(8) R-symmetry branching: gravitini $\mathbf{8} \rightarrow \mathbf{1}+\mathbf{1}+\mathbf{3}+\overline{\mathbf{3}} \Rightarrow \mathcal{N}=2$ SUSY
- Scalars fields: $\quad \mathbf{7 0} \boldsymbol{\rightarrow} \mathbf{1}(\times 6)+$ non-singlets $\quad \Rightarrow \quad 6$ real scalars $(\varphi, \chi ; \phi, a, \zeta, \tilde{\zeta})$
- Vector fields : $\quad \mathbf{5 6} \rightarrow \mathbf{1}(\times 4)+$ non-singlets $\quad \Rightarrow$ vectors $\quad\left(A^{0}, A^{1} ; \tilde{A}_{0}, \tilde{A}_{1}\right)$
- $N=2$ gauged supergravity with $G=U(1) \times S O(1,1)_{c}$ coupled to 1 vector \& 1 hyper

$$
\mathcal{M}_{\text {scalar }}=\frac{\mathrm{SU}(1,1)}{\mathrm{U}(1)} \times \frac{\mathrm{SU}(2,1)}{\mathrm{U}(2)}
$$

- Scalar potential : $V=\frac{1}{2} g^{2}\left[e^{4 \phi-3 \varphi}\left(1+e^{2 \varphi} \chi^{2}\right)^{3}-12 e^{2 \phi-\varphi}\left(1+e^{2 \varphi} \chi^{2}\right)-12 e^{2 \phi+\varphi} \rho^{2}\left(1-3 e^{2 \varphi} \chi^{2}\right)\right.$

$$
\begin{aligned}
& \left.-24 e^{\varphi}+12 e^{4 \phi+\varphi} \chi^{2} \rho^{2}\left(1+e^{2 \varphi} \chi^{2}\right)+12 e^{4 \phi+\varphi} \rho^{4}\left(1+3 e^{2 \varphi} \chi^{2}\right)\right] \\
& -\frac{1}{2} g m \chi e^{4 \phi+3 \varphi}\left(12 \rho^{2}+2 \chi^{2}\right)+\frac{1}{2} m^{2} e^{4 \phi+3 \varphi},
\end{aligned}
$$

AdS_{4} solutions

\mathcal{N}	G_{0}	$c^{-1 / 3} \chi$	$c^{-1 / 3} e^{-\varphi}$	$c^{-1 / 3} \rho$	$c^{-1 / 3} e^{-\phi}$	$\frac{1}{4} g^{-2} c^{1 / 3} V_{0}$	$M^{2} L^{2}$
$\mathcal{N}=1$	G_{2}	$-\frac{1}{2^{7 / 3}}$	$\frac{5^{1 / 2} 3^{1 / 2}}{2^{7 / 3}}$	$-\frac{1}{2^{7 / 3}}$	$\frac{5^{1 / 2} 3^{1 / 2}}{2^{7 / 3}}$	$-\frac{2^{22 / 3} 3^{1 / 2}}{5^{5 / 2}}$	$4 \pm \sqrt{6},-\frac{1}{6}(11 \pm \sqrt{6})$
$\mathcal{N}=2$	$\mathrm{U}(3)$	$-\frac{1}{2}$	$\frac{3^{1 / 2}}{2}$	0	$\frac{1}{2^{1 / 2}}$	$-3^{3 / 2}$	$3 \pm \sqrt{17}, 2,2$
$\mathcal{N}=1$	$\mathrm{SU}(3)$	$\frac{1}{2^{2}}$	$\frac{3^{1 / 2} 5^{1 / 2}}{2^{2}}$	$-\frac{3^{1 / 2}}{2^{2}}$	$\frac{5^{1 / 2}}{2^{2}}$	$-\frac{2^{6} 3^{3 / 2}}{5^{5 / 2}}$	$4 \pm \sqrt{6}, 4 \pm \sqrt{6}$
$\mathcal{N}=0$	$\mathrm{SO}(6)_{+}$	0	$2^{1 / 6}$	0	$\frac{1}{2^{5 / 6}}$	$-32^{5 / 6}$	$6,6,-\frac{3}{4}, 0$
$\mathcal{N}=0$	$\mathrm{SO}(7)_{+}$	0	$\frac{1}{5^{1 / 6}}$	0	$\frac{1}{5^{1 / 6}}$	$-\frac{35^{7 / 6}}{2^{2}}$	$6,-\frac{12}{5},-\frac{6}{5},-\frac{6}{5}$
$\mathcal{N}=0$	G_{2}	$\frac{1}{2^{4 / 3}}$	$\frac{3^{1 / 2}}{2^{4 / 3}}$	$\frac{1}{2^{4 / 3}}$	$\frac{3^{1 / 2}}{2^{4 / 3}}$	$-\frac{2^{10 / 3}}{3^{1 / 2}}$	$6,6,-1,-1$
$\mathcal{N}=0$	$\mathrm{SU}(3)$	0.455	0.838	0.335	0.601	-5.864	$6.214,5.925,1.145,-1.284$
$\mathcal{N}=0$	$\mathrm{SU}(3)$	0.270	0.733	0.491	0.662	-5.853	$6.230,5.905,1.130,-1.264$

\downarrow Relevant for holographic RG flows (in progress...) !!

The truncated Lagrangian (I)

- The Lagrangian still contains a tensor field B^{0} :

$$
\begin{aligned}
\mathcal{L} & =(R-V) \operatorname{vol}_{4}+\frac{3}{2}\left[d \varphi \wedge * d \varphi+e^{2 \varphi} d \chi \wedge * d \chi\right] \\
& +2 d \phi \wedge * d \phi+\frac{1}{2} e^{2 \phi}[D \zeta \wedge * D \zeta+D \tilde{\zeta} \wedge * D \tilde{\zeta}] \\
& +\frac{1}{2} e^{4 \phi}\left[D a+\frac{1}{2}(\zeta D \tilde{\zeta}-\tilde{\zeta} D \zeta)\right] \wedge *\left[D a+\frac{1}{2}(\zeta D \tilde{\zeta}-\tilde{\zeta} D \zeta)\right] \\
& +\frac{1}{2} \mathcal{I}_{\Lambda \Sigma} H_{(2)}^{\Lambda} \wedge * H_{(2)}^{\Sigma}-\frac{1}{2} \mathcal{R}_{\Lambda \Sigma} H_{(2)}^{\Lambda} \wedge H_{(2)}^{\Sigma}+m B^{0} \wedge d \tilde{A}_{0}+\frac{1}{2} g m B^{0} \wedge B^{0}
\end{aligned}
$$

where

$$
D a=d a+g A^{0}-m \tilde{A}_{0} \quad, \quad D \zeta=d \zeta-3 g A^{1} \tilde{\zeta} \quad, \quad D \tilde{\zeta}=d \tilde{\zeta}+3 g A^{1} \zeta
$$

and with

$$
H_{(2)}^{0}=d A^{0}+m B^{0} \quad, \quad H_{(2)}^{1}=d A^{1}
$$

- Vector kinetic \& θ-term $: \quad \mathcal{N}_{\Lambda \Sigma}=\mathcal{R}_{\Lambda \Sigma}+i \mathcal{I}_{\Lambda \Sigma}=\frac{1}{\left(2 e^{\varphi} \chi+i\right)}\left(\begin{array}{cc}-\frac{e^{3 \varphi}}{\left(e^{\varphi} \chi-i\right)^{2}} & \frac{3 e^{2 \varphi} \chi}{\left(e^{\varphi} \chi-i\right)} \\ \frac{3 e^{2 \varphi} \chi}{\left(e^{\varphi} \chi-i\right)} & 3\left(e^{\varphi} \chi^{2}+e^{-\varphi}\right)\end{array}\right)$
\uparrow Non-dynamical tensor \& magnetic vector via $D a+$ topological term !!

The truncated Lagrangian (II) : dual formulation

- Solving the EOM for the magnetic vector, one finds

$$
H_{(3)}^{0}=e^{4 \phi} *\left(D a+\frac{1}{2}(\zeta D \tilde{\zeta}-\tilde{\zeta} D \zeta)\right) \quad \Rightarrow \text { scalar-tensor duality!! }
$$

- The dual Lagrangian

$$
\begin{aligned}
\widetilde{\mathcal{L}} & =(R-V) \operatorname{vol}_{4}+\frac{1}{2} e^{-4 \phi} H_{(3)}^{0} \wedge * H_{(3)}^{0}+\frac{3}{2}\left[d \varphi \wedge * d \varphi+e^{2 \varphi} d \chi \wedge * d \chi\right] \\
& +2 d \phi \wedge * d \phi+\frac{1}{2} e^{2 \phi}[D \zeta \wedge * D \zeta+D \tilde{\zeta} \wedge * D \tilde{\zeta}] \\
& +\frac{1}{2} \mathcal{I}_{\Lambda \Sigma} H_{(2)}^{\Lambda} \wedge * H_{(2)}^{\Sigma}-\frac{1}{2} \mathcal{R}_{\Lambda \Sigma} H_{(2)}^{\Lambda} \wedge H_{(2)}^{\Sigma} \\
& -H_{(3)}^{0} \wedge\left\lceil g A^{0}+\frac{1}{2}(\zeta D \tilde{\zeta}-\tilde{\zeta} D \zeta)\right\rceil+\frac{1}{2} g m B^{0} \wedge B^{0} .
\end{aligned}
$$

\downarrow Dynamical tensor $H_{(3)}^{0}=d B^{0}$ \& $D a$ and \tilde{A}_{0} have disappeared from the Lagrangian
\uparrow Natural duality frame to investigate possible higher-dimensional origin!!

Dual formulations seem to be crucial

to understand
higher-dimensional origins!!

... let's give up the Lagrangian.

SL(7)-covariant duality hierarchy

[de Wit, Nicolai \& Samtleben '08]
[Bergshoeff, Hartong, Hohm, Huebscher \& Ortin '09]

- Restricted SL(7)-covariant field content [index I]

$$
\begin{array}{rclllll}
\mathbf{1} & \text { metric : } & d s_{4}^{2} & & & \\
\mathbf{2 1}^{\prime}+\mathbf{7}^{\prime}+\mathbf{2 1}+\mathbf{7} & \text { coset representatives : } & \mathcal{V}^{I J i j}, \mathcal{V}^{I 8 i j}, \tilde{\mathcal{V}}_{I J^{i j}}, \tilde{\mathcal{V}}_{I 8}{ }^{i j}, & \\
\mathbf{2 1 ^ { \prime } + \mathbf { 7 } ^ { \prime } + \mathbf { 2 1 } + \mathbf { 7 }} & \text { vectors : } & \mathcal{A}^{I J}, & \mathcal{A}^{I}, & \tilde{\mathcal{A}}_{I J}, & \tilde{\mathcal{A}}_{I}, & \\
\mathbf{4 8}+\mathbf{7}^{\prime} & \text { two-forms: } & \mathcal{B}_{I}^{J}, & \mathcal{B}^{I}, & & & \text { [out of 133] } \\
\mathbf{2 8} & \text { three-forms : } & \mathcal{C}^{\prime J}, & & & \text { [out of 912] }
\end{array}
$$

- Two-form field strengths [$21^{\prime}+\mathbf{7}^{\prime}+21+7$]

$$
\begin{aligned}
\mathcal{H}_{(2)}^{I J} & =d \mathcal{A}^{I J}-g \delta_{K L} \mathcal{A}^{I K} \wedge \mathcal{A}^{L J}, \\
\mathcal{H}_{(2)}^{I} & =d \mathcal{A}^{I}-g \delta_{J K} \mathcal{A}^{I J} \wedge \mathcal{A}^{K}+\frac{1}{2} m \mathcal{A}^{I J} \wedge \tilde{\mathcal{A}}_{J}+m \mathcal{B}^{I}, \\
\tilde{\mathcal{H}}_{(2) I J} & =d \tilde{\mathcal{A}}_{I J}+g \delta_{K[I} \mathcal{A}^{K L} \wedge \tilde{\mathcal{A}}_{J] L}+g \delta_{K[I} \mathcal{A}^{K} \wedge \tilde{\mathcal{A}}_{J]}-m \tilde{\mathcal{A}}_{I} \wedge \tilde{\mathcal{A}}_{J}+2 g \delta_{K[I} \mathcal{B}_{J]}{ }^{K}, \\
\tilde{\mathcal{H}}_{(2) I} & =d \tilde{\mathcal{A}}_{I}-\frac{1}{2} g \delta_{I J} \mathcal{A}^{J K} \wedge \tilde{\mathcal{A}}_{K}+g \delta_{I J} \mathcal{B}^{J},
\end{aligned}
$$

- Three-form field strengths [$48+\mathbf{7}^{\prime}$]

$$
\begin{aligned}
\mathcal{H}_{(3) I}^{J}= & D \mathcal{B}_{I}^{J}+\frac{1}{2} \mathcal{A}^{J K} \wedge d \tilde{\mathcal{A}}_{I K}+\frac{1}{2} \mathcal{A}^{J} \wedge d \tilde{\mathcal{A}}_{I}+\frac{1}{2} \tilde{\mathcal{A}}_{I K} \wedge d \mathcal{A}^{J K}+\frac{1}{2} \tilde{\mathcal{A}}_{I} \wedge d \mathcal{A}^{J} \\
& -\frac{1}{2} g \delta_{K L} \mathcal{A}^{J K} \wedge \mathcal{A}^{L M} \wedge \tilde{\mathcal{A}}_{I M}-\frac{1}{2} g \delta_{K L} \mathcal{A}^{J K} \wedge \mathcal{A}^{L} \wedge \tilde{\mathcal{A}}_{I} \\
& +\frac{1}{6} g \delta_{I K} \mathcal{A}^{J L} \wedge \mathcal{A}^{K M} \wedge \tilde{\mathcal{A}}_{L M}-\frac{1}{3} g \delta_{I K} \mathcal{A}^{(J} \wedge \mathcal{A}^{K) L} \wedge \tilde{\mathcal{A}}_{L} \\
& -\frac{1}{2} m \mathcal{A}^{J K} \wedge \tilde{\mathcal{A}}_{I} \wedge \tilde{\mathcal{A}}_{K}-2 g \delta_{I K} \mathcal{C}^{J K}-\frac{1}{7} \delta_{I}^{J}(\text { trace }) \\
\mathcal{H}_{(3)}^{I} \quad & D \mathcal{B}^{I}-\frac{1}{2} \mathcal{A}^{I J} \wedge d \tilde{\mathcal{A}}_{J}-\frac{1}{2} \tilde{\mathcal{A}}_{J} \wedge d \mathcal{A}^{I J}+\frac{1}{2} g \delta_{J K} \mathcal{A}^{I J} \wedge \mathcal{A}^{K L} \wedge \tilde{\mathcal{A}}_{L}
\end{aligned}
$$

- Four-form field strengths [$\mathbf{2 8}^{\prime \prime}$]

$$
\begin{aligned}
\mathcal{H}_{(4)}^{I J}= & D \mathcal{C}^{I J}-\mathcal{H}_{(2)}^{K(I} \wedge \mathcal{B}_{K}^{J)}+\mathcal{H}_{(2)}^{(I} \wedge \mathcal{B}^{J)}-\frac{1}{2} m \mathcal{B}^{I} \wedge \mathcal{B}^{J}-\frac{1}{6} \mathcal{A}^{K(I} \wedge \tilde{\mathcal{A}}_{K L} \wedge d \mathcal{A}^{J) L} \\
& +\frac{1}{6} \mathcal{A}^{I K} \wedge \mathcal{A}^{J L} \wedge d \tilde{\mathcal{A}}_{K L}-\frac{1}{6} \mathcal{A}^{K(I} \wedge \tilde{\mathcal{A}}_{K} \wedge d \mathcal{A}^{J)}-\frac{1}{3} \mathcal{A}^{K(I} \wedge \mathcal{A}^{J)} \wedge d \tilde{\mathcal{A}}_{K} \\
& -\frac{1}{6} \mathcal{A}^{(I} \wedge \tilde{\mathcal{A}}_{K} \wedge d \mathcal{A}^{J) K}-\frac{1}{6} g \delta_{K L} \mathcal{A}^{K(I} \wedge \mathcal{A}^{J) M} \wedge \mathcal{A}^{L N} \wedge \tilde{\mathcal{A}}_{M N} \\
& +\frac{1}{6} g \delta_{K L} \mathcal{A}^{K(I} \wedge \mathcal{A}^{J)} \wedge \mathcal{A}^{L M} \wedge \tilde{\mathcal{A}}_{M}-\frac{1}{6} g \delta_{K L} \mathcal{A}^{K(I} \wedge \mathcal{A}^{J) M} \wedge \mathcal{A}^{L} \wedge \tilde{\mathcal{A}}_{M} \\
& -\frac{1}{8} m \mathcal{A}^{I K} \wedge \mathcal{A}^{J L} \wedge \tilde{\mathcal{A}}_{K} \wedge \tilde{\mathcal{A}}_{L}
\end{aligned}
$$

Consistency checks

- Closed set of Bianchi identities

$$
\begin{aligned}
& D \mathcal{H}_{(2)}^{I J}=0, D \mathcal{H}_{(2)}^{I}=m \mathcal{H}_{(3)}^{I}, D \tilde{\mathcal{H}}_{(2) I J}=-2 g \mathcal{H}_{(3)[I}^{K} \delta_{J] K}, D \tilde{\mathcal{H}}_{(2) I}=g \delta_{I J} \mathcal{H}_{(3)}^{J}, \\
& D \mathcal{H}_{(3) I}^{J}=\mathcal{H}_{(2)}^{J K} \wedge \tilde{\mathcal{H}}_{(2) I K}+\mathcal{H}_{(2)}^{J} \wedge \tilde{\mathcal{H}}_{(2) I}-2 g \delta_{I K} \mathcal{H}_{(4)}^{J K}-\frac{1}{7} \delta_{I}^{J}(\text { trace }), \\
& D \mathcal{H}_{(3)}^{I}=-\mathcal{H}_{(2)}^{I J} \wedge \tilde{\mathcal{H}}_{(2) J}, \quad D \mathcal{H}_{(4)}^{I J} \equiv 0 .
\end{aligned}
$$

- Closed set of duality relations [right number of d.o.f] [short-hand notation]

$$
\begin{aligned}
\tilde{\mathcal{H}}_{(2) I J} & =-\frac{1}{2} \mathcal{I}_{[I J][K L]} * \mathcal{H}_{(2)}^{K L}-\mathcal{I}_{[I J][K 8]} * \mathcal{H}_{(2)}^{K}+\frac{1}{2} \mathcal{R}_{[I J][K L]} \mathcal{H}_{(2)}^{K L}+\mathcal{R}_{[I J][K 8]} \mathcal{H}_{(2)}^{K}, \\
\tilde{\mathcal{H}}_{(2) I I} & =-\frac{1}{2} \mathcal{I}_{[I 8][K L]} * \mathcal{H}_{(2)}^{K L}-\mathcal{I}_{[I 8][K 8]} * \mathcal{H}_{(2)}^{K}+\frac{1}{2} \mathcal{R}_{[I 8][K L]} \mathcal{H}_{(2)}^{K L}+\mathcal{R}_{[I 8][K 8]} \mathcal{H}_{(2)}^{K}, \\
\mathcal{H}_{(3) I}{ }^{J} & =-\frac{1}{12}\left(t_{I}{ }^{J}\right)_{\mathbb{M}^{\mathbb{P}}} \mathcal{M}_{\mathbb{N P}} * D \mathcal{M}^{\mathbb{M N}}-\frac{1}{7} \delta_{I}^{J}(\operatorname{trace}), \\
\mathcal{H}_{(3)}^{I} & =-\frac{1}{12}\left(t_{8}^{I}\right) \mathbb{M}^{\mathbb{P}} \mathcal{M}_{\mathbb{N P}} * D \mathcal{M}^{\mathbb{M N}}, \\
\mathcal{H}_{(4)}^{I J} & =\frac{1}{84} X_{\mathbb{N Q}}{ }^{\mathbb{S}}\left(\left(t_{K}(I \mid) \mathbb{P}^{\mathbb{R}} \mathcal{M}^{\mid J) K \mathbb{N}}+\left(t_{8}^{(I \mid}\right) \mathbb{P}^{\mathbb{R}} \mathcal{M}^{\mid J) 8 \mathbb{N}}\right)\left(\mathcal{M}^{\mathbb{P Q}} \mathcal{M}_{\mathbb{R S}}+7 \delta_{\mathbb{S}}^{\mathbb{P}} \delta_{\mathbb{R}}^{\mathbb{Q}}\right) \mathrm{vol}_{4} .\right.
\end{aligned}
$$

- Closed set of SUSY transformations

Q : Why to bother with all these duality hierarchy issues?

A : Because the duality hierarchy allows us to derive simple embedding formulas to put the 4D dynamics into a higher-dimensional one.

Remember : No index, no clue. Good luck trying to embed V into higher dimensions...

Massive type IIA strings on S^{6}

Collecting clues

- The deformed $\operatorname{ISO}(7)_{c}$ gauging has its $\operatorname{SO}(7)$ piece untouched by the deformation. This points towards an undeformed S^{6} description in higher dimension.
- If the higher-dimensional geometry is not affected, it should then be the higherdimensional theory the one changing. The massive IIA theory by Romans proves a natural candidate.
[Romans '86]
- The Romans mass parameter $\hat{F}_{(0)}$ is a discrete (on/off) deformation, exactly as the parameter c in the deformed $\operatorname{ISO}(7)_{c}$ theory.
- The $\operatorname{SU}(3)$-invariant sector of the $\operatorname{ISO}(7)_{c}$ theory connects to CY_{3} reductions of massive IIA upon dualisation of some field. It is then natural to believe that the embedding of the full $\operatorname{ISO}(7)_{\text {c }}$ theory would require an enlarged set of duality relations... duality hierarchy!!

Derivation of the IIA embedding [4-step process]

* Step 1: 10D KK expansion that leaves 4D spacetime symmetry manifest

$$
A(x, y) \text { 's and } B(x, y) \text { 's fields }
$$

* Step 2 : Redefinitions of the A 's and B 's fields to conform 4D SUSY transformations

$$
C(x, y) \text { 's fields }
$$

* Step 3 : Connection to actual 4D fields by dressing up with S^{6} geometrical data

$$
C(x, y)=\operatorname{geometry}(y) \times \mathcal{C}(x)
$$

* Step 4 : Plug and play
* Step 1: 10D redefinitions (KK expansion) that leave 4D spacetime symmetry manifest

$$
\mathrm{SO}(1,9) \rightarrow \mathrm{SO}(1,3) \times \mathrm{SO}(6)
$$

Then one has: $\quad d \hat{s}_{10}^{2}=\Delta^{-1} d s_{4}^{2}+g_{m n}\left(d y^{m}+B^{m}\right)\left(d y^{n}+B^{n}\right)$,

$$
\begin{aligned}
\hat{A}_{(3)}= & \frac{1}{6} A_{\mu \nu \rho} d x^{\mu} \wedge d x^{\nu} \wedge d x^{\rho}+\frac{1}{2} A_{\mu \nu m} d x^{\mu} \wedge d x^{\nu} \wedge\left(d y^{m}+B^{m}\right) \\
& +\frac{1}{2} A_{\mu m n} d x^{\mu} \wedge\left(d y^{m}+B^{m}\right) \wedge\left(d y^{n}+B^{n}\right) \\
& +\frac{1}{6} A_{m n p}\left(d y^{m}+B^{m}\right) \wedge\left(d y^{n}+B^{n}\right) \wedge\left(d y^{p}+B^{p}\right), \\
\hat{B}_{(2)}= & \frac{1}{2} B_{\mu \nu} d x^{\mu} \wedge d x^{\nu}+B_{\mu m} d x^{\mu} \wedge\left(d y^{m}+B^{m}\right)+\frac{1}{2} B_{m n}\left(d y^{m}+B^{m}\right) \wedge\left(d y^{n}+B^{n}\right), \\
\hat{A}_{(1)}= & A_{\mu} d x^{\mu}+A_{m}\left(d y^{m}+B^{m}\right),
\end{aligned}
$$

In terms of representations of SL(6) [index m]:

$$
1 \quad \text { metric: } d s_{4}^{2},
$$

$$
\begin{array}{rll}
\mathbf{2 1 + 6 + 1}+\mathbf{2 0 + 1 5} & \text { scalars : } & g_{m n}, A_{m}, \hat{\phi}, A_{m n p}, B_{m n}, \\
\mathbf{6}^{\prime}+\mathbf{1}+\mathbf{1 5 + 6} & \text { vectors : } & B_{\mu}{ }^{m}, A_{\mu}, A_{\mu m n}, B_{\mu m}, \\
\mathbf{6 + 1} & \text { two-forms : } & A_{\mu \nu m}, B_{\mu \nu}, \\
\mathbf{1} & \text { three-form : } & A_{\mu \nu \rho} .
\end{array}
$$

* Step 2 : Non-linear field redefinitions to conform 4D SUSY transformations
- Vectors: $\quad C_{\mu}{ }^{m 8} \equiv B_{\mu}{ }^{m} \quad, \quad C_{\mu}{ }^{78} \equiv A_{\mu}, \quad \tilde{C}_{\mu m n} \equiv A_{\mu m n}-A_{\mu} B_{m n} \quad, \quad \tilde{C}_{\mu m 7} \equiv B_{\mu m}$
- Two-forms : $\quad C_{\mu \nu m}{ }^{8} \equiv-A_{\mu \nu m}+C_{[\mu}{ }^{n 8} \tilde{C}_{\nu] n m}+C_{[\mu}{ }^{78} \tilde{C}_{\nu] m 7}, \quad C_{\mu \nu 7}{ }^{8} \equiv-B_{\mu \nu}+C_{[\mu}{ }^{m 8} \tilde{C}_{\nu] m 7}$
- Three-form : $\quad C_{\mu \nu \rho}{ }^{88} \equiv A_{\mu \nu \rho}-C_{[\mu}{ }^{m 8} C_{\nu}{ }^{n 8} \tilde{C}_{\rho] m n}+C_{[\mu}{ }^{m 8} C_{\nu}{ }^{78} \tilde{C}_{\rho] m 7}+3 C_{[\mu}{ }^{78} C_{\nu \rho]]}{ }^{8}$

These can be rearranged into representations of $\operatorname{SL}(7)$ [index I]
$C_{\mu}{ }^{I 8}=\left(C_{\mu}{ }^{m 8}, C_{\mu}{ }^{78}\right) \quad \tilde{C}_{\mu I J}=\left(\tilde{C}_{\mu m n}, \tilde{C}_{\mu m 7}\right) \quad C_{\mu \nu I}{ }^{8}=\left(C_{\mu \nu m}{ }^{8}, C_{\mu \nu}{ }^{8}\right) \quad C_{\mu \nu \rho}{ }^{88}$
with 10D SUSY transfs:

$$
\begin{aligned}
& \delta C_{\mu}{ }^{I 8}=i V^{I 8}{ }_{A B}\left(\bar{\epsilon}^{A} \psi_{\mu}{ }^{B}+\frac{1}{2 \sqrt{2}} \bar{\epsilon}_{C} \gamma_{\mu} \chi^{A B C}\right)+\text { h.c. }, \\
& \delta \tilde{C}_{\mu I J}=-i V_{I J A B}\left(\bar{\epsilon}^{A} \psi_{\mu}{ }^{B}+\frac{1}{2 \sqrt{2}} \bar{\epsilon}_{C} \gamma_{\mu} \chi^{A B C}\right)+\text { h.c. },
\end{aligned}
$$

Mimicking the 4D tensor hierarchy !!

The result is then a set of SL(7)-covariant 10D fields :

$\mathbf{1}$	metric :	$d s_{4}^{2}(x, y)$,
$\mathbf{7}^{\prime}+\mathbf{2 1}$	generalised vielbeine :	$V^{I 8}{ }_{A B}(x, y), \tilde{V}_{I J}{ }_{A B}(x, y)$,
$\mathbf{7}^{\prime}+\mathbf{2 1}$	vectors :	$C_{\mu}{ }^{I 8}(x, y), \tilde{C}_{\mu I J}(x, y)$,
$\mathbf{7}$	two-forms :	$C_{\mu \nu}{ }^{8}(x, y)$,
$\mathbf{1}$	three-form :	$C_{\mu \nu \rho}{ }^{88}(x, y)$.

that is to be connected with the $\operatorname{SL}(7)$-covariant 4D fields of the tensor hierarchy :

$$
\begin{aligned}
& 1 \text { metric: } d s_{4}^{2}(x) \text {, } \\
& 2 \mathbf{1}^{\prime}+\mathbf{7}^{\prime}+\mathbf{2 1}+\mathbf{7} \text { coset representatives: } \quad \mathcal{V}^{I J}{ }^{i j}(x), \mathcal{V}^{I 8 i j}(x), \tilde{\mathcal{V}}_{I J}{ }^{i j}(x), \tilde{\mathcal{V}}_{I 8^{i j}}(x) \text {, } \\
& \mathbf{2 1} \mathbf{1}^{\prime}+\mathbf{7}^{\prime}+\mathbf{2 1}+\mathbf{7} \quad \text { vectors : } \quad \mathcal{A}_{\mu}{ }^{I J}(x), \mathcal{A}_{\mu}{ }^{I}(x), \tilde{\mathcal{A}}_{\mu I J}(x), \tilde{\mathcal{A}}_{\mu I}(x), \\
& 48+\mathbf{7}^{\prime} \quad \text { two-forms: } \quad \mathcal{B}_{\mu \nu}{ }^{J}(x), \mathcal{B}_{\mu \nu}^{I}(x), \\
& \text { 28 } \mathbf{8}^{\prime} \text { three-forms: } \quad \mathcal{C}_{\mu \nu \rho}{ }^{I J}(x),
\end{aligned}
$$

$>$ This connection is established by using geometrical data of the $S^{6}!!$

* Step 3 : Connecting 4D [SL(7)] and 10D [SL(6)] fields using the S^{6} geometrical data in a "dressing up" process

$$
\begin{gathered}
{[\text { vectors] }} \\
C_{\mu}{ }^{m 8}(x, y)=\frac{1}{2} g K_{I J}^{m}(y) \mathcal{A}_{\mu}^{I J}(x) \quad, \quad C_{\mu}{ }^{78}(x, y)=-\mu_{I}(y) \mathcal{A}_{\mu}{ }^{I}(x), \\
\tilde{C}_{\mu m n}(x, y)=\frac{1}{4} K_{m n}^{I J}(y) \tilde{\mathcal{A}}_{\mu I J}(x) \quad, \quad \tilde{C}_{\mu m 7}(x, y)=-g^{-1}\left(\partial_{m} \mu^{I}\right)(y) \tilde{\mathcal{A}}_{\mu I}(x)
\end{gathered}
$$

> [two-forms]
> $C_{\mu \nu m}{ }^{8}(x, y)=-g^{-1}\left(\mu_{I} \partial_{m} \mu^{J}\right)(y) \mathcal{B}_{\mu \nu J}{ }^{I}(x)$
> $C_{\mu \nu} 7^{8}(x, y)=\mu_{I}(y) \mathcal{B}_{\mu \nu}{ }^{I}(x)$

$$
\begin{gathered}
{[\text { three-form] }} \\
C_{\mu \nu \rho}{ }^{88}(x, y)=\left(\mu_{I} \mu_{J}\right)(y) \mathcal{C}_{\mu \nu \rho}{ }^{I J}(x)
\end{gathered}
$$

$\downarrow S^{6}$ geometrical data : embedding coordinates μ^{I}, Killing vectors $K_{I J}^{m}$ and tensors $K_{I J}^{m n}$

* Step 4 : Plug and play... so that the final embedding of $\operatorname{ISO}(7)_{c}$ into type IIA is

$$
\begin{aligned}
d \hat{s}_{10}^{2}= & \Delta^{-1} d s_{4}^{2}+g_{m n} D y^{m} D y^{n} \\
\hat{A}_{(3)}= & \mu_{I} \mu_{J}\left(\mathcal{C}^{I J}+\mathcal{A}^{I} \wedge \mathcal{B}^{J}+\frac{1}{6} \mathcal{A}^{I K} \wedge \mathcal{A}^{J L} \wedge \tilde{\mathcal{A}}_{K L}+\frac{1}{6} \mathcal{A}^{I} \wedge \mathcal{A}^{J K} \wedge \tilde{\mathcal{A}}_{K}\right) \\
& +g^{-1}\left(\mathcal{B}_{J}^{I}+\frac{1}{2} \mathcal{A}^{I K} \wedge \tilde{\mathcal{A}}_{K J}+\frac{1}{2} \mathcal{A}^{I} \wedge \tilde{\mathcal{A}}_{J}\right) \wedge \mu_{I} D \mu^{J}+\frac{1}{2} g^{-2} \tilde{\mathcal{A}}_{I J} \wedge D \mu^{I} \wedge D \mu^{J} \\
& -\frac{1}{2} \mu_{I} B_{m n} \mathcal{A}^{I} \wedge D y^{m} \wedge D y^{n}+\frac{1}{6} A_{m n p} D y^{m} \wedge D y^{n} \wedge D y^{p} \\
\hat{B}_{(2)}= & -\mu_{I}\left(\mathcal{B}^{I}+\frac{1}{2} \mathcal{A}^{I J} \wedge \tilde{\mathcal{A}}_{J}\right)-g^{-1} \tilde{\mathcal{A}}_{I} \wedge D \mu^{I}+\frac{1}{2} B_{m n} D y^{m} \wedge D y^{n} \\
\hat{A}_{(1)}= & -\mu_{I} \mathcal{A}^{I}+A_{m} D y^{m} .
\end{aligned}
$$

where we have defined : $\quad D y^{m} \equiv d y^{m}+\frac{1}{2} g K_{I J}^{m} \mathcal{A}^{I J} \quad, \quad D \mu^{I} \equiv d \mu^{I}-g \mathcal{A}^{I J} \mu_{J}$

The scalars are embedded as

$$
\begin{aligned}
& g^{m n}=\frac{1}{4} g^{2} \Delta \mathcal{M}^{I J} K L K_{I J}^{m} K_{K L}^{n} \quad, \quad B_{m n}=-\frac{1}{2} \Delta g_{m p} K_{I J}^{p} \partial_{n} \mu^{K} \mathcal{M}^{I J}{ }_{K 8}, \\
& A_{m}=\frac{1}{2} g \Delta g_{m n} K_{I J}^{n} \mu_{K} \mathcal{M}^{I J K 8} \quad, \quad A_{m n p}=\frac{1}{8} g \Delta g_{m q} K_{I J}^{q} K_{n p}^{K L} \mathcal{M}^{I J}{ }_{K L}+A_{m} B_{n p} .
\end{aligned}
$$

Remarks and consistency checks

- 10D (bosonic) SUSY transformations exactly reduce to those of the 4 D tensor hierarchy.
- Computing the 10D field strengths $\hat{F}_{(2)}=d \hat{A}_{(1)}+m \hat{B}_{(2)}$, etc. one finds

$$
\begin{aligned}
& \hat{F}_{(4)}=\mu_{I} \mu_{J} \mathcal{H}_{(4)}^{I J}+g^{-1} \mathcal{H}_{(3)} J^{I} \wedge \mu_{I} D \mu^{J}+\frac{1}{2} g^{-2} \tilde{\mathcal{H}}_{(2) I J} \wedge D \mu^{I} \wedge D \mu^{J}+\ldots, \\
& \hat{H}_{(3)}=-\mu_{I} \mathcal{H}_{(3)}^{I}-g^{-1} \tilde{\mathcal{H}}_{(2) I} \wedge D \mu^{I}+\ldots, \\
& \hat{F}_{(2)}=-\mu_{I} \mathcal{H}_{(2)}^{I}+g^{-1}\left(g \delta_{I J} \mathcal{A}^{J}-m \tilde{\mathcal{A}}_{I}\right) \wedge D \mu^{I}+\ldots,
\end{aligned}
$$

[FR parameter]
which are expressed in terms of the 4D tensor hierarchy. The parameter $m=g c$ only appears through standard Romans' redefinitions of $\hat{F}_{(p)}$ in 10D (formulas also valid for massless IIA)
[Hull \& Warner '88 (electric)]

- The set of Bianchi identities of the above 10D field strengths reduces to

$$
\begin{aligned}
& D \mathcal{H}_{(2)}^{I J}=0, D \mathcal{H}_{(2)}^{I}=m \mathcal{H}_{(3)}^{I}, D \tilde{\mathcal{H}}_{(2) I J}=-2 g \mathcal{H}_{(3)[I}^{K} \delta_{J] K}, D \tilde{\mathcal{H}}_{(2) I}=g \delta_{I J} \mathcal{H}_{(3)}^{J} \\
& D \mathcal{H}_{(3) I}^{J}=\mathcal{H}_{(2)}^{J K} \wedge \tilde{\mathcal{H}}_{(2) I K}+\mathcal{H}_{(2)}^{J} \wedge \tilde{\mathcal{H}}_{(2) I}-2 g \delta_{I K} \mathcal{H}_{(4)}^{J K}-\frac{1}{7} \delta_{I}^{J}(\text { trace }) \\
& D \mathcal{H}_{(3)}^{I}=-\mathcal{H}_{(2)}^{I J} \wedge \tilde{\mathcal{H}}_{(2) J}, \quad D \mathcal{H}_{(4)}^{I J} \equiv 0 .
\end{aligned}
$$

which exactly matches the one of the 4D tensor hierarchy.

New $\mathrm{AdS}_{4} N=2$ solution in massive IIA and its CFT_{3} dual

$N=2$ solution of massive type IIA

- Using the uplifting formulae, it is a straightforward exercise to obtain the 10D embedding of a 4 D critical point. An example is the $\mathrm{N}=2 \& \mathrm{U}(3) \mathrm{AdS}_{4}$ point of the $\operatorname{ISO}(7)_{c}$ theory

$$
\begin{aligned}
& d \hat{s}_{10}^{2}=L^{2} \frac{(3+\cos 2 \alpha)^{\frac{1}{2}}}{(5+\cos 2 \alpha)^{-\frac{1}{8}}}\left[d s^{2}\left(\operatorname{AdS}_{4}\right)+\frac{3}{2} d \alpha^{2}+\frac{6 \sin ^{2} \alpha}{3+\cos 2 \alpha} d s^{2}\left(\mathbb{C P}^{2}\right)+\frac{9 \sin ^{2} \alpha}{5+\cos 2 \alpha} \boldsymbol{\eta}^{2}\right], \\
& e^{\hat{\phi}}=e^{\phi_{0}} \frac{(5+\cos 2 \alpha)^{3 / 4}}{3+\cos 2 \alpha} \quad, \quad \hat{H}_{(3)}=24 \sqrt{2} L^{2} e^{\frac{1}{2} \phi_{0}} \frac{\sin ^{3} \alpha}{(3+\cos 2 \alpha)^{2}} \boldsymbol{J} \wedge d \alpha, \\
& L^{-1} e^{\frac{3}{4} \phi_{0}} \hat{F}_{(2)}=-4 \sqrt{6} \frac{\sin ^{2} \alpha \cos \alpha}{(3+\cos 2 \alpha)(5+\cos 2 \alpha)} \boldsymbol{J}-3 \sqrt{6} \frac{(3-\cos 2 \alpha)}{(5+\cos 2 \alpha)^{2}} \sin \alpha d \alpha \wedge \boldsymbol{\eta}, \\
& L^{-3} e^{\frac{1}{4} \phi_{0}} \hat{F}_{(4)}=6 \operatorname{vol}_{4} \\
& \quad+12 \sqrt{3} \frac{7+3 \cos 2 \alpha}{(3+\cos 2 \alpha)^{2}} \sin ^{4} \alpha \operatorname{vol}_{\mathbb{C P}^{2}}+18 \sqrt{3} \frac{(9+\cos 2 \alpha) \sin ^{3} \alpha \cos \alpha}{(3+\cos 2 \alpha)(5+\cos 2 \alpha)} \boldsymbol{J} \wedge d \alpha \wedge \boldsymbol{\eta},
\end{aligned}
$$

where we have introduced the quantities $L^{2} \equiv 2^{-\frac{5}{8}} 3^{-1} g^{-2} c^{\frac{1}{12}}$ and $e^{\phi_{0}} \equiv 2^{\frac{1}{4}} c^{-\frac{5}{6}}$
\uparrow The angle $0 \leq \alpha \leq \pi$ locally foliates S^{6} with S^{5} regarded as Hopf fibrations over $\mathbb{C P}^{2}$

CFT_{3} candidate and matching of free energies

- We propose and $\mathrm{N}=2$ Chern-Simons-matter theory with simple gauge group $\operatorname{SU}(N)$, level k and only adjoint matter, as the CFT of the $N=2$ massive IIA solution.
- The 3d free energy $F=-\log (Z)$, where Z is the partition function on the CFT on a Euclidean S^{3} can be computed via localisation over supersymmetric configurations

$$
z=\int \prod_{i=1}^{N} \frac{d \lambda_{i}}{2 \pi} \prod_{i<j=1}^{N}\left(2 \sinh ^{2}\left(\frac{\lambda_{i}-\lambda_{j}}{2}\right)\right) \times \prod_{i, j=1}^{N}\left(\exp \left(\ell\left(\frac{1}{3}+\frac{i}{2 \pi}\left(\lambda_{i}-\lambda_{j}\right)\right)\right)\right)^{3} e^{\frac{i v}{\pi \pi}} \sum \lambda_{i}^{2}
$$

where λ_{i} are the Coulomb branch parameters. In the $N \gg k$ limit, the result is given by

$$
F=\frac{3^{13 / 6} \pi}{40}\left(\frac{32}{27}\right)^{2 / 3} k^{1 / 3} N^{5 / 3}
$$

- The gravitational free energy can be computed from the warp factor in the $\mathrm{N}=2$ massive IIA solution. Using the charge quantisation condition $N=-\left(2 \pi l_{5}\right)^{-5} \int_{S^{6}} e^{\frac{1}{2}} \phi_{\hat{\kappa}} \hat{F}_{(4)}+\hat{B}_{(2)} \wedge d \hat{A}_{(3)}+\frac{1}{6} \hat{F}_{(0)} \hat{B}_{(2)}^{3}$ for the D2-brane, one finds

$$
F=\frac{16 \pi^{3}}{\left(2 \pi \ell_{s}\right)^{8}} \int_{S^{6}} e^{8 A} \operatorname{vol}_{6}=\frac{\pi}{5} 2^{1 / 3} 3^{1 / 6} k^{1 / 3} N^{5 / 3} \quad \text { provided } \quad g c=\hat{F}_{(0)}=k /\left(2 \pi \ell_{s}\right)
$$

Summary

1) We propose a new method to embed 4 D theories into 10 D that makes extensive use of the 4 D duality hierarchy. Using this method, we have connected the electric-magnetic deformed $\mathrm{N}=8$ supergravity with $\operatorname{ISO}(7)_{\text {c }}$ gauging to massive IIA reductions on S^{6}.
2) Any 4 D configuration is embedded into 10 D via the uplifting formulas. As an example, we have found a new $A d S_{4} \times S^{6}$ solution of massive IIA based on an $N=2 \& U(3) A d S 4$ vacua in 4D.
3) We propose a CFT_{3} dual for the $\mathrm{N}=2 \mathrm{AdS}_{4} \times \mathrm{S}^{6}$ solution of massive IIA based on the D2-brane field theory. In the massive IIA case, there is a CS-term and a superpotential that make the theory flowing to a conformal phase (IR). This translates into the appearance of supersymmetric AdS 4 vacua in the deformed $\operatorname{ISO}(7)_{c}$ supergravity theory.
4) For the new $\mathrm{N}=2$ massive IIA solution, the gravitational and FT free energies do match provided

$$
g c=\hat{F}_{(0)}=k /\left(2 \pi \ell_{s}\right)
$$

5) Extension to other dimensions? EGG / EFT for massive IIA? Insights into non-geometry?
grazie mille !!

Extra material

SUSY	bos. sym.	$M^{2} L^{2}$	stability	ref.
$\mathcal{N}=3$	$\mathrm{SO}(4)$	$\begin{gathered} 3(1 \pm \sqrt{3})^{(1)},(1 \pm \sqrt{3})^{(6)},{-\frac{9}{4}^{(4)},-2^{(18)},-\frac{5}{4}^{(12)}, 0^{(22)}}^{(3 \pm \sqrt{3})^{(3)}, \frac{15}{4}^{(4)}, \frac{3}{4}^{(12)}, 0^{(6)}} \text {. } \end{gathered}$	yes	[30]
$\mathcal{N}=2$	$\mathrm{U}(3)$	$\begin{gathered} (3 \pm \sqrt{17})^{(1)},{-\frac{20}{9}^{(12)},-2^{(16)},-\frac{14}{9}^{(18)}, 2^{(3)}, 0^{(19)}}^{4^{(1)}, \frac{28}{9}^{(6)}, \frac{4}{9}^{(12)}, 0^{(9)}} . \end{gathered}$	yes	[15] , [here]
$\mathcal{N}=1$	G_{2}	$\begin{gathered} (4 \pm \sqrt{6})^{(1)},-\frac{1}{6}(11 \pm \sqrt{6})^{(27)}, 0^{(14)} \\ \frac{1}{2}(3 \pm \sqrt{6})^{(7)}, 0^{(14)} \end{gathered}$	yes	[4]
$\mathcal{N}=1$	SU(3)	$\begin{gathered} (4 \pm \sqrt{6})^{(2)}, \frac{-20}{9}^{(12)},-2^{(8)},-\frac{8}{9}^{(12)}, \frac{7}{9}^{(6)}, 0^{(28)} \\ 6^{(1)}, \frac{28}{9}^{(6)}, \frac{25}{9}^{(6)}, 2^{(1)}, \frac{4}{9}^{(6)}, 0^{(8)} \end{gathered}$	yes	[here]
$\mathcal{N}=0$	$\mathrm{SO}(7)_{+}$	$\begin{gathered} 6^{(1)},-\frac{12}{5}^{(27)},{-\frac{6}{5}^{(35)}, 0^{(7)}}_{\frac{12}{5}^{(7)}, 0^{(21)}} . \end{gathered}$	no	[3]
$\mathcal{N}=0$	$\mathrm{SO}(6)_{+}$	$\begin{gathered} 6^{(2)},-3^{(20)},-\frac{3}{4}^{(20)}, 0^{(28)} \\ 6^{(1)}, \frac{9}{4}^{(12)}, 0^{(15)} \end{gathered}$	no	[3]
$\mathcal{N}=0$	G_{2}	$\begin{gathered} 6^{(2)},-1^{(54)}, 0^{(14)} \\ 3^{(14)}, 0^{(14)} \end{gathered}$	yes	[4]
$\mathcal{N}=0$	SU(3)	$\begin{aligned} & \text { see }(3.44) \\ & \text { see }(3.45) \end{aligned}$	yes	[here]
$\mathcal{N}=0$	SU(3)	$\begin{aligned} & \text { see }(3.46) \\ & \text { see }(3.47) \end{aligned}$	yes	[here]
$\mathcal{N}=0$	SO(4)	$\begin{aligned} & \text { see }(5.12) \\ & \text { see }(5.13) \end{aligned}$	yes	[here]

SUSY transformations of the tensor hierarchy

> [vielbein and scalars]
> $\delta e_{\mu}^{\alpha}=\frac{1}{4} \bar{\epsilon}_{i} \gamma^{\alpha} \psi_{\mu}{ }^{i}+\frac{1}{4} \bar{\epsilon}^{i} \gamma^{\alpha} \psi_{\mu i}$
> $\delta \mathcal{V}_{\mathbb{M}}{ }^{i j}=\frac{1}{\sqrt{2}} \mathcal{V}_{\mathbb{M} k l}\left(\bar{\epsilon}^{i} \chi^{j k l]}+\frac{1}{4!} \varepsilon^{i j k l m n p q} \bar{\epsilon}_{m} \chi_{n p q}\right)$

$$
\begin{array}{rc}
{[\text { vectors] }} \\
\delta \mathcal{A}_{\mu}{ }^{I J}= & i \mathcal{V}^{I J}{ }_{i j}\left(\bar{\epsilon}^{i} \psi_{\mu}{ }^{j}+\frac{1}{2 \sqrt{2}} \bar{\epsilon}_{k} \gamma_{\mu} \chi^{i j k}\right)+\text { h.c. } \\
\delta \mathcal{A}_{\mu}{ }^{I}=i \mathcal{V}^{I 8}{ }_{i j}\left(\bar{\epsilon}^{i} \psi_{\mu}{ }^{j}+\frac{1}{2 \sqrt{2}} \bar{\epsilon}_{k} \gamma_{\mu} \chi^{i j k}\right)+\text { h.c. } \\
\delta \tilde{\mathcal{A}}_{\mu I J}=-i \tilde{\mathcal{V}}_{I J i j}\left(\bar{\epsilon}^{i} \psi_{\mu}{ }^{j}+\frac{1}{2 \sqrt{2}} \bar{\epsilon}_{k} \gamma_{\mu} \chi^{i j k}\right)+\text { h.c. } \\
\delta \tilde{\mathcal{A}}_{\mu I}=-i \tilde{\mathcal{V}}_{I 8 i j}\left(\bar{\epsilon}^{i} \psi_{\mu}{ }^{j}+\frac{1}{2 \sqrt{2}} \bar{\epsilon}_{k} \gamma_{\mu} \chi^{i j k}\right)+\text { h.c. }
\end{array}
$$

[two-forms]

$$
\begin{aligned}
\delta \mathcal{B}_{\mu \nu J}{ }^{I}=[& -\frac{2}{3}\left(\mathcal{V}^{I K}{ }_{j k} \tilde{\mathcal{V}}_{J K}{ }^{i k}+\mathcal{V}^{I 8}{ }_{j k} \tilde{\mathcal{V}}_{J 8}{ }^{i k}+\tilde{\mathcal{V}}_{J K}{ }_{j k} \mathcal{V}^{I K i k}+\tilde{\mathcal{V}}_{J 8 j k} \mathcal{V}^{I 8 i k}\right) \bar{\epsilon}_{i} \gamma_{[\mu} \psi_{\nu]}^{j} \\
& \left.-\frac{\sqrt{2}}{3}\left(\mathcal{V}^{I K}{ }_{i j} \tilde{\mathcal{V}}_{J K k l}+\mathcal{V}^{I 8}{ }_{i j} \tilde{\mathcal{V}}_{J 8 k l}\right) \bar{\epsilon}^{[i} \gamma_{\mu \nu} \chi^{j k l]}+\text { h.c. }\right] \\
& +\left(\mathcal{A}_{[\mu}^{I K} \delta \tilde{\mathcal{A}}_{\nu] J K}+\mathcal{A}_{[\mu}^{I} \delta \tilde{\mathcal{A}}_{\nu] J}+\tilde{\mathcal{A}}_{[\mu \mid J K} \delta \mathcal{A}_{\mid \nu]}^{I K}+\tilde{\mathcal{A}}_{[\mu \mid J} \delta \mathcal{A}_{\mid \nu]}{ }^{I}\right)-\frac{1}{7} \delta_{J}^{I}(\text { trace }), \\
\delta \mathcal{B}_{\mu \nu}{ }^{I}= & {\left[\frac{2}{3}\left(\mathcal{V}^{I J}{ }_{j k} \tilde{\mathcal{V}}_{J 8}{ }^{i k}+\tilde{\mathcal{V}}_{J 8 j k} \mathcal{V}^{I J i k}\right) \bar{\epsilon}_{i} \gamma_{[\mu} \psi_{\nu]}^{j}+\frac{\sqrt{2}}{3} \mathcal{V}^{I J}{ }_{i j} \tilde{\mathcal{V}}_{J 8 k l} \bar{\epsilon}^{[i} \gamma_{\mu \nu} \chi^{j k l]}+\text { h.c. }\right] } \\
& -\left(\mathcal{A}_{[\mu}^{I J} \delta \tilde{\mathcal{A}}_{\nu] J}+\tilde{\mathcal{A}}_{[\mu|J|} \delta \mathcal{A}_{\mid \nu]}^{I J}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { [three-forms] } \\
& \delta \mathcal{C}_{\mu \nu \rho}{ }^{I J}=\left[-\frac{4 i}{7}\left(\mathcal{V}^{K(I}{ }_{j l}\left(\mathcal{V}^{J) L l k} \tilde{\mathcal{V}}_{K L i k}+\tilde{\mathcal{V}}_{K L}{ }^{l k} \mathcal{V}^{J) L}{ }_{i k}\right)\right.\right. \\
& +\mathcal{V}^{K(I}{ }_{j l}\left(\mathcal{V}^{J) 8 l k} \tilde{\mathcal{V}}_{K 8 i k}+\tilde{\mathcal{V}}_{K 8}{ }^{l k} \mathcal{V}^{J) 8}{ }_{i k}\right) \\
& +\mathcal{V}^{\left(I| |{ }_{j l}\left(\mathcal{V}^{\mid J) K l k} \tilde{\mathcal{V}}_{K 8 i k}+\tilde{\mathcal{V}}_{K 8}{ }^{l k} \mathcal{V}^{\mid J) K}{ }_{i k}\right)\right) \bar{\epsilon}^{i} \gamma_{[\mu \nu} \psi_{\rho]}^{j}} \\
& +i \frac{\sqrt{2}}{3}\left(\mathcal{V}^{K(I \mid h i} \mathcal{V}^{\mid J) L}{ }_{[i j \mid} \tilde{\mathcal{V}}_{K L \mid k l]}+\mathcal{V}^{K(I h i} \mathcal{V}^{J) 8}{ }_{[i j \mid} \tilde{\mathcal{V}}_{K 8 \mid k l]}\right. \\
& \left.\left.+\mathcal{V}^{(I \mid 8 h i} \mathcal{V}^{\mid J) K}{ }_{[i j \mid} \tilde{\mathcal{V}}_{K 8 \mid k l]}\right) \bar{\epsilon}_{h} \gamma_{\mu \nu \rho} \chi^{j k l}+\text { h.c. }\right] \\
& -3\left(\mathcal{B}_{[\mu \nu \mid K}{ }^{(I} \delta \mathcal{A}_{[\rho]}^{J) K}+\mathcal{B}_{[\mu \nu}{ }^{(I} \delta \mathcal{A}_{\rho]}^{J)}\right) \\
& +\mathcal{A}_{[\mu}^{K(I}\left(\mathcal{A}_{\nu}^{J) L} \delta \tilde{\mathcal{A}}_{\rho] K L}+\tilde{\mathcal{A}}_{\nu K L} \delta \mathcal{A}_{\rho]}^{J) L}\right)+\mathcal{A}_{[\mu}^{K(I}\left(\mathcal{A}_{\nu}^{J)} \delta \tilde{\mathcal{A}}_{\rho] K}+\tilde{\mathcal{A}}_{\nu K} \delta \mathcal{A}_{\rho]}^{J)}\right) \\
& +\mathcal{A}_{[\mu}^{(I}\left(\mathcal{A}_{\nu}^{J) K} \delta \tilde{\mathcal{A}}_{\rho] K}+\tilde{\mathcal{A}}_{\nu K} \delta \mathcal{A}_{\rho]}^{J) K}\right) .
\end{aligned}
$$

... all scalars, vectors and the fermions should be kept !!

Scalar potential and three-form potentials

- How does the scalar potential potential V fit in the duality hierarchy ?

$$
\Theta_{\mathbb{M}}{ }^{\alpha} \mathcal{H}_{(4) \alpha}{ }^{\mathbb{M}}=-2 V \operatorname{vol}_{4}
$$

- In our deformed $\operatorname{ISO}(7)_{c}$ theory, one has four-form field strengths

$$
g \delta_{I J} \mathcal{H}_{(4)}^{I J}+m \tilde{\mathcal{H}}_{(4)}=-2 V \operatorname{vol}_{4} \quad[\mathbf{2 8}+\mathbf{1} \text { of } \operatorname{SL}(7)]
$$

where we need the SL(7)-singlet four-form field strength $\tilde{\mathcal{H}}_{(4)}$ dual to the magnetic ET

- Consistency requires also the three-form field strength $\mathcal{H}_{(3)}$ rendering $\mathcal{H}_{(3) I}{ }^{J}$ traceful

$$
\begin{aligned}
\mathcal{H}_{(3)} & =\frac{1}{12}\left(t_{8}\right)_{\mathbb{M}^{\mathbb{P}}} \mathcal{M}_{\mathbb{N P}} * D \mathcal{M}^{\mathbb{M N}}, \\
\tilde{\mathcal{H}}_{(4)} & =\frac{1}{84} X_{\mathbb{N}}{ }^{\mathbb{S}}\left(t_{8} K\right)_{\mathbb{P}^{\mathbb{R}}} \mathcal{M}_{8 K}{ }^{\mathbb{N}} \mathcal{M}^{\mathbb{P Q}} \mathcal{M}_{\mathbb{R S}} \operatorname{vol}_{4}
\end{aligned}
$$

* Extended BI's :

$$
\begin{aligned}
& D \mathcal{H}_{(3)}=\mathcal{H}_{(2)}^{I J} \wedge \tilde{\mathcal{H}}_{(2) I J}+\mathcal{H}_{(2)}^{I} \wedge \tilde{\mathcal{H}}_{(2) I}-2 g \delta_{I J} \mathcal{H}_{(4)}^{I J}-14 m \tilde{\mathcal{H}}_{(4)} \\
& D \tilde{\mathcal{H}}_{(4)} \equiv 0,
\end{aligned}
$$

Generalised vielbein

$$
V^{I 8}{ }_{A B}=\left(V^{m 8}{ }_{A B}, V^{78}{ }_{A B}\right) \quad, \quad \tilde{V}_{I J A B}=\left(\tilde{V}_{m n A B}, \tilde{V}_{m 7 A B}\right)
$$

with components

$$
\begin{aligned}
V^{m 8 A B}= & -\frac{1}{4} \Delta^{-\frac{1}{2}} e_{a}^{m}\left(\Gamma^{a} C^{-1}\right)^{A B}, \\
V^{78 A B}= & -\frac{1}{4} e^{-\frac{3}{4} \hat{\phi}} \Delta^{-\frac{1}{2}}\left(\Gamma_{7} C^{-1}\right)^{A B}-V^{m 8 A B} A_{m}, \\
\tilde{V}_{m 7}{ }^{A B}= & \frac{1}{4} e^{\frac{1}{2} \hat{\phi}} \Delta^{-\frac{1}{2}} e_{m}{ }^{a}\left(\Gamma_{a} \Gamma_{7} C^{-1}\right)^{A B}+V^{n 8 A B} B_{n m}, \\
\tilde{V}_{m n}{ }^{A B}= & \frac{1}{4} e^{-\frac{1}{4} \hat{\phi}} \Delta^{-\frac{1}{2}} e_{m}{ }^{a} e_{n}{ }^{b}\left(\Gamma_{a b} C^{-1}\right)^{A B}+V^{p 8 A B}\left(A_{p m n}-2 B_{p[m} A_{n]}\right) \\
& +V^{78 A B} B_{m n}+2 \tilde{V}_{[m \mid 7}{ }^{A B} A_{[n]}
\end{aligned}
$$

and

$$
\begin{aligned}
V_{A B}^{m 8}= & \frac{1}{4} \Delta^{-\frac{1}{2}} e_{a}^{m}\left(C \Gamma^{a}\right)_{A B}, \\
V^{78}{ }_{A B}= & \frac{1}{4} e^{-\frac{3}{4} \hat{\phi}} \Delta^{-\frac{1}{2}}\left(C \Gamma_{7}\right)_{A B}-V^{m 8}{ }_{A B} A_{m}, \\
\tilde{V}_{m 7 A B}= & \frac{1}{4} e^{\frac{1}{2} \hat{\phi}} \Delta^{-\frac{1}{2}} e_{m}{ }^{a}\left(C \Gamma_{a} \Gamma_{7}\right)_{A B}+V^{n 8}{ }_{A B} B_{n m}, \\
\tilde{V}_{m n A B}= & \frac{1}{4} e^{-\frac{1}{4} \hat{\phi}} \Delta^{-\frac{1}{2}} e_{m}{ }^{a} e_{n}{ }^{b}\left(C \Gamma_{a b}\right)_{A B}+V^{p 8}{ }_{A B}\left(A_{p m n}-2 B_{p[m} A_{n]}\right) \\
& +V^{78}{ }_{A B} B_{m n}+2 \tilde{V}_{[m \mid 7 A B} A_{\mid n]}
\end{aligned}
$$

$$
\begin{gathered}
\text { [vielbein and scalars] } \\
d s_{4}^{2}(x, y)=d s_{4}^{2}(x) \\
V^{m 8 A B}(x, y)=\frac{1}{2} g K_{I J}^{m}(y) \eta_{i}^{A}(y) \eta_{j}^{B}(y) \mathcal{V}^{I J i j}(x), \\
V^{78 A B}(x, y)=-\mu_{I}(y) \eta_{i}^{A}(y) \eta_{j}^{B}(y) \mathcal{V}^{I 8 i j}(x), \\
\tilde{V}_{m n}{ }^{A B}(x, y)=\frac{1}{4} K_{m n}^{I J}(y) \eta_{i}^{A}(y) \eta_{j}^{B}(y) \tilde{\mathcal{V}}_{I J^{i j}(x),} \\
\tilde{V}_{m 7}{ }^{A B}(x, y)=-g^{-1}\left(\partial_{m} \mu^{I}\right)(y) \eta_{i}^{A}(y) \eta_{j}^{B}(y) \tilde{\mathcal{V}}_{I 8^{i j}(x),},
\end{gathered}
$$

[two-forms]

$$
\begin{aligned}
C_{\mu \nu m}{ }^{8}(x, y) & =-g^{-1}\left(\mu_{I} \partial_{m} \mu^{J}\right)(y) \mathcal{B}_{\mu \nu J}^{I}(x) \\
C_{\mu \nu}{ }^{8}(x, y) & =\mu_{I}(y) \mathcal{B}_{\mu \nu}^{I}(x)
\end{aligned}
$$

[vectors]

$$
\begin{array}{lll}
C_{\mu}{ }^{m 8}(x, y)=\frac{1}{2} g K_{I J}^{m}(y) \mathcal{A}_{\mu}{ }^{I J}(x) & , & C_{\mu}{ }^{78}(x, y)=-\mu_{I}(y) \mathcal{A}_{\mu}{ }^{I}(x), \\
\tilde{C}_{\mu m n}(x, y)=\frac{1}{4} K_{m n}^{I J}(y) \tilde{\mathcal{A}}_{\mu I J}(x) & , \quad \tilde{C}_{\mu m 7}(x, y)=-g^{-1}\left(\partial_{m} \mu^{I}\right)(y) \tilde{\mathcal{A}}_{\mu I}(x)
\end{array}
$$

$\downarrow S^{6}$ geometrical data : embedding coordinates μ^{I}, Killing vectors $K_{I J}^{m}$ and tensors $K_{I J}^{m n}$

10D SUSY transformations

$$
\begin{aligned}
\delta C_{\mu}{ }^{I 8}= & i V^{I 8}{ }_{A B}\left(\bar{\epsilon}^{A} \psi_{\mu}{ }^{B}+\frac{1}{2 \sqrt{2}} \bar{\epsilon}_{C} \gamma_{\mu} \chi^{A B C}\right)+\text { h.c. }, \\
\delta \tilde{C}_{\mu I J}= & -i V_{I J}{ }_{A B}\left(\bar{\epsilon}^{A} \psi_{\mu}{ }^{B}+\frac{1}{2 \sqrt{2}} \bar{\epsilon}_{C} \gamma_{\mu} \chi^{A B C}\right)+\text { h.c. }, \\
\delta C_{\mu \nu I}{ }^{8}= & {\left[\frac{2}{3}\left(V^{J 8}{ }_{B C} \tilde{V}_{I J}^{A C}+\tilde{V}_{I J B C} V^{J 8 A C}\right) \bar{\epsilon}_{A} \gamma_{[\mu} \psi_{\nu]}^{B}\right.} \\
& \left.+\frac{\sqrt{2}}{3} V^{J 8}{ }_{A B} \tilde{V}_{I J C D} \bar{\epsilon}^{[A} \gamma_{\mu \nu} \chi^{B C D]}+\text { h.c. }\right]-C_{[\mu}^{J 8} \delta \tilde{C}_{\nu] I J}-\tilde{C}_{[\mu \mid I J} \delta C_{\mid \nu]}^{J 8}, \\
\delta C_{\mu \nu \rho}{ }^{88}= & {\left[\frac{4 i}{7} V^{I 8}{ }_{B D}\left(V^{J 8 D C} \tilde{V}_{I J A C}+\tilde{V}_{I J}^{D C} V^{J 8}{ }_{A C}\right) \bar{\epsilon}^{A} \gamma_{[\mu \nu} \psi_{\rho]}^{B}\right.} \\
& \left.-i \frac{\sqrt{2}}{3} V^{I 8 A E} V^{J 8}{ }_{[E B \mid} \tilde{V}_{I J \mid C D]} \bar{\epsilon}_{A} \gamma_{\mu \nu \rho} \chi^{B C D}+\text { h.c. }\right] \\
& +3 C_{[\mu \nu \mid I}{ }^{8} \delta C_{\mid \rho]}^{I 8}-C_{[\mu}^{I 8}\left(C_{\nu}^{J 8} \delta \tilde{C}_{\rho] I J}+\tilde{C}_{\nu \mid I J} \delta C_{\mid \rho]}^{J 8}\right) .
\end{aligned}
$$

Freund-Rubin term

- By looking at the RR field strength $\hat{F}_{(4)}=\mathcal{H}_{(4)}^{I J} \mu_{I} \mu_{J}+\ldots$, one immediately identifies the Freund-Rubin term

$$
\begin{aligned}
\mathcal{H}_{(4)}^{I J} \mu_{I} \mu_{J}= & -\frac{1}{3} g^{-1} V \operatorname{vol}_{4}+\frac{1}{84} g^{-1}\left(D \mathcal{H}_{(3)}-7 \mathcal{H}_{(2)}^{I J} \wedge \tilde{\mathcal{H}}_{(2) I J}-7 \mathcal{H}_{(2)}^{I} \wedge \tilde{\mathcal{H}}_{(2) I}\right) \\
& -\frac{1}{2} g^{-1}\left(D \mathcal{H}_{(3) I}^{J}-\mathcal{H}_{(2)}^{J K} \wedge \tilde{\mathcal{H}}_{(2) I K}-\mathcal{H}_{(2)}^{J} \wedge \tilde{\mathcal{H}}_{(2) I}\right) \mu^{I} \mu_{J},
\end{aligned}
$$

NOTE: We have expressed the EOMs for the scalars as BI for the three-form field strengths of the tensor hierarchy.

- At a critical point of V one has $\hat{F}_{(4)}=-\frac{1}{3 g} V \operatorname{vol}_{4}+\ldots$, and the S^{6} dependence drops out

